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Fiche n° 1. Fractions

Réponses
4 —10 3
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5 3 n+1
L1b) oo 13d) .o, 1 000 183) i
O A) e -
6
15 ) 14 16
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1.1d) ..o 2 x 3° 1.8b)............... 14+ —
) 1.5a) o 4022 k-1
1
1.2a). .o - b)
) H DT -
2 T —2
7
L2b) s 1 ) D I
....................... 3 5
1.2C) it [9] 1.5.d) 1.108) oo =>3
-1
1 1.6a)...............
1.2d) e [ n(n+1)2 12 10
9 1.10b). ... = > =
2 ) 11 - 12
1.3a) e 247 a
) 1.6 b) ................. _a — b 125 105
203 1.10C) ............. —_— =
b 25 21
1.3b) i o1 3
L6c)ooo SP LAl Non
112
Corrigés
32 8x4 4
1.13,) OnaE x5 g
b) O 3y L (2 x4 VULV R
1.1 b) nas8 ><4—2_(><)><—2_ XA X 5 =2 x4 =
277142 (37l x (28?2 3t
1.1 c¢) On a 371 % 9i 371 % 9i ¥f3.
(=2 x 3% (=2) x (=2)*F x 3 x 37D (=) x 4P x 3 x3F 3k—2
Lid)  Ona—f— o — = 1F X 3% x 3 - 15 % 32 =23
R . 2 1 _2x3 1x4 6 4 6-4 2 1
1.2 a) On met au méme dénominateur : 1 3 1Ix3 3x4°"12 12- 12 “12°5%
1.2 b) On transforme 0,2 en fraction et on met au méme dénominateur :
2 o2 2 _2x10 2x3 20 6 _20-6_14_7x2 _ 7
3 7773 10 3x10 10x3 30 30 30 30 15x2 15
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1.2 ¢)

(2><3><5><7)(7+7+7+*

Pour multiplier des fractions, on multiplie les numérateurs entre eux et les dénominateurs entre eux :

§X§X5_§X§X§_36x15x5_12><3x5><3><5_3x3_g_9
25 7 12 2571271 25x12x1  5x5x12x1 1 1 7

2 6 2 5 2 2x5 2x5 1

5
Sm P = mm X () = x s == =5
15 5 15 6 15 6 15x6 3x5x2x3 9

1 1 1 1 2X3XHXT 2x3x5XxT7 2x3x5x7 2x3xbx7
): + +
2 3 5 7
=3XOXTH+2X5XT+2x3XxT+2x3x5=105+ 70+ 42+ 30 = 247.

2 3 5 7

(T U IV 7
15 5 10/ 724 \15 5 5 8
(136 3) 7 (136 9 ) 7T 145 7 29 7 203
= —4+--)X=-=—4+—=)]X—-=—7 X =-=— X - = —
15 5 8 1 15 8 15 8 3 8 24
1.3 ¢) On simplifie d’abord les termes comportant des exposants

510 % 73 — 25° x 492 519 x 73 — 510 x 74 500 x 731 -17) 5x(=6) —10

(125 x 7)3 + 59 x 143~ 59 x 73 +59 x 73 x 23 59 x T3(1+23) 9 3

1.3 d) On calcule :
1978 x 1979+ 1980 x 21 +1 958 1978 x 1 979 +1 979 x 21 + 21 + 1 958
1980x 1979 — 1978 x 1 979 1979 x (1 980 — 1 978)
1979 x (1978 4+21)+1979 1979 x (1 978 +21+1) 1 979 x 2 000
- 1979 x 2 - 1979 x 2 T 1979x2
=1 000.

On calcule :

05-f+g 05-i+i-02_3-S+d i-i+i-d
5_ 5 . 5 7 _ 7.7 =5 _ 5 .5 "T_71,.71_71
-t 51tz =35 §-mtxm s-1t3z—3

3G tw) s-gti-i 3 116

I_ 1, 1 11, 1_1

5(G-%+w) TE-3+i-3) 5 7T 3

1.5 a) On connait I'identité remarquable : (a — b)(a + b) = a® — b>.
4 022 _ 4 022 _ 4 022 — 402,

T (—4022)2 + (—4 021)(4 023) (4 022)2 + (1 — 4 022) x (1 +4022) (4 022)% + 1 — 4 0222

Fiche n° 1. Fractions



On fait apparaitre 4 021 dans 4 020 et 4 022 au dénominateur :

