Idéaux, idéaux premiers et idéaux maximaux de $C^{\infty}(\mathbf{R}^n)$

Colas Bardavid

mercredi 23 mars 2005

Principaux idéaux introduits

 \mathfrak{M}_x : l'idéal des fonctions s'annulant en x.

 $\mathfrak{M}_{x,A}^{\mathrm{loc}}$: l'idéal des fonctions s'annulant localement en x dans la direction A.

 $\mathfrak{M}_{x,V}^{\infty-\mathrm{plat}}$: l'idéal des fonctions plates en x selon la direction V.

 $\mathfrak{M}_{\infty}^{\mathrm{loc}}$: l'idéal des fonctions s'annulant à l'infini. $\mathfrak{M}_{\mathfrak{p},V}^{\mathrm{loc}}$: l'idéal des fonctions s'annulant à l'infini dans la direction A. $\mathfrak{M}_{\mathfrak{p},V}^{\infty-\mathrm{plat}}$: l'idéal des fonctions plates en \mathfrak{p} selon la direction V.

Résultats démontrés

Fait 0.1 $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ ne dépend que du "germe d'espace" de A en x, c'est-à-dire que s'il existe $U \in \mathcal{V}(x)$ tel que $A \cap U = B \cap U$, alors $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,B}^{\mathrm{loc}}$.

Fait 0.2
$$\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,\bar{A}}^{\mathrm{loc}}$$
.

Théorème 0.3 (classification des idéaux maximaux de $C^{\infty}(\mathbf{R}^n)$) Soit \mathfrak{M} un idéal maximal de $C^{\infty}(\mathbf{R}^n)$. Alors :

- soit il existe $x \in \mathbf{R}^n$ tel que $\mathfrak{M} = \mathfrak{M}_x$
- $soit \mathfrak{M}_{\infty}^{loc} \subset \mathfrak{M}$.

Fait 0.4 L'ensemble des fonctions qui tendent vers 0 en $+\infty$ n'est jamais un idéal, quelle que soit la vitesse de convergence qu'on impose.

Corollaire 0.5 Il existe une infinité non dénombrable d'idéaux maximaux contenant $\mathfrak{M}_{\infty}^{loc}$.

Théorème 0.6 (classification des idéaux premiers de $\mathcal{C}^{\infty}(\mathbf{R}^n)$) Soit \mathfrak{M} un idéal maximal à l'infini, ie tel que $\mathfrak{M}^{loc}_{\infty} \subset \mathfrak{M}$. Soient x, y distincts dans \mathbf{R}^n . Soit \mathfrak{P} un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$. Alors, \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M}_x et dans \mathfrak{M}_y , et \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M}_x et dans \mathfrak{M} .

Proposition 0.7 $\mathfrak{M}_{\mathfrak{p},\vec{v}}^{\infty-\text{plat}}$ est un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$, non-maximal si $\mathfrak{p} = \mathfrak{M}_x$.

Grande déception 0.8 Soient $x \in \mathbf{R}^n$ et A une partie à laquelle x adhère. Alors, on n'a pas nécessairement $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_{x,T_xA}^{\infty-\mathrm{plat}}$.

Questions en suspens

Question 0.9 Soient A et B deux fermés de X tels que $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,B}^{\mathrm{loc}}$. Est-ce que A et B ont le même germe d'espace en x?

Proposition 0.10 Soit $y \in X$. Si $\forall U \in \mathcal{V}_A(x), y \in U$ alors $\mathfrak{M}_{x,A}^{loc} \subset \mathfrak{M}_y$.

La réciproque est fausse : il suffit de prendre pour X un espace topologique où il existe x_1 et x_2 tel que tout voisinage de x_2 contienne x_1 . Alors, $\mathfrak{M}^{\mathrm{loc}}_{x_1,X\setminus\{x_2\}}\subset\mathfrak{M}_{x_2}$. Cependant, j'ai l'impression que ce contre-exemple un peu artificiel ne règle pas la question de la réciproque.

Question 0.11 Soit $(a_n)_n$ une suite injective de points de \mathbb{R}^n tendant vers x. Existe-t-il une fonction $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ dont l'ensemble des zéros est $\{a_n, n \in \mathbb{N}\}$?

Conjecture 0.12 Soient A et B deux fermés disjoints à l'infini. Soit \mathfrak{M}_1 et \mathfrak{M}_2 deux idéaux maximaux à l'infini contenant respectivement $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $\mathfrak{M}_{\infty,B}^{\mathrm{loc}}$. Alors il n'y a aucun idéal premier \mathfrak{P} contenu à la fois dans \mathfrak{M}_1 et dans \mathfrak{M}_2 .

Projet 0.13 Démêler tout ce qui a été fait et continuer à chercher aux alentours de l'infini.

Table des matières

1	Naï	veté	5
2	Idéa	aux de $\mathcal{C}^{\infty}(\mathbf{R}^n)$	6
	2.1	L'idéal $\mathfrak{M}_x^{\text{loc}}$ des fonctions qui s'annulent localement autour de x	6
	2.2	$\mathfrak{M}_{x,ec{v}}^{\mathrm{loc},rac{1}{2}}$	6
	2.3	$\mathfrak{m}^{\mathrm{loc},\mathrm{ang}}_{x,ec{v}}$	6
		ω, c	
	$\frac{2.4}{2.5}$	L'idéal $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ des fonctions qui s'annulent localement autour de	6
		x dans la direction A	6
	2.6	Généralisation pour les espaces topologiques	7
3	Poir	nt à l'infini et idéaux maximaux de $\mathcal{C}^\infty(\mathbf{R}^n)$	9
	3.1	L'idéal $\mathfrak{M}_{\infty}^{\mathrm{loc}}$ des fonctions s'annulant à l'infini	9
	3.2	L'idéal $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ des fonctions s'annulant à l'infini dans la direction A	9
	3.3		10
4	Idéa	aux et idéaux premiers de $\mathcal{C}^\infty(\mathbf{R}^n)$	11
	4.1	*	11
		1 ()	11
		1 0	12
			12
	4.2	*	13
			13
			13
	4.3		14
		4.3.1 L'idéal $\mathfrak{M}_x^{m-\mathrm{plat}} \subset \mathcal{C}^\infty(\mathbf{R})$ des fonctions m -presque plates	
			14
		<i>1</i> , , , , , , , , , , , , , , , , , , ,	14
	4.4	1 /	15
		4.4.1 L'idéal $\mathfrak{M}_{x,\vec{v}}^{\infty-\text{plat}}$ des fonctions plates en x suivant la direction \vec{v}	15
		4.4.2 Généralisation : l'idéal $\mathfrak{M}_{x,V}^{\infty-\mathrm{plat}}$ des fonctions plates selon	10
		la direction $V = 1$ des fonctions plates selon	15
			$\frac{15}{16}$
			Tυ
			17

Motivations

Au début, je voulais comprendre la localisation : pour quoi appelle-t-on $A_{\mathfrak{p}}$ le localisé? La meilleure façon de le comprendre est de voir sur un exemple que Spec $A_{\mathfrak{p}}$ correspond bien au "germe de l'espace" Spec A, quand on connaît Spec A.

L'exemple d'espace le plus simple est \mathbb{R}^n (d'autant plus qu'alors je suivais le cours de groupe de Lie d'Antoine Chambert-Loir). Dans ce cas, le germe d'espace est le même en tout point, la notion n'a pas beaucoup d'intérêt.