1.5 b)
40217 B 40217
40202 +40222 -2 (4021 —1)24+ (4021 +1)2 -2
B 4 0217
40212 -2x4021 x 1+ 1440212 4+2%x402lx1+1-2
B 4 0217 _ 40217 1
40212 -2x4021 x 1+402124+2x4021 x1 40212 +40212 2
1.5 ¢) En posant a =1234,ona:1235=a+1et 2469 =2a+ 1. D’ou:
1235x2460—1234 (a+1)(2a+1)—a 2a°+2a+1
1234%x2469+1235  a(2a+1)4+a+1 2a2+2a+1
1.5 d) En posant a =1000,ona:999=a—-1,1001l =a+1,1002=a+ 2 et 4 002 = 4a + 2.
4 002 da +2 _ 2(2a+1) _2(2a+1) )
S a?2+2a—(a2—-1)  2a+1 7

D : =
M T000x 1002—999 x 1001 a(a+2) — (a—1)(a+1)

1.6 a)
1 11 n nn+1) (n+1)? n+nn+1)—(n+1)°
m+1)2 n+l1 n nnr+12 nn+1)2 nn+1)2 n(n + 1)2
n4+n’4+n—m+2n+1) -1
N n(n + 1)2 T on(n+1)2
1.6 b) On rappelle la formule : a® — b* = (a — b) (ab +a® + bz). Cela donne :
a®—b*  (a+b)?  (a-b)(ab+a®+b") (a+b)? abta®+b> o> +2ab+ b _ ab
(a —0)2 a—b (a —0)2 a—b a—> a—b  a-—b
1.6 ¢) Pour n € N*\ {1}, on a:
6(n+1)
n(n —1)(2n — 2) 6(n+1) n*(n—1)2% 6(n+1) n(n—1)
= X = X = —Nn
2n+2 n(n—1)(2n —2) 2n 4+ 2 2(n—1)  2(n+1) 2
n2(n —1)2
1.7 On a
n2
Zk n?(n? +1)
k=0 2 n%(n?+1) 2 _n(n®+1)  nP+4n
n T n(n+1) 2 nn+1)  n+1 n+1
>k 2
k=0
29 4x6+4+5 5
1.8 Ont — = — =44+ .
a) n trouve — 5 +6

1.8 b) Ontrouvekﬁlz o1 - e
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1.8 ¢) On trouve —5 P _3+z—2
1.9 Soit t e R\ {—1}. On a :
U S S ¢ & 1 1+¢° 1424+ (1447) 2t
142 (1412 1+ +0)2 1+e)(14+6)2 1+ +0)2 1+ 2)(1+1)2
Donc, AB = 2t X (L+2)(1+1)* =2t
’ (T+t2)(1+1t)2 '

125 105

1 — = —

1.10c) Ona 55 5 51
1.11 Nous allons étudier les produits en croix.

On sait que A = B si, et seulement si, 33 215 x 208 341 = 66 317 x 104 348. Le nombre de gauche est le produit de deux
nombres impairs, il est impair. En revanche, le nombre de droite est le produit de deux nombres de parités différentes,
il est pair. Par conséquent, I’égalité n’est pas vérifiée. Ainsi, A et B ne sont pas égaux.

10° 4+ 1 _10°+1

0541 e =01 Etudions les produits en croix.

1.12 On réécrit A =

e D’une part, on a (10° +1) x (107 +1) = 10" + 10" +10° 4 1.
e D’autre part, (10° 4+ 1) = 10" +2 x 10° + 1.

Comme (10° 4+ 1) x (107 4+ 1) > (10° 4+ 1)x (10° 4 1), on obtient : A > B.
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Fiche n° 2. Puissances

Réponses
201 08) ¢ 10% 2.3 D) 22t x 3
2.1 D) e 2.3 C)
2.1 C) et 102 2.3d) 238 x 3%6
2.1 d) ..................................... 10*2 2.4 a) ...........................................
2.1€) 10* ZAD) o
2L ) e 105 204 C) 310
22 ) e 154 ZAD 2° x5
x
—6 2. D A e
2.2 D) 5 a) 1
2.2 C) .......................................... 1
2.5 D)
2.2.d) . 772 z—2
2.2 ) 3° 2.5 C) e 2z
rz+1
2.2 ) 328
2.5 d) 2
2.3 8) e 274 x 37! e z—2
Corrigés
2.3 a) Avec 6 = 2 x 3, on peut réorganiser le calcul et rassembler les puissances. On a :
23 x 32 _ 23 x 32 _ 23 x 32 :23><32 3T g2 3 gty g1