Quoi qu'il en soit, finalement, j'ai essayé de comprendre Spec $(\mathcal{C}^{\infty}(\mathbf{R}^n))$.

Comme c'est trop dur et comme je suivais le cours d'introduction à la géométrie algébrique d'Antoine Ducros (k-algèbres réduites de type fini avec k algébriquement clos), je me suis dit : d'abord, on va calculer Specmax $\mathcal{C}^{\infty}(\mathbf{R}^n)$.

1 Naïveté

Notation 1.1 Soit $x \in \mathbf{R}^n$. On note $\mathfrak{M}_x = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid f(x) = 0 \}$. De façon plus générale, si $A \subset \mathbf{R}^n$, on note $\mathfrak{M}_A = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid f_{|A} = 0 \}$.

On a évidemment, la

Proposition 1.2 \mathfrak{M}_x est un idéal maximal de $\mathcal{C}^{\infty}(\mathbf{R}^n)$.

Démonstration : En effet, si $f \notin \mathfrak{M}_x$, $f(x) \neq 0$ et par continuité, il existe $U \subset \mathbf{R}^n$ tel que $f_{|U}$ ne s'annule pas. En considérant f^2 , on a mieux : la fonction est strictement positive sur U. Soit maintenant ϕ une fonction \mathcal{C}^{∞} qui vaut 0 à l'extérieur de U et 1 en x et qui est toujours positive et inférieure à 1. Alors, $1-\phi$ est dans \mathfrak{M}_x , $f^2+(1-\phi)$ est dans $\mathfrak{M}_x+(f)$ et est partout non-nulle donc inversible. Morale de l'histoire : $\mathfrak{M}_x+(f)=\mathcal{C}^{\infty}(\mathbf{R}^n)$.

Bien sûr, si $a \in A$, on a $\mathfrak{M}_A \subset \mathfrak{M}_a$; par conséquent, \mathfrak{M}_A est un idéal maximal si et seulement si A est de cardinal 1.

Comme on a

Résultat classique 1.3 (cité dans le cours d'Antoine Ducros) Soit X un espace topologique compact. On pose $A = \mathcal{C}(X, \mathbf{R})$. Alors les idéaux maximaux de A sont les $\mathfrak{M}_x = \{f \in A \mid f(x) = 0\}$.

mais surtout

Résultat classique 1.4 (Nullstellensatz) Soit k un corps algébriquement clos. Alors, $(a_1, \ldots, a_n) \mapsto ((X_1 - a_1), \ldots, (X_n - a_n))$ est une bijection entre k^n et Specmax $k[X_1, \ldots, X_n]$.

Dans un premier temps, je m'attendais à

Erreur 1.5 Les idéaux maximaux de $C^{\infty}(\mathbf{R}^n)$ sont les $(\mathfrak{M}_x)_{x\in\mathbf{R}^n}$.

2 Idéaux de $C^{\infty}(\mathbf{R}^n)$

2.1 L'idéal $\mathfrak{M}_x^{\mathrm{loc}}$ des fonctions qui s'annulent localement autour de x

Notation 2.1 Si $x \in \mathbf{R}^n$, on note $\mathfrak{M}_x^{\mathrm{loc}}$ l'idéal des fonctions qui sont localement nulles autour de x, ie $\{f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid \exists U \in \mathcal{V}(x), \forall y \in U, f(y) = 0\}.$

2.2
$$\mathfrak{M}_{x,\vec{v}}^{\log,\frac{1}{2}}$$

En fait, on a plus général : on peut choisir dans quelle direction s'annule localement f autour de x.

Notation 2.2 Si \vec{v} est un vecteur de \mathbf{R}^n et si $x \in \mathbf{R}^n$, on note $E_{x,\vec{v}}^{\frac{1}{2}}$ le demiespace des points $y \in \mathbf{R}^n$ tels que $(y - x \mid \vec{v}) \geq 0$, délimité par $x + \vec{v}^{\perp}$.

On peut alors considérer $\Big\{f\in\mathcal{C}^{\infty}(\mathbf{R}^n)\mid\exists U\in\mathcal{V}(x), \forall y\in U\cap E_{x,\vec{v}}^{\frac{1}{2}}, f(y)=0\Big\}$, qu'on note $\mathfrak{M}_{x,\vec{v}}^{\mathrm{loc},\frac{1}{2}}$.

2.3 $\mathfrak{M}_{x,\vec{v}}^{\mathrm{loc,ang}}$

On peut faire plein d'autres constructions de ce type : regarder les fonctions qui s'annulent dans un secteur angulaire d'angle quelconque, d'extrémité x et de bissectrice $x + \mathbf{R}_+ \vec{v}$, qu'on peut noter $\mathfrak{M}_{x,\vec{v}}^{\mathrm{loc,ang}}$.

2.4 $\mathfrak{M}_{x,\vec{v}}^{\mathrm{loc}}$

Autre construction possible : les fonctions qui s'annulent sur un voisinage de x dans $x + \mathbf{R}_+ \vec{v}$, qu'on peut noter $\mathfrak{M}_x^{\mathrm{loc}}$.

2.5 L'idéal $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ des fonctions qui s'annulent localement autour de x dans la direction A

De façon plus générale, si A est une partie de \mathbf{R}^n , on peut regarder les fonctions qui s'annulent sur un voisinage de x dans A. Ce qu'on notera $\mathfrak{M}^{\mathrm{loc}}_{x,A}$. Remarquons que si $x \notin \bar{A}$, alors $\mathfrak{M}^{\mathrm{loc}}_{x,A} = \mathcal{C}^{\infty}(\mathbf{R}^n)$; le cas intéressant est donc quand $x \in \bar{A}$. En fait, on étudiera la cas où $x \in A$.

Fait 2.3 $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ ne dépend que du "germe d'espace" de A en x, c'est-à-dire que s 'il existe $U \in \mathcal{V}(x)$ tel que $A \cap U = B \cap U$, alors $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,B}^{\mathrm{loc}}$.

Démonstration : D'abord, on se simplifie la tâche : soient A et B qui ont le même germe d'espace en x et U le voisinage de x qui convient. Soit alors r > 0 suffisamment petit pour que $B_o(x,r)$ soit incluse dans U. On a alors :

 $A \cap B_o(x,r) = B \cap B_o(x,r)$. Puis : on montre que $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_{x,B}^{\mathrm{loc}}$, ce qui suffit par symétrie. Soit donc $f \in \mathfrak{M}_{x,A}^{\mathrm{loc}}$: f s'annule sur $A \cap B_o(x,r')$, avec r' bien choisi. Si $r' \geq r$, alors f s'annule en particulier sur $A \cap B_o(x,r) = B \cap B_o(x,r)$ et donc est dans $\mathfrak{M}_{x,B}^{\mathrm{loc}}$. Si r' < r, alors on a encore $A \cap B_o(x,r') = B \cap B_o(x,r')$ et on conclut identiquement. \blacksquare

$$\textbf{Fait 2.4} \ \ \textit{On a} \ \mathfrak{M}^{\text{loc}}_{x} = \mathfrak{M}^{\text{loc}}_{x,\mathbf{R}^{n}}, \ \mathfrak{M}^{\text{loc},\frac{1}{2}}_{x,\vec{v}} = \mathfrak{M}^{\text{loc}}_{x,E^{\frac{1}{2}}_{x,\vec{v}}} \ \ \textit{et} \ \mathfrak{M}^{\text{loc}}_{x,\vec{v}} = \mathfrak{M}^{\text{loc}}_{x,x+\mathbf{R}_{+}\vec{v}}.$$

$$\textbf{Fait 2.5} \ \ \mathfrak{M}_{x}^{\text{loc}} \subset \mathfrak{M}_{x,\vec{v}}^{\text{loc},\frac{1}{2}} \subset \mathfrak{M}_{x,\vec{v}}^{\text{loc,ang}} \subset \mathfrak{M}_{x,\vec{v}}^{\text{loc}} \subset \mathfrak{M}_{x}.$$

Fait 2.6 Le seul idéal maximal contenant $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ est \mathfrak{M}_x quand $x \in \bar{A}$.