34 x 28 x 61 34 x 28 x 271 x 31 34-1 % 28-1 33 x 27

2.3 d) On simplifie en appliquant les régles habituelles de calcul avec les puissances, et en exploitant le fait que
8 X .
(32 X (—2)4) o 316 X 252 _ 238
5% 93) 2 3710 x2°6
((=3)% x 23)

2
x 326,

(—a)™ = a"™ lorsque n est pair :

817 y =6 B 93x17  9—6 o 36 B 951-6 y 3—6 _ gtz _
9-3 x 242 32x(—3) x 242 T 3-6 942 -

2% =38,
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2.4 D)

Avec les facteurs premiers 5 et 11 :

55% x 12172 x 125° (5 x 11)% x (11%)7% x (5°)?

8 -2
5" x 11 —11.

275 x 605-2 x 254 52 x 11 x (112 x 5)=2 x (52)4

T 58 x 11-3

2.4 ¢) On fait apparaitre les facteurs premiers 2, 3 et 5 :
1272 x 15* (272 x 372 x 3" x5" 27*x3? x5 410
252 x 1874 (52)2 x 274 x (32)4 274 x 38 x5t T 7
2.4 d) Méme méthode que précédemment. On a :
36° x 70° x 10° 20 x3°x2° x5° x 7® x 22 x 5% 2" x 3% x5 x 7 s
143 % 282 x 156 23 x T3 x 24 x 72 x 36 x 56 27 x 30 x56x 75 '
2.5 a) On met au méme dénominateur les deux premiéres écritures fractionnaires :
r 2 2 zz+l)-2x-1) 2 _x2+x—2:r+27 2
z—1 z+1 22-1  (z—D(x+1) 22—1" (z+1D(z—1) (z4+1)(z—1)
_ 2’ —x oz
Tz D)(x—-1) z+1
2.5 b) En suivant la méme méthode, on obtient :
2 1 n 8 72(1:—2)—(95—}—2)_’_ 8 _2z—4—xz-2+8 1
z4+2 -2 22-4  (z+2)(z—-2) (x4+2)(z—-2) (z+2)(z—-2) -2
2.5 ¢) On commence par simplifier les puissances superflues; puis, en faisant comme précédemment :
z? x> B 22z LT 2z _z(x+l4+x-1) 2x
22—z 23422 -2 -1 z+1 22-1 (z—1)(z+1) (z+D(x—1)
. 227 — 2z 2z
S (z+D(x-1) z+1
2.5 d) La deuxiéme écriture fractionnaire se simplifie. On a :
1 z42 2 1 x4 2 2 1 1 2
;+x274+x272x_x (z+2)(z—2) x(x72)_x+:r72+x(x72)
_T—2+z 2 2
Taz—-2)  z(z—-2) -2
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Fiche n° 3. Calcul littéral

B4 C) i (z+1)(z+2)
34d).......... 3<x+Lg/37> (x+7+6\/3>7>
3.4¢)........ 2<x—|—3_:{%) <x+ ?ﬂ/@)
34f) . —5(x —1) (x - ;)
35a). i ’(:c—l—y—z)(as—i—y—i—z)‘
35Db) i ’3(14J:+3y)(—4a:+y) ‘
BB C) e (z+1D(y+1)
35 d) (x—=1)(y-1)
3.50) et (@ + )@+ 1)?]
35f) . (a2 +b2) (y749:2) (y+4x2)
36a) ... (z—1)(z+1)(2*+1)
3.6Db) ... —8(2? +1)(z — 4)(z +4)
36C). i (m2+x+1)(m2—x+1)
36d).....i (a® + %) (* + d?)
36¢e)...... (a2+b2+02 —|—d2) (11)2—|—q2 + 72 +52)

Réponses

301
3.1a) i 8x3—6x2+§x— 3
31b).i ’m5—2x4+x3—w2+2x—1‘
B1C) i ’x5—x3+x2—1‘
31d)...iit ’x5+2x4+x3—x2—2x—1‘
31€) i ’x57x379:2+1‘
B L)
3.28) i |24 120 — 1722 + 82° — 32|
3.2b)
B2C) i ’2+x37x4715‘
3.2d) i |—1— 32— 3% + 2%
i @) i
B2f) . |1+ 22+ 3% + 20° + o
BuBA) . —6(6z +7)
3.3Db). 4(5z + 4)(=5z + 1)
B.3C) i |23z — 4)(10z + 3) |
33d) i |—8(z+ 1)(z + 16)
B.4a) . (x —1)?
B4 D) (z +2)

Corrigés

3.1a)  On utilise directement Iidentité remarquable (a + b)* = a® + 3ab + 3ab” + b°.
3.1 b)

« efficace », il suffit de rechercher directement le coefficient du terme d’un degré donné (sachant que (az™)(bz?) = abx

On peut écrire : (z — 1)3(552 + x4+ 1) = (ms — 32° 4 3z — 1) (xg +z+ 1) = 2°—22"+2° —2°4+2x—1. Pour étre

TH-P).