Démonstration : Ce fait est évident quand on dispose de la classification des idéaux maximaux donnée dans le théorème 3.2. ■

Déception 2.7 Ni $\mathfrak{M}_{x}^{\text{loc}}$, ni $\mathfrak{M}_{x,\vec{v}}^{\text{loc},\frac{1}{2}}$, ni $\mathfrak{M}_{x,\vec{v}}^{\text{loc}}$, ni $\mathfrak{M}_{x,\vec{v}}^{\text{loc},\text{ang}}$ ne sont des idéaux premiers de $\mathcal{C}^{\infty}(\mathbf{R}^{n})$.

Déception 2.8 Si x est un point isolé dans A, $\mathfrak{M}_{x,A}^{loc} = \mathfrak{M}_x$; si x n'est pas un point isolé dans A, $\mathfrak{M}_{x,A}^{loc}$ n'est pas un idéal premier.

Quitte à répondre à la question ci-dessous, la démonstration qui suit est valable.

Question 2.9 Soit $(a_n)_n$ une suite injective de points de \mathbb{R}^n tendant vers x. Existe-t-il une fonction $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ dont l'ensemble des zéros est $\{a_n, n \in \mathbb{N}\}$?

Démonstration : On fait une esquisse de preuve. On se place dans le cas où dans un voisinage petit de x, A est une suite de points tendant vers x. On sépare ces points en deux paquets tendant vers x et on construit des fonctions qui s'annulent sur un paquet mais pas sur l'autre. Si A n'est jamais d'intérieur vide au voisinage de x, sur chaque petite boule, on s'arrange pour qu'une des fonctions soit non-nulle au centre et l'autre si (mais pas partout).

2.6 Généralisation pour les espaces topologiques

Soit X un espace topologique, A une sous-partie de X et $x \in X$; on peut alors considérer d'une part \mathfrak{M}_x et d'autre part $\mathfrak{M}_{x,A}^{\mathrm{loc}}$. On a encore l'égalité entre $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ et $\mathfrak{M}_{x,B}^{\mathrm{loc}}$ quand A et B ont même "germe d'espace" en x.

Définition 2.10 On définit $\mathfrak{M}_x = \{ f \in \mathcal{C}(X) \mid f(x) = 0 \}$ et, quand A est un sous-espace topologique de X, $\mathfrak{M}_{x,A}^{\text{loc}}$ comme $\{ f \in \mathcal{C}(X) \mid \exists U \in \mathcal{V}(x), \forall y \in U \cap A, f(y) = 0 \}$.

On a encore que si $x \notin \bar{A}$, $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathcal{C}(X)$ et que si x est un point isolé dans A, alors $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_x$. On a toujours $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_x$ si $x \in \bar{A}$.

Proposition 2.11 \mathfrak{M}_x est un idéal maximal de $\mathcal{C}(X)$.

Démonstration : Soit $f \notin \mathfrak{M}_x$: on cherche à montrer que $\mathfrak{M}_x + (f) = \mathcal{C}(X)$. On regarde la fonction g = f(x) - f, qui s'annule en x. Alors, g + f est inversible.

Proposition 2.12 $\mathfrak{M}_{x,A}^{\mathrm{loc}}$ ne dépend que du "germe d'espace" de A en x, c'est-à-dire que s'il existe $U \in \mathcal{V}(x)$ tel que $A \cap U = B \cap U$, alors $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,B}^{\mathrm{loc}}$.

Démonstration : Soit U tel que $A \cap U = B \cap U$. Alors, si $f \in \mathfrak{M}_{x,A}^{\mathrm{loc}}$, il existe V tel que $\forall y \in V \cap A, f(y) = 0$. Cependant $W = V \cap U$ est encore un voisinage de x et $A \cap W = B \cap W$; puis, f s'annule sur $A \cap W$ donc sur $B \cap W$ dont est dans $\mathfrak{M}_{x,B}^{\mathrm{loc}}$.

Hélas, la réciproque est fausse; on a le

Contre-exemple 2.13 Considérons l'espace topologique $X = \mathbf{R}$ et les parties $A = \mathbf{R}$ et $B = \mathbf{R} \setminus \left\{\frac{1}{n}, n \in \mathbf{N}^{\star}\right\}$. A et B n'ont pas le même "germe d'espace en 0" car tout voisinage de 0 dans B est disconnexe. Cependant, $\mathfrak{M}_{0.A}^{\mathrm{loc}} = \mathfrak{M}_{0.B}^{\mathrm{loc}}$.

Plus généralement, on a

Propriété 2.14 Soient $A \subset B$ deux sous-espaces topologiques de X. Alors, on a $\mathfrak{M}_{x,B}^{\mathrm{loc}} \subset \mathfrak{M}_{x,A}^{\mathrm{loc}}$.

Démonstration : Soit $f \in \mathfrak{M}_{x,B}^{loc}$: il existe U tel que $f_{|B\cap U} = 0$. Cependant, $A \cap U \subset B \cap U$ et donc $f \in \mathfrak{M}_{x,A}^{loc}$.

Fait 2.15 $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,\bar{A}}^{\mathrm{loc}}$.

Démonstration : Il suffit de montrer que $\mathfrak{M}^{\mathrm{loc}}_{x,A}\subset \mathfrak{M}^{\mathrm{loc}}_{x,\bar{A}}$, d'après la propriété énoncée ci-dessus. Soient donc $f\in \mathfrak{M}^{\mathrm{loc}}_{x,A}$ et U un ouvert tel que $f_{|A\cap U}=0$. On aimerait montrer que $f_{|\bar{A}\cap U}=0$: soit $y\in \bar{A}\cap U$; si $f(y)\neq 0$, il existe un ouvert V contenant y tel que f ne s'annule pas sur V; $V\cap U$ est encore un voisinage de y donc rencontre A donc rencontre $A\cap U$. C'est absurde car f ne s'annule pas sur V mais s'annule sur $A\cap U$. Donc $f\in \mathfrak{M}^{\mathrm{loc}}_{x,\bar{A}}$.

On s'intéresse donc logiquement aux sous-ensembles fermés de X. On se pose la

Question 2.16 Soient A et B deux fermés de X tels que $\mathfrak{M}_{x,A}^{loc} = \mathfrak{M}_{x,B}^{loc}$. Est-ce que A et B ont le même germe d'espace en x?

Une autre généralisation :

Proposition 2.17 Soit $y \in X$. Si $\forall U \in \mathcal{V}_A(x), y \in U$ alors $\mathfrak{M}_{x,A}^{loc} \subset \mathfrak{M}_y$.