Par exemple, dans I'expression finale et en utilisant 1’étape intermédiaire, le coefficient du terme de degré 2 est donné
par (—3) x 1+3 x 1+ (—1) x 1 = —1. Ici, I’étape intermédiaire n’étant pas compliquée (& effectuer et & retenir), on peut

(éventuellement) se passer de ’écrire.
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3.1c¢) Connaissant les identités remarquables (z—1)(z+1) = 2° —1 et (z+1) (J;2 —z+ 1) =241, on a facilement :

(:c+1)2(:c—1)(:c2—:c+1) = [(:E—i—l)(a:—1)][(m+1)(x2—x+1)] = (x2—1)<:1c3+1) =2 —* % -1
3.14d) On calcule : (z 4+ 1)*(z — 1)(m2+1‘+1) = (x2—|—2x+1)($3 —1) =+ 22"+ 2% —2® — 22— 1.
3.1e) On calcule : (z — 1)*(z + 1)(m2+m+1) = (x2 — 1) (333 — 1) =2 —2® -2+ 1.

2
1
3.4 ¢) La forme canonique est (x + %) I On en déduit ensuite la factorisation a l’aide de 'identité remarquable
a® —b* = (a—b)(a+Db).
7\2 37
34d) Laf ique est 3( (o 4+ )"~ 52 )
) a forme canonique es (:c + 6) 36
. 3y2 233
3.4e) La forme canonique est 2<(x + Z) - T6)

3.6 ¢c) On calcule z* + 2> +1=a2"+22° + 1 —2° = (x2 + 1)2 —? = (m2 +a+ 1) (322 —x+ 1). La factorisation est
alors terminée sur R puisque les deux équations « 224z +1=0»et«z’—2+1=0» nont pas de solutions réelles.

3.6 d) Une fois n’est pas coutume, on peut commencer par développer avant de factoriser. Ce qui donne
(ac+bd)* + (ad — be)® = a’c® + b*d” + a’d” + b°c® = (a® +b°) (¢® + d°).

Signalons tout de méme qu’une autre voie (sans calcul) consiste d interpréter en termes de module d’un produit de deuz
nombres complexes !
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Fiche n° 4. Racines carrées

2 Vi VB4 VB
]1—\@+\/ﬁ\
.]x/ﬁJm@—\/é—Q\
~(V2+3)
3+vV2+V3+V6

4.6¢). ... I+vVz -1
46 I
4.6¢).......... = f(f) \/%
4.6f) ... —4(x —1)?
ATa). V2]
47b) 2v/2
4.8a).............. —11+5V5
A8b).. 1+ V2]
4.8¢C). i 1+V2
A8d)...
4.8¢). . 1+V5
4.8f) ... In(1+v?2)
4.9

Réponses
41a)
1B
41¢). —V3+42
41d).. . VT -2
41€e) i T™—3
416) . 13— a
4.28) i
4.2Db) 94 4v5
4.2¢). . 1+V3
S
4.2€). .. 12V/7
4.2fF) .
1
4.28). 9— 30\@
4.2h)
Corrigés
4.1 a)
4.1 1)
4.2 ¢)
4.3a)  On calcule :
2—v3 2—-V3 _ 2-V2

= X
242 242 2-V2

74—2\/5—2\/§+\/6:2_f—\/§+%\/5~
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1 ona:
1+vV2+V3 '

1 1-(V2+V3) 1-(V24V8)  v2+v3-1

S (VY R R (VY Y (O (V- RV ) O OV SV E R B

4.5 On pose A =

Ainsi, la technique de la « quantité conjuguée » n’est pas suffisante ici; mais on peut la réappliquer. On a :

(V2+v3-1)(4-2V6)  4v2-4v3+4v3-6v2-4+2V6 _ 2v2+4-2V6 _ v2+2-6
(4+2V6)(4—2v6) 16 — 24 h 8 - 4 ‘

1 _V2+2-46
1+vV2+V3 4

, ce qu’on cherchait.

| =
J—

(\/3+ff\/3f\/5)2=3+\/572\/3+\/5 3—-vV5+3-vV5=6-2V/9—-5=6-2V4=6—-4=2.