La réciproque est fausse : il suffit de prendre pour X un espace topologique où il existe x_1 et x_2 tel que tout voisinage de x_2 contienne x_1 . Alors, $\mathfrak{M}^{\mathrm{loc}}_{x_1,X\setminus\{x_2\}}\subset\mathfrak{M}_{x_2}$. Cependant, j'ai l'impression que ce contre-exemple un peu artificiel ne règle pas la question de la réciproque.

3 Point à l'infini et idéaux maximaux de $\mathcal{C}^{\infty}(\mathbf{R}^n)$

3.1 L'idéal $\mathfrak{M}_{\infty}^{\mathrm{loc}}$ des fonctions s'annulant à l'infini

S'inspirant de la partie précédente, on pose :

Définition 3.1 On note $\mathfrak{M}_{\infty}^{loc}$ l'idéal $\{f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid \exists K \text{compact}, \forall x \notin K, f(x) = 0\}.$

On peut alors démontrer

```
Théorème 3.2 (classification des idéaux maximaux de \mathcal{C}^{\infty}(\mathbf{R}^n)) Soit \mathfrak{M} un idéal maximal de \mathcal{C}^{\infty}(\mathbf{R}^n). Alors :

- soit il existe x \in \mathbf{R}^n tel que \mathfrak{M} = \mathfrak{M}_x

- soit \mathfrak{M}^{\mathrm{loc}}_{\infty} \subset \mathfrak{M}.
```

Démonstration : Soit \mathfrak{M} un idéal maximal tel que pout tout $x \in \mathbf{R}^n$, $\mathfrak{M} \neq \mathfrak{M}_x$. Supposons que $\mathfrak{M}_{\infty}^{\mathrm{loc}} \not\subset \mathfrak{M} : \exists f \in \mathfrak{M}_{\infty}^{\mathrm{loc}} \text{ et } f \notin \mathfrak{M}$. Donc $\mathfrak{M}+(f)=\mathcal{C}^{\infty}(\mathbf{R}^n)$, $ie \ \exists \varphi \in \mathfrak{M}, \exists \lambda \in \mathbf{R} \mid \varphi + \lambda f = 1$. Comme $f \in \mathfrak{M}_{\infty}^{\mathrm{loc}}$, on peut choisir K un compact tel que f soit nulle en dehors de K et donc tel que φ vaille 1 en dehors de K.

En particulier, on a $\mathfrak{M}_K \subset \mathfrak{M}$: si $g \in \mathfrak{M}_K$, $g\varphi = g$. Par ailleurs, si $x \in K, \mathfrak{M} \neq \mathfrak{M}_x$ et donc il existe $f_x \in \mathfrak{M}$ (qu'on peut supposer partout positive quitte à prendre son carré) telle que $f_x(x) > 0$; mieux, il existe $U_x \in \mathcal{V}(x)$ tel que $f_{x|U_x} > 0$. Comme les U_x recouvrent K, on peut trouver $(x_i)_{0 \leq i \leq m}$ tels que $K = \bigcup_{0 \leq i \leq m} U_{x_i}$. Puis, $h = \sum_{0 \leq i \leq m} f_{x_i}$ est une fonction dans \mathfrak{M} , strictement positive sur K entier.

Cependant, on a toujours à notre disposition φ^2 dans \mathfrak{M} qui est positive et qui vaut 1 en dehors de $K: \varphi^2 + h$ est inversible et donc $\mathfrak{M} = \mathcal{C}^{\infty}(\mathbf{R}^n)$. C'est absurde et donc $\mathfrak{M}^{\text{loc}}_{\infty} \subset \mathfrak{M}$.

3.2 L'idéal $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ des fonctions s'annulant à l'infini dans la direction A

La question naturelle qu'on se pose maintenant est

Question 3.3 $\mathfrak{M}_{\infty}^{\text{loc}}$ est-il un idéal maximal?

La réponse est négative car on peut faire les mêmes constructions en l'infini que ce qu'on a fait pour $x \in \mathbf{R}^n$.

Cependant, notons qu'on a

Fait 3.4 L'ensemble des fonctions qui tendent vers 0 en $+\infty$ n'est jamais un idéal, quelle que soit la vitesse de convergence qu'on impose.

Définition 3.5 Soit A une partie de \mathbb{R}^n . On note $\mathfrak{M}^{\mathrm{loc}}_{\infty,A}$ l'idéal des fonctions sur un voisinage de l'infini dans A:

 $\mathfrak{M}_{\infty,A}^{\mathrm{loc}} = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid \exists K \mathrm{compact}, \forall x \in A \setminus K, f(x) = 0 \}.$

Les propriétés de $\mathfrak{M}^{\mathrm{loc}}_{\infty,A}$ se copient sur celles de $\mathfrak{M}^{\mathrm{loc}}_{x,A}$.

Propriété 3.6 Soient $A \subset B$ deux sous-espaces topologiques de X. Alors, on $a \mathfrak{M}_{\infty,B}^{\mathrm{loc}} \subset \mathfrak{M}_{\infty,A}^{\mathrm{loc}}$.

Fait 3.7 $\mathfrak{M}_{x,A}^{\mathrm{loc}} = \mathfrak{M}_{x,\bar{A}}^{\mathrm{loc}}$

On peut donc uniquement s'intéresser aux sous-ensembles fermés de \mathbb{R}^n .

Fait 3.8 Si A est borné, le si l'infini n'est pas adhérent à A, alors $\mathfrak{M}_{\infty,A}^{\mathrm{loc}} = \mathcal{C}^{\infty}(\mathbf{R}^n)$.

On s'intéressera donc dans la suite au cas où A est non borné.

Proposition 3.9 A et B étant deux parties de \mathbb{R}^n , s'il existe un compact K tel que $A \setminus K = B \setminus K$, alors $\mathfrak{M}_{\infty,A}^{loc} = \mathfrak{M}_{\infty,B}^{loc}$.

3.3 Idéaux maximaux de $\mathcal{C}^{\infty}(\mathbf{R}^n)$ contenant $\mathfrak{M}^{\mathrm{loc}}_{\infty}$

Naturellement, on se pose la question

Question 3.10 Existe-t-il un unique idéal maximal \mathfrak{M}_{∞} contenant $\mathfrak{M}_{\infty}^{\mathrm{loc}}$?

À laquelle on répond par la

Proposition 3.11 Soient A et B deux fermés de \mathbb{R}^n disjoints localement en l'infini, ie telles qu'il existe un compact K tel que $(A \cap B) \setminus K = \emptyset$. Alors, $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $\mathfrak{M}_{\infty,B}^{\mathrm{loc}}$ ne sont contenus dans aucun idéal maximal commun.

Démonstration : Donnons d'abord une idée de la démonstration. Si on devait démontrer le résultat pour l'anneau $\mathcal{C}(X, \mathbf{R})$, ce serait facile : il suffit de prendre les fonctions $f_A = d(\cdot, A \cap K)$ et $f_B = d(\cdot, B \cap K)$ qui s'annulent respectivement uniquement sur $A \cap K$ et $B \cap K$. On a $f_A \in \mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $f_B \in \mathfrak{M}_{\infty,B}^{\mathrm{loc}}$. Ainsi, si ces deux idéaux étaient contenus dans un même idéal maximal \mathfrak{M} , ce dernier contiendrait $f_A + f_B$ qui est une fonction inversible.

Ainsi, pour démontrer le résultat, il suffit de trouver deux fonctions f_A et f_B dans $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $\mathfrak{M}_{\infty,B}^{\mathrm{loc}}$, toutes deux positives et n'ayant aucun zéro commun.

Déjà, on se convainc (surtout avec ce qui suit) qui si A et B sont fermés et disjoints à l'infini, deux telles fonctions existent. Démontrons-le d'abord dans le cas où $d(A \setminus K, B \setminus K) > 0$.

On note $\varepsilon = d(A \setminus K, B \setminus K)$. Puis on se donne une marge en considérant $A' = \{x \notin K \mid d(x,A) \leq \varepsilon/3\}$ et $B' = \{x \notin K \mid d(x,B) \leq \varepsilon/3\}$. On regarde ensuite les fonctions $f_A = d(\cdot, A')$ et $f_B = d(\cdot, B')$. Malheureusement, il se peut qu'elles ne soient pas \mathcal{C}^{∞} (c'est notamment le cas si par exemple A' n'est pas convexe, auquel cas f_A n'est même pas différentiable); en tout cas, elles sont continues et positives; chacune d'elles s'annule sur A' ou sur B'. On les convole

alors par une fonction \mathcal{C}^{∞} φ , positive, de norme L^1 1 et dont le support est inclus dans $B_o(0,\varepsilon/3)$. On obtient deux fonctions positives f_A^{\star} et f_B^{\star} , \mathcal{C}^{∞} qui s'annulent respectivement sur $A \setminus K'$ et $B \setminus K'$ et ne s'annulent pas sur B et A, où K' est un compact contenant K plus une marge de sécurité de largeur au moins $\varepsilon/3$. Ainsi, $f_A^{\star} \in \mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $f_B^{\star} \in \mathfrak{M}_{\infty,B}^{\mathrm{loc}}$ mais leur somme est inversible : aucun idéal maximal \mathfrak{M} ne contient à la fois $\mathfrak{M}_{\infty,A}^{\mathrm{loc}}$ et $\mathfrak{M}_{\infty,B}^{\mathrm{loc}}$.

Montrons maintenant le théorème dans le cas général. On note r > 0 tel que $(A \cap B) \setminus B_f(0,r) = \emptyset$. On note $A' = A \setminus B_f(0,r)$ et $B' = B \setminus B_f(0,r)$. Alors, d'après la partie précédente de la démonstration, on peut construire une fonction f_n positive qui s'annule sur $B' \cap (B_f(0, r+n) \setminus B_f(0, r+(n-1))$ mais pas sur $A' \cap (B_f(0, r+n) \setminus B_f(0, r+(n-1)))$. De même, on construit une fonction g_n positive qui s'annule sur $A' \cap (B_f(0, r+n) \setminus B_f(0, r+(n-1)))$ mais pas sur $B' \cap (B_f(0,r+n) \setminus B_f(0,r+(n-1)))$. Le problème maintenant est de recoller ces fonctions. Pour ce faire, en les multipliant par de bonnes fonctions "plateau", on trouve des fonctions \tilde{f}_n et \tilde{g}_n qui coïcident avec respectivement f_n et g_n sur $B_f(0, r+n-\varepsilon) \setminus B_f(0, r+(n-1)+\varepsilon)$ et sont nulles en dehors de $B_f(0,r+n)\setminus B_f(0,r+(n-1))$, en choisissant un ε plus petit que 1/10. Dès lors, les fonctions \tilde{f}_n et \tilde{g}_n se recollent parfaitement pour former des fonctions fet g. La fonction f, par exemple, s'annule sur B' et est strictement positive sur A' sauf à l'intérieur de couronnes concentriques fines de largeur 2ε et de rayon n. On fait alors la même construction mais avec des couronnes de rayon n+1/2pour obtenir des fonctions \bar{f} et \bar{g} . Enfin, les fonctions $f = \hat{f} + \bar{f}$ et $g = \bar{g} + \tilde{g}$ vérifient les bonnes propriétés pour établir le résultat escompté.

Contre-exemple 3.12 Le résultat est faux si l'on omet l'hypothèse A et B fermés. Si on note e_1 le vecteur $(1,0,\ldots,0)$ de \mathbf{R}^n , $A = \mathbf{Q}e_1$ et $B = (\mathbf{R} \setminus \mathbf{Q})e_1$, alors on a $\mathfrak{M}_{\infty,A}^{\mathrm{loc}} = \mathfrak{M}_{\infty,B}^{\mathrm{loc}}$ alors que $A \cap B = \emptyset$.

Corollaire 3.13 Il existe une infinité non dénombrable d'idéaux maximaux contenant $\mathfrak{M}_{\infty}^{loc}$.

Démonstration : Si n > 1, il suffit de considérer les fermés $F_u = (\mathbf{R}\vec{u})_{||u||=1}$. D'ailleurs dans ce cas, on peut donner des fonctions explicites f_{F_u} et donc se passer de la démonstration précédente. Si n = 1, on fait autrement en considérant par exemple les fermés $\mathbf{N} + x$ avec $0 \le x < 1$.

4 Idéaux et idéaux premiers de $C^{\infty}(\mathbf{R}^n)$

4.1 Idéaux premiers à distance finie

4.1.1 Classification des idéaux premiers à distance finie de $\mathcal{C}^{\infty}(\mathbf{R}^n)$

Voici un résultat de classification des idéaux premiers de $\mathcal{C}^{\infty}(\mathbf{R}^n)$:

Théorème 4.1 Soit \mathfrak{P} un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$. Alors \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M}_x et \mathfrak{M}_y si $x \neq y$.

Démonstration : (Il est conseillé de prendre un crayon et de faire un dessin). Soit I un idéal contenu à la fois dans \mathfrak{M}_x et \mathfrak{M}_y . Pour simplifier la preuve, on peut supposer que $x=(1,0,\ldots,0)$ et $y=(-3,0,\ldots,0)$. On peut trouver une fonction $\varphi\in\mathcal{C}^{\infty}(\mathbf{R})$ telle que $\forall x\leq 0, \varphi(x)=0, \ \forall x>0, \varphi(x)>0$ et $\forall x\geq 1/2, \varphi(x)=1$. On construit à partir de φ la fonction $\psi\in\mathcal{C}^{\infty}(\mathbf{R}^n)$ définie par $\psi(x_1,x_2,\ldots,x_n)=\varphi(x_1)$.

Soit alors $f \in I$: on a f(x) = f(y) = 0. $g = \psi f$ est encore dans I et s'annule si $x_1 \leq 0$. On va montrer que g est le produit de deux fonctions qui ne s'annulent pas simultanément en x et en y et qui par conséquent ne sont pas dans I. On en déduira que I n'est pas premier.

On considère la fonction $\tilde{\psi}$ définie par $\tilde{\psi}(x_1, x_2, \ldots, x_n) = \psi(-x_1 - 2, x_2, \ldots, x_n)$, qui s'annule si $x_1 \geq -2$. Soit alors $h = \tilde{\psi} + g : h$ ne s'annule pas en y. Enfin, soit l définie par $l(x_1, x_2, \ldots, x_n) = \psi(x_1 + 2, x_2, \ldots, x_n)$, qui est nulle si $x_1 \leq -2$ et qui vaut 1 si $x_1 \geq -1 : l$ ne s'annule pas en x. Cependant, hl = g.