De plus, \/3+\[—\/3—\/5>0,d0nc \/3+\f—\/3—\/5:\/§.

4.9 Appelons A ce nombre, et écrivons-le A = o —  en posant :

:33+U9—|—% et B={]-3+ 9+§,

Plutot que de se lancer dans des choses compliquées, calculons A? 3 laide de I'identité remarquable. On a :

A% =ao® — 3028+ 3a8% — 8% = a® — 8% — 3a8(a — B)

a4 125) 125
=6—34 <3+ 9+ o7 34+14/9+ 57 |

Ainsi, on a finalement A% = 6—5A, ce qui est équivalent & (A — 1)(A2 + A+6) = 0 en observant que 1 est racine évidente
de I’équation t* 4+ 5t—6=0. Finalement, comme 1 est 'unique racine réelle de cette équation, on trouve A = 1.

10 Fiche n°4. Racines carrées



Fiche n° 5. Expressions algébriques

Réponses

De a® = a® — 1, on déduit a® = CLS(GQ —-1)= a® — a® et donc a® — a® = a®. De plus, a® = a® — 1.

Fiche n° 5. Expressions algébriques



5.3c)  On développe : (—4 +iV5)® = —4% 4 3 x 4°(iV5) — 3 x 4" (iV5)? + (iV5)® = —64 + 4815 + 60 — 5iV/5.

v3\'_ 1 V3 3 3V3
5.3d)  On dével A S 3% 43 x 2 2
) n développe ( 2—!—12 8+ ><18+ 3 3
5.4 a) De a® = 1, on déduit a” = a® et a® = a donc tous les termes se simplifient sauf deux : 4 — 1 = 3.
5.4 b) On commence par a'*** = (a'°)'*® x a* = a* car a'® = (¢°)* = 1. De méme, a***' = a', etc. et on obtient

donc finalement a* x a' x a? x a® = a'® = 1.

1234
1234 x (1234 + 1

5.4 c) Ceci vaut a® ot § = Z k= % est un entier multiple de 5.

k=0
................................................................................. c.l 5_1
5.4 d) Cette somme partielle de suite géométrique vaut

99 100
-1 1—
5.4 ¢) Cette somme géométrique vaut xa' =2 e _ S|
-1 a—1 a—1

5.4 f) En réordonnant les facteurs et en développant, on obtient :

(2-a)(2—a")2— a2 —a®) = (5 — 2a+a")(5 — 2(a? + a)
=25—-10(a+ a® + a® + a*) + 4(a + a*)(a® + d*).

Or,a+a’+a®+a* =—let (a+a")a®+a*)=a®+a®+a*" +d" =a+a®+a® +a* = -1 aussi.

5.5b)  On se raméne au résultat précédent : z* — LI x<x2 + i) 1 (mQ + i) + (3: - l) =a(a® +2) +a.
x3 x?2 x x2 x

5.6 c) Le développement
(x+y+2)°=a+4°+2° —|—3(m2(y +2)+ 3 (z+z) + 2 (x +y)> + 62yz

. . N 3 N . s s
conduit par soustraction & a” — 3(ab — 3c) — 6¢, d’aprés 'expression précédente.
5.7 a) Premiére solution : on développe et on obtient une combinaison des expressions précédentes.

Deuziéme solution : on reconnait (a — z)(a — z)(a — y) = a® — (x +y + 2)a* + (zy + yz + zz)a — zy=.
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5.7 b)  En factorisant, on reconnait (z + y + z)zyz.
5.7 ¢) On se raméne & (zy)® + (y2)° + (22)* = (zy + yz + 22)° — 2(zyz + v’z + 22ay).

5.8 a) On remarque que :

z2 (zy + zz) + y2(yz +ay) + 22(2:E +yz) = (332 +2 + 22)(xy +yz + zz) — 2?yz — ylzx — 2y

5.8 b) Premiére solution : on développe (z 4y + z)4 puis on conclut par soustraction a l’aide des calculs précédents.

Deuxiéme solution : on remarque que
(252)2 + (y2)2 + (22)2 _ (mQ + y2 + 22)2 _ 2(x2y2 +y222 + 22$2),
et donc qu’il suffit de développer (a® — 2b)* — 2(b* — 2ac).

@’z —y) + iz —2) + 2y —2) =2z —y) + (y° — )z —ya(y — 2)
=(z—y)(a® = (y+2)z+y2),
et l'on reconnait pour le dernier facteur : z° — (y + 2)z +yz = (x — y)z — (z — y)z = (z — y)(z — 2).

Pz-y)+y’@-2)+2 Y —a)=2"(z—y)+ ()’ - )z —yz(y® - 2°)
=(z-y)(2* - @ +yz+ ")z +y2(y + 2))

2= y)((@® —y*)z —yz(z —y) —2*(x —y))

Fiche n° 5. Expressions algébriques 13



Fiche n° 6. Equations du second degré

Réponses

6.1C) et
6.1d) . 2et3
) 2 et 3]

6.2) v

6.5d). ... ’mdonc m(a—b)/(b—c)‘
6.5 €) i
6.5f) . ... ’a+bpuis 2ab/(a+b).‘
B.62) e 2% =220+ 117 =0
6.6 D). |+? — 62 — 187 = 0
6.6C) o [ —dz+1=0]
6.7 8) oo [o® —2me+3=0]
6.7D).....|22% — (4m + )z + (2m® +m — 15) = 0

6.7¢)... ’m2x2+(m—2m2)x+(m2—m—2):0‘

6.20) . | —1 donc —19/5]

6.3 8) oo 6.88) ..o [m=—3/4et z=3/4]
6.3D) .. 6.8b)...’m:—1etx:—2,0um:7etx:2/3‘
6.3 C) . ~Tet 11| ggc)...... m=Tete=—Toum=—leto—1]
6.3d) 6.98) oo
B3 €) o\ 6.9b) . o la= 2aib=1]
630 6.9C) et [a=—3etb=5]
6.4 8) . o 2/3 6.9d) . eii ’a:1/2etb:8‘
6.4D) i 6.90) o ’azletb:3\ﬁ‘
B €)oo 610.8) v | oo 110 V3, 4o0]
Budd)orr 2 M A3 | 0y [~3,5]
6.5 8) e (1 donc (a—b)/(b—0)| 610.C) e ’]_007_1]U[2/3,+OO[‘
6.5b) .00 |1 donc c(a - b)/(a(b — 0)) | 610 ) oo = oo 17210t od]
6.5C) i [ m done —(m +a+b)]

Corrigés
6.1a)  C’est une identité remarquable : 2° — 6z + 9 = (z — 3)?

14
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6.2 a) La racine 0 est la racine évidente par excellence ; la somme des racines valant ici 5, I’autre racine est 5.
6.2 ¢) La fonction @ — 222 + 3 est strictement positive car elle est minorée par 3, donc elle ne s’annule pas.
6.3 a) Ici on cherche des racines un peu moins évidentes : on remplace le probleme par le probleme équivalent de la

détermination de deux nombres 1, x2 dont le produit vaut 42 et la somme 13. On teste donc les factorisations évidentes
de 42,ici42=6xTet 13=6+47.

6.5 ¢) En réduisant au méme dénominateur de part et d’autre, Uéquation devient m(z”® 4+ ab) = z(m” + ab) qui est

une équation du second degré. Sur la forme initiale de I’équation, on lit que m est racine évidente, 'autre est donc ab/m.
6.5 f) Le nombre 0 est bien tentant, mais il n’est pas racine de ’équation. En revanche, a + b convient. L’équation
se réécrit (a + b)(x — a)(x — b) = ab(2z — (a + b)), d’otl une équation du second degré dont le coefficient devant z* vaut

2a
a + b et le terme constant 2ab(a + b), donc la deuxiéme solution de cette équation est ——.
a

+0b
6.6 a) La somme des racines vaut 22, leur produit 117. L’équation cherchée est donc z? — 22z + 117 = 0.
6.8 a) Une équation du second degré admet une racine double si, et seulement si, son discriminant est nul.

Ici, le discriminant vaut A = (2m + 3)* — 4m® = 3(4m — 3). Ainsi, 'équation admet une racine double si, et seulement
si, m vaut —3/4, ce qui donne z = 3/4.

6.8 b) Ici, le déterminant vaut A = 4(m2 — 6m — 7), donc une racine évidente est —1 donc l'autre vaut 7. Pour

m = —1, on trouve £ = —2 et, pour m = 7, on trouve z = 2/3.
6.8 c) Ici le discriminant vaut A = 4((3m + 1)* — (m + 3)*) = 32(m* — 1) donc I’équation admet une racine double

si, et seulement si, m vaut 1, auquel cas ’équation s’écrit 2?4+ 22+ 1 = 0 et la racine double est —1, ou m vaut —1,
auquel cas I’équation s’écrit z? — 2z 4+ 1 = 0 dont la racine double est 1.