4.1.2 Notations pour les germes

Pour généraliser ce résultat, on va introduire quelques notations concernant les germes.

Notation 4.2 Soit $A = (X, \mathcal{O}_X)$ un espace annelé. On note $\mathcal{G}_x A$ l'ensemble des germes de "fonctions" en $x \in X$. Dans la situation qui nous intéresse, on regardera $\mathcal{G}_x \mathcal{C}^{\infty}(\mathbf{R}^n)$.

 $Si\ U \hookrightarrow X \ avec\ x \in U \ et\ f \in \mathcal{O}_X(U)$, on notera $\mathcal{G}_x f$ l'image de f dans $\mathcal{G}_x A$.

4.1.3 Généralisation

Voici comment ce généralise le théorème :

Proposition 4.3 Soit $\mathfrak{P} \in \operatorname{Spec} \mathcal{C}^{\infty}(\mathbf{R}^n)$ tel que $\mathfrak{P} \subset \mathfrak{M}_x$. Alors, $\forall y \neq x, \forall h \in \mathcal{G}_y \mathcal{C}^{\infty}(\mathbf{R}^n), \exists f \in \mathfrak{P} \mid \mathcal{G}_y f = h$.

Cela signifie que l'appartenance de f à $\mathfrak{P} \subset \mathfrak{M}_x$ n'est soumise à aucune condition locale en $y \neq x$.

Démonstration : Soit $y \neq x$. On a vu que $\mathfrak{P} \not\subset \mathfrak{M}_y : \exists f \in \mathfrak{P} \mid f(y) \neq 0$; donc f est non-nulle sur $V \in \mathcal{V}(y)$. Soit alors $h \in \mathcal{G}_y \mathcal{C}^\infty(\mathbf{R}^n)$: sur une boule ouverte $B_o(y,\varepsilon) \subset V$, on considère la fonction $\varphi(z) = \frac{h(z)}{f(z)}$, bien définie car f ne s'y annule pas. Puis, pour en faire une fonction $\tilde{\varphi}$ définie sur \mathbf{R}^n tout entier, on multiplie φ par ψ qui vaut 1 sur un voisinage de y et 0 en dehors d'une boule ouverte incluse dans $B_o(y,\varepsilon)$.

On a alors que $\tilde{\varphi}f \in \mathfrak{P}$ et $\mathcal{G}_y(\tilde{\varphi}f) = h$.

En fait, suivant la même démonstration, on pourrait prouver la

Proposition 4.4 Soit $x \in \mathbf{R}^n$, soit $\mathfrak{P} \subset \mathfrak{M}_x$ un idéal premier. Soit $Y = \{y_1, y_2, \ldots y_n, \ldots\}$ un ensemble de points distincts de x qui n'a pas de point d'accumulation. Soient $(h_i)_{i\geq 0} \in \prod_{i\geq 0} \mathcal{G}_{y_i}\mathcal{C}^{\infty}(\mathbf{R}^n)$ des germes de fonctions en les points y_i . Alors, $\exists f \in \mathfrak{P} \mid \forall i \geq 0, \overline{\mathcal{G}}_{y_i} f = h_i$.

4.2 Idéaux premiers à l'infini

En fait, on peut compléter ces résultats.

4.2.1 Classification des idéaux à l'infini

Théorème 4.5 Soit \mathfrak{M} un idéal maximal à l'infini, ie tel que $\mathfrak{M}_{\infty}^{loc} \subset \mathfrak{M}$. Soit \mathfrak{P} un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$ et soit $x \in \mathbf{R}^n$. Alors, \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M} et dans \mathfrak{M}_x .

Pour démontrer ce théorème, on utilise le

Lemme 4.6 Soit $f \in C^{\infty}(\mathbb{R}^n)$ telle qu'il existe un compact K tel que $x \notin K \Rightarrow f(x) \neq 0$. Alors f n'est dans aucun idéal maximal à l'infini.

Démonstration : (lemme) En effet, un idéal maximal à l'infini \mathfrak{M} contient $\mathfrak{M}_{\infty}^{\text{loc}}$ donc contient une fonction $g \, \mathcal{C}^{\infty}$ qui est strictement positive dans K et nulle en dehors d'un compact. Comme g+f est inversible, c'est que $f \notin \mathfrak{M}$. \blacksquare **Démonstration :** (théorème) (Il est conseillé de prendre un crayon et de faire un dessin).

Soit I un idéal contenu dans \mathfrak{M}_x et dans un idéal maximal à l'infini \mathfrak{M} contenant $\mathfrak{M}_{\infty}^{\mathrm{loc}}$. Soit B une boule fermée contenant x et $\varphi \in \mathcal{C}^{\infty}(\mathbf{R}^n)$ strictement positive sur B et nulle en dehors d'une boule fermée B'. Alors, $g = \varphi f$ est encore dans I. Soit ψ qui vaut 1 sur B' et 0 en dehors d'une boule fermée B''. Soit $\tilde{\psi}$ qui vaut 0 dans B'' et qui vaut 1 en dehors d'une boule femée B'''. Soit $h = f + \tilde{\psi}$. Alors, h n'est pas dans I car n'est pas dans \mathfrak{M} d'après le lemme précédent et ψ n'est pas dans I car $\psi(x) \neq 0$ mais $\psi h = g$.

On résume les deux théorèmes de classification dans

Théorème 4.7 (classification des idéaux premiers de $\mathcal{C}^{\infty}(\mathbf{R}^n)$) Soit \mathfrak{M} un idéal maximal à l'infini, ie tel que $\mathfrak{M}_{\infty}^{\mathrm{loc}} \subset \mathfrak{M}$. Soient x, y distincts dans \mathbf{R}^n . Soit \mathfrak{P} un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$. Alors, \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M}_x et dans \mathfrak{M}_y , et \mathfrak{P} ne peut être contenu à la fois dans \mathfrak{M}_x et dans \mathfrak{M} .

Ça serait bien si on pouvait généraliser cette classification pour comparer les idéaux à l'infini entre eux.

Conjecture 4.8 Soient A et B deux fermés disjoints à l'infini. Soit \mathfrak{M}_1 et \mathfrak{M}_2 deux idéaux maximaux à l'infini contenant respectivement $\mathfrak{M}_{\infty,A}^{loc}$ et $\mathfrak{M}_{\infty,B}^{loc}$. Alors il n'y a aucun idéal premier \mathfrak{P} contenu à la fois dans \mathfrak{M}_1 et dans \mathfrak{M}_2 .