6.10 a) Un trinome est du signe du coefficient dominant a l’extérieur de U'intervalle des racines, et du signe opposé

entre les racines. Ici, les racines sont V2 et 1, le trindme est donc strictement positif sur | — oo, 1[U]\/§, —+00[ et strictement
négatif sur |1, v/2[.

6.10 b) Les racines sont —5 et 3. Le trindme est donc strictement négatif sur | — oo, —3[ U |5, +00[ et strictement
positif sur ] — 3, 5[.

6.10 d) Le signe d’un quotient est le méme que celui d’un produit ! Donc le quotient considéré est strictement positif

sur | — oo, —1/2[ U4, +00[ et strictement négatif sur | — 1/2,4[ (attention & Pannulation du dénominateur!).
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Fiche n° 7. Exponentielle et logarithme

Réponses
Tda) oo An2)|  TBa) T8 a) oo
TAD) oo oM@ by Ll 78D
L2l 78¢C) 1
T1C) i, —31n(2) BB °)
T5C) i 3| D
TLd)oeiiinnn, 7 n(2) T T9a) z + In(2)
T5d) =
Tle) oo 31In(2) K - b) e”
- Ob) —
7). 2In(2) +2I(3)| 75 e) -3
T9¢) i In |z —1]
7.2a). . ....... |~ 1In(3) — 2In(2) | 3
TB L) 5 1
T.2Db) .. [21n(3) — 21n(2)] 79d).o 112
TBa) i —2
7.2¢) .. ... In(3) + 111n(2) | -2 T.9€) i (1+2)*
1
7.2d)......... Bl() +2m()]  TEP) m2] 1104 245
d0a).......... >—3
7.2€). ... ’ —21In(5) +41n2 ‘ TBC) e —17
710Db). ... z € [0,1]
7'2 f) ........... 21n(5)_21n2 76d) .......................
TB ) eaneeeae 1 2
73 ’ —9 111(2) _ 21n(5) ‘ ) - 7.10 C) .................. x 2 e
T6f) o [e]
25 P— 1
TAda). ... 3 In(v2 — 1) TTA) 7.10d) ... x> -0
TTD) o impaire
7AYo TALA).oiiiiiee,
TedC)oiiiiii [0] T e 7.11b) —13 — /273
TAd) [0] TTd) e 2
Corrigés
7.1a) Ona 16 =4%=2" donc In(16) = 4In(2).
7.1 c) On a 0,125 = 1/8 donc In(0,125) = —In(8) = —31In(2)
7.1e) Ona72=8x9=2"x3"doncIn(72) — 2In(3) = (3In(2) + 2In(3)) — 2In(3) = 31In(2).
7.2 c) On a 0,875 = 7/8 donc
In(21) + 21In(14) — 31n(0,875) = (In(3) + In(7)) + 2(In(2) + In(7)) — 3(In(7) — In(8))
=1In(3) +2In(3) + 3 x 31In(2) = 31In(3) + 111n(2).
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7.3 On a
A=(In1-1n(2)) + (In(2) —In(3)) + - -- + (In(98) — In(99)) + (In(99) — In(100)).

En simplifiant les termes deux par deux, finalement, il reste A = In(1) — In(100), c’est-a-dire A = — In(100). Comme, par
ailleurs, 100 = 2% x 5%, on en déduit le résultat : A = —2(In(2) + In(5)).

On peut écrire plus rigoureusement ce calcul. On a :

A= kz::lln kiﬂ = kz::l(m(k) —In(k + 1)) = kz::lln(k) - ];m(k +1) = kz::lln(k) - ;m(]‘)

en effectuant le changement d’indice j = k + 1; d’ot, finalement, A = In(1) — In(100) = —2(In(2) 4 In(5)).

7.4 a) Ona(1+\/§)2:3+2\/§etﬁ: 2 — 1. Donc,

o= lln(3+2\/§) —4In(v2+1) = lln((1+\/§)2) +41nﬁ = %ln(1+\/§)+4ln

16 16

7 1 1 25 1 25
D’ou, finalement, « = — = In +41In =—1In =ZmH2-1).
8 1++v2 vV2+1 8 V241 8 ( )

1
—1In(In(2)) _ _(—=1)In(In(2)) __ -1 _
7.6 b) Onae =e = (In(2)) )
1
7.6 ¢) On a ln( exp(—lneQ)) = fln(exp(—lneQ)) = f(—lneQ) =5 X (-2)=-1
1515 —2 115154
7.7 a) Pour z € | — 1515, +1515[, on a f(—z) =In 5 - T - In TG = fi(z).