4.2.2 Généralisation

En recopiant la preuve de la proposition 4.3, on montre :

Proposition 4.9 Soit $\mathfrak{P} \in \text{Spec } \mathcal{C}^{\infty}(\mathbf{R}^n)$ tel que $\mathfrak{P} \subset \mathfrak{M}$ où \mathfrak{M} est un idéal maximal contenant $\mathfrak{M}^{\text{loc}}_{\infty}$. Alors, $\forall x \in \mathbf{R}^n, \forall h \in \mathcal{G}_x \mathcal{C}^{\infty}(\mathbf{R}^n), \exists f \in \mathfrak{P} \mid \mathcal{G}_x f = h$.

qu'on peut généraliser en

Proposition 4.10 Soit $\mathfrak{P} \in \operatorname{Spec} \mathcal{C}^{\infty}(\mathbf{R}^n)$ tel que $\mathfrak{P} \subset \mathfrak{M}$ où \mathfrak{M} est un idéal maximal contenant $\mathfrak{M}^{\operatorname{loc}}_{\infty}$. Soit $X = \{x_1, x_2, \dots x_n, \dots\}$ un ensemble de points de \mathbf{R}^n qui n'a pas de point d'accumulation. Soient $(h_i)_{i\geq 0} \in \prod_{i\geq 0} \mathcal{G}_{x_i}\mathcal{C}^{\infty}(\mathbf{R}^n)$ des germes de fonctions en les points x_i . Alors, $\exists f \in \mathfrak{P} \mid \forall i \geq 0, \mathcal{G}_{x_i} f = h_i$.

4.3 Exemples d'idéaux premiers non maximaux de $\mathcal{C}^{\infty}(\mathbf{R})$

4.3.1 L'idéal $\mathfrak{M}_x^{m-\mathrm{plat}} \subset \mathcal{C}^{\infty}(\mathbf{R})$ des fonctions m-presque plates en x

Dans la suite, on travaille dans $C^{\infty}(\mathbf{R})$: n = 1. Soit $m \in \mathbf{N}$.

Définition 4.11 Si $x \in \mathbf{R}$, on note $\mathfrak{M}_x^{m-\text{plat}}$ l'ensemble des fonctions m-presque plates en $x: \mathfrak{M}_x^{m-\text{plat}} = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}) \mid \forall k \leq m, f^{(k)}(x) = 0 \}$.

On a
$$\mathfrak{M}_x^{0-\text{plat}} = \mathfrak{M}_x$$
.

Proposition 4.12 $\mathfrak{M}_x^{m-\text{plat}}$ est un idéal de $\mathcal{C}^{\infty}(\mathbf{R})$.

Démonstration : Pour la somme, c'est clair. Pour le produit, on utlise la formule de Leibniz. ■

Cependant, $\mathfrak{M}_x^{m-\text{plat}}$ n'est pas premier.

4.3.2 L'idéal $\mathfrak{M}_x^{\infty-\mathrm{plat}} \subset \mathcal{C}^{\infty}(\mathbf{R})$ des fonctions plates en x

Définition 4.13 Si $x \in \mathbf{R}$, on note $\mathfrak{M}_x^{\infty-\text{plat}}$ l'ensemble des fonctions plates en $x: \mathfrak{M}_x^{\infty-\text{plat}} = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}) \mid \forall k \in \mathbf{N}, f^{(k)}(x) = 0 \}$.

Proposition 4.14 $\mathfrak{M}_x^{\infty-\text{plat}}$ est un idéal.

Démonstration : Pour la somme, c'est clair. Pour le produit, on utilise la formule de Leibniz : si $f \in \mathfrak{M}_x^{\infty-\text{plat}}$ et si g est quelconque, on a $(fg)^{(n)}(x) = \sum_{0 \le k \le n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$.

Proposition 4.15 $\mathfrak{M}_x^{\infty-\text{plat}}$ est un idéal premier non maximal.

Démonstration : Soient f et g telles que $fg \in \mathfrak{M}_x^{\infty-\text{plat}}$. Supposons qu'à la fois ni f ni g ne soient dans $\mathfrak{M}_x^{\infty-\text{plat}}$. Choisissons m et n minimaux tels que $f^{(n)}(x) \neq 0$ et $g^{(m)}(x) \neq 0$ et montrons qu'alors $(fg)^{(n+m)}(x) \neq 0$. On a $(fg)^{(n+m)}(x) = \sum_{0 \leq k \leq n+m} \binom{n+m}{k} f^{(k)}(x) g^{(n+m-k)}(x)$. Mais si k < n, $f^{(k)}(x)$ est nul et si n+m-k < m c'est-à-dire si k > n, $g^{(n+m-k)}(x)$ est nul. Donc le seul terme non éventuellement nul de la somme est $\binom{n+m}{n} f^{(n)}(x) g^{(m)}(x)$ qui est effectivement non-nul. \blacksquare

Fait 4.16 $\mathfrak{M}_{x}^{\mathrm{loc}} \subset \mathfrak{M}_{x,1}^{\mathrm{loc},\frac{1}{2}} \subset \mathfrak{M}_{x}^{\infty-\mathrm{plat}} \subset \cdots \subset \mathfrak{M}_{x}^{(m+1)-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \cdots \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \cdots \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \cdots \subset \mathfrak{M}_{x}^{m-\mathrm{plat}} \subset \mathfrak{M}_{x}^{m-\mathrm{plat}}$

Mieux, on a le théorème :

Théorème 4.17 Soit $x \in \mathbf{R}$ et soit $A \subset \mathbf{R}$ une partie telle que $x \in \bar{A}$ et telle que x ne soit pas un point isolé de A. Alors : $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_x^{\infty-\mathrm{plat}}$.

Démonstration : Puisque $x \in \overline{A}$, on peut trouver une suite (a_n) d'éléments de A qui converge vers x. Puisque x n'est pas isolé dans A, on peut supposer que cette suite est injective. Soit alors $f \in \mathfrak{M}_{x,A}^{\mathrm{loc}}$: quitte à commencer la suite (a_n) à partir d'un certain rang, on peut supposer que $\forall n \in \mathbb{N}, f(a_n) = 0$. Grâce au théorème de Rolle, on construit alors une suite $(a_n^{(1)})$, vérifiant les mêmes propriétés que (a_n) , telle que $\forall n \in \mathbb{N}, f^{(1)}\left(a_n^{(1)}\right) = 0$. Mieux, par récurrence sur $p \geq 0$, on construit des suites $\left(a_n^{(p)}\right)_n$, vérifiant les mêmes propriétés que (a_n) , telles que $\forall n \geq 0, f^{(p)}\left(a_n^{(p)}\right) = 0$. Par continuité, on a alors que $\forall p \in \mathbb{N}, f^{(p)}(x) = 0$, c'est-à-dire que $f \in \mathfrak{M}_x^{\infty-\mathrm{plat}}$.

4.4 Exemples d'idéaux premiers non maximaux de $\mathcal{C}^{\infty}(\mathbf{R}^n)$

On généralise ce qui a été fait pour $\mathcal{C}^{\infty}(\mathbf{R})$.

4.4.1 L'idéal $\mathfrak{M}_{x,\vec{v}}^{\infty-\mathrm{plat}}$ des fonctions plates en x suivant la direction \vec{v}

Définition 4.18 Soit $\vec{v} \in \mathbf{R}^n \setminus \{0\}$ et soit $m \in \mathbf{N}$. On définit $\mathfrak{M}_{x,\vec{v}}^{m-\mathrm{plat}} = \left\{ f \in \mathcal{C}^\infty(\mathbf{R}^n) \mid \forall k \leq m, \frac{\partial^k f}{\partial \vec{v}^k}(x) = 0 \right\}$.

Rappelons comment est défini $\frac{\partial^k f}{\partial \vec{v}^k}(x)$. On regarde la fonction $f_{x,\vec{v}}: \begin{array}{c} \mathbf{R} \to \mathbf{R} \\ t \mapsto f(x+t\vec{v}) \end{array}$.

On a alors $\frac{\partial^k f}{\partial \vec{v}^k}(x) = (f_{x,\vec{v}})^{(k)}(0)$. Notons qu'on a $(fg)_{x,\vec{v}} = f_{x,\vec{v}}g_{x,\vec{v}}$.

En fait, ce n'est pas vraiment $\mathfrak{M}_{x,\vec{v}}^{m-\mathrm{plat}}$ qui nous intéresse car ce n'est pas un idéal premier. Mais, déjà pas mal, c'est un idéal. On définit donc :

Définition 4.19 Soit $\vec{v} \in \mathbf{R}^n \setminus \{0\}$. On définit $\mathfrak{M}_{x,\vec{v}}^{\infty-\text{plat}} = \left\{ f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid \forall k \in \mathbf{N}, \frac{\partial^k f}{\partial \vec{v}^k}(x) = 0 \right\}$.

En utlisant tout ce qui a été fait dans la partie 4.3.2, on montre :

Proposition 4.20 $\mathfrak{M}_{x,\vec{v}}^{\infty-\text{plat}}$ est un idéal premier non maximal de $\mathcal{C}^{\infty}(\mathbf{R}^n)$.

4.4.2 Généralisation : l'idéal $\mathfrak{M}_{x,V}^{\infty-\mathrm{plat}}$ des fonctions plates selon la direction V

On généralise facilement l'objet $\mathfrak{M}_{x,\vec{v}}^{\infty-\mathrm{plat}}$ en posant la

Définition 4.21 Soit V un sous-espace vectoriel de \mathbf{R}^n . On pose $\mathfrak{M}_{x,V}^{\infty-\text{plat}} = \bigcap_{\vec{v} \in V} \mathfrak{M}_{x,\vec{v}}^{\infty-\text{plat}}$.

Malheureusement, on a la

Déception 4.22 Si V est de dimension plus grande que 2, alors $\mathfrak{M}_{x,V}^{\infty-\text{plat}}$ n'est pas premier.

comme le montre le

Contre-exemple 4.23 On se place dans \mathbf{R}^2 . On note f(x,y) = x et g(x,y) = y. On a que $f \in \mathfrak{M}_{0,(0,1)}^{\infty-\mathrm{plat}}$ mais que $f \notin \mathfrak{M}_{0,(1,0)}^{\infty-\mathrm{plat}}$ et que $g \in \mathfrak{M}_{0,(1,0)}^{\infty-\mathrm{plat}}$ mais que $g \notin \mathfrak{M}_{0,(0,1)}^{\infty-\mathrm{plat}}$. Cependant, $fg \in \mathfrak{M}_{0,\mathbf{R}^2}^{\infty-\mathrm{plat}}$.

Notons les

Fait 4.24 Soient $V \subset W$ deux sous-espaces vectoriels de \mathbb{R}^n . Alors, $\mathfrak{M}_{x,W}^{\infty-\text{plat}} \subset \mathfrak{M}_{x,V}^{\infty-\text{plat}}$.

et

Fait 4.25
$$\mathfrak{M}_{x,\{\vec{0}\}}^{\infty-\mathrm{plat}} = \mathfrak{M}_x$$
.

4.4.3 Une déception

La déception dont je parle ici vient d'une illusion. Si $f \in \mathfrak{M}_x^{\mathrm{loc}}$, c'est-à-dire si f est localement nulle autour de x, alors la différentielle de f s'annule en x. Dit autrement :

Fait 4.26
$$\mathfrak{M}_x^{\mathrm{loc}}\subset \mathfrak{M}_{x,\mathbf{R}^n}^{\infty-\mathrm{plat}}$$

En fait, on a mieux. D'après le théorème 4.17 :

Proposition 4.27 Soit $x \in \mathbf{R}^n$ et soit A une partie à laquelle x adhère et telle que $\exists \vec{v} \in \mathbf{R}^n$ qui adhère à $A \cap \mathbf{R}\vec{v}$. Alors, $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_{x,\vec{v}}^{\infty-\mathrm{plat}}$.

Mon illusion, c'est que cette proposition se généralisait joliment. Pour exprimer cette généralisation, on a besoin de

Définition 4.28 Soient
$$x \in \mathbf{R}^n$$
 et A une partie de \mathbf{R}^n à laquelle x adhère. On définit $T_x A$ par Vect $\left\{ \vec{v} \in \mathbf{R}^n \mid \exists (a_n)_n \in A^\mathbf{N}, \exists (\lambda_n)_n \in \mathbf{R}^\mathbf{N}_+ \mid a_n \to a \text{ et } \frac{a_n - x}{\lambda_n} \to \vec{v} \right\}$.

Je peux alors exprimer ma

Grande déception 4.29 Soient $x \in \mathbf{R}^n$ et A une partie à laquelle x adhère. Alors, on n'a pas nécessairement $\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_{x,T_xA}^{\infty-\mathrm{plat}}$.

En effet, on a le contre-exemple suivant :

Contre-exemple 4.30 Soit
$$f(x,y) = -(y - x^2)(y + x^2)$$
. On a que $\forall x \in \mathbf{R}, f(x,x^2) = 0$ et que $\frac{1}{x}(x,x^2) \to_{x\to 0} (1,0)$. Cependant, $\frac{\partial^4 f}{\partial x^4}(0,0) = 24 \neq 0$.

Cependant, on a toujours le

Fait 4.31
$$\mathfrak{M}_{x,A}^{\mathrm{loc}} \subset \mathfrak{M}_{x,T_xA}^{1-\mathrm{plat}}$$
.

4.4.4 Généralisation et point à l'infini

On va vite. Soient $\mathfrak{p} \in \operatorname{Spec} \mathcal{C}^{\infty}(\mathbf{R}^n)$ et $\vec{v} \in \mathbf{R}^n$. En particulier, on peut prendre pour \mathfrak{p} un idéal maximal \mathfrak{M} . On définit :

$$\textbf{D\'efinition 4.32} \ \mathfrak{M}_{\mathfrak{p}, \vec{v}}^{\infty-\text{plat}} = \Big\{ f \in \mathcal{C}^{\infty}(\mathbf{R}^n) \mid \forall k \in \mathbf{N}, \frac{\partial^k f}{\partial \vec{v}^k} \in \mathfrak{p} \Big\}.$$

qu'on généralise en

Définition 4.33 Soit V un sous-espace vectoriel de \mathbf{R}^n . On pose $\mathfrak{M}_{\mathfrak{p},V}^{\infty-\text{plat}} = \bigcap_{\vec{v} \in V} \mathfrak{M}_{\mathfrak{p},\vec{v}}^{\infty-\text{plat}}$.

On a la

Proposition 4.34 $\mathfrak{M}_{\mathfrak{p},\vec{v}}^{\infty-\mathrm{plat}}$ est un idéal premier de $\mathcal{C}^{\infty}(\mathbf{R}^n)$.

Ainsi que

Fait 4.35
$$\mathfrak{M}_{x,V}^{\infty-\mathrm{plat}}=\mathfrak{M}_{\mathfrak{M}_x,V}^{\infty-\mathrm{plat}}$$
.

$$\textbf{Fait 4.36} \ \ \mathfrak{M}^{\infty-\text{plat}}_{\mathfrak{M}^{\infty-\text{plat}}_{x,\vec{v}}} = \mathfrak{M}^{\infty-\text{plat}}_{x,\vec{v}}.$$