1515—x

7.7 b) On a, pour tout z € R, z < |z| < /22 + 1; donc f2 est définie sur R. Pour tout réel z, on a :

fa(—x) = ln<—a7 + m) = ln(—a: +Vz2+ 1)

(—x 4+ V22 + 1) (z + Va2 + 1)

—z? 4 (22 + 1)

=1In =1In
x+Vz2+1 z+ Va2 +1
1
= ln——MmM—m = — x).
T+VrZ+1 fa(@)

7.11 b) Attention a 'ensemble de définition de ces deux équations...

Pour la premiére équation, on cherche les solutions dans | — oo, —5[ N (]617 +oo[N] — oo, —7[), qui est ’ensemble vide,

donc la premiére équation n’admet aucune solution.

Pour la seconde, on cherche les solutions dans | — oo, —5[N (] — oo, —T[U]61, +oo[) , ¢’est-a-dire dans l'intervalle | — oo, —7].

Dans ce cas, un réel x appartenant a ] — co, —7[ est solution de 1’équation si, et seulement si, x vérifie z® + 13z — 26 = 0.

—13 — /273 _ —13+4+/273
o 2

Or, ce trindbme admet deux racines réelles : 11 = ——————— et 2

3 . Seul z1 convient car z1 € | — 0o, —7]
et xp ¢ ] — 0o, —T|.
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Fiche n° 8. Trigonométrie

Réponses
Bl &) 0] g3 Q). {gwkw,kez}u{%wkw,kez}
8.1 h) i [0]
1 88D i {47 /3,57 /3}
S ) —=
2 =27 —m
8-8 b) .............................. {3’ 3}
8.1 d) . -1-3
Bi2 &) it @ 8.8h)..... {%—l—%mkez}u{%—i—%mkez}
8.2 b) .
B8 C) it {7r/6,117/6}
8.2 C) .t
8.2 )it 8.8C) oo {_55,_2}
V6—+2
BB A) i 1 8.8 ¢) {%+2kmkez}u{%+2kmk’ez}
8.3b) o Zﬁ 88.d) .., (3n/4, 77/}
88
N ) (= /4.37/1)
BB C) i 1 3
8.8 d) . i {IJrkw,kEZ}
8.3 ). 2-3
84 8) o B8 E). i {m/4,3m/4,57/4, T /4]
1 3m w w 37w
84D) o 88¢).. oo {_7_57}
) cos ¥ ) 4 4°4° 4
S5 ) @ 8.8 €)oo {I—i—kz,kez}
- 47"
85Db) i ’4005 x—3cosx‘
m o5m 7w 1llm
8.8 1) oo { o R T
2 2 ) ’ )
8.6 8) ot "2“[ 66 6 6
5T mw m™ Om
8.81) . i {— LIz
2—-+v2 ) e
8.8 D) e . V2 6 666
T 5T
LT &) it 8.81f)........ {g+kmk6Z}U{F+kmkeZ}
BT D) 55 e {71’1]_71’1371’237T}
BT C) v ’8COS4.’E—8COSQ$+1‘ ...................... 12127 127 1
8.8a) i {m/3,5m/3} 1lr © =n 1lm
88g) e —_— =, ———
— g 12 1212 12
8.8 8) -t {—7,7
2) 55
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s 1im ™ ., [57 ]
8.8¢g)...... {fs+imkez}u{Sn+hnkeZ} | 89¢)...iiiiii EEIE {677r
88N) i | {7/6,57/6,37/2} | e R ST

89d). i, {o,]u[,]u[,z
88h) ... | {-7/2,7/6,57/6} | 6 6°6 6
T 2T 8.9 d) S u[ffﬁ]u o ]
8.8h) ......................... {6+k3,k€Z} M A 9 6 676 67 ]
88 1) i {77,137 /7} [[ g{ om 3m
8.9€). it 19 |
. T
8.8 l) ................................... {_?7?} 3 - -
8.9€) it [—;[u [f,f[
= = 4 2 4’2
8.8i)...... {?ka,kez}u{f?mm,kez}
ng) [E z[u}ﬁ Si_u[‘r)i ﬁ{u]?)iﬁ
8.87) e | {5m/14,97/14} | 4207127417147 2 274
. 3 37
8.8 1) e [5r/14,97/1a3] 8910 | |-F.-2[u]-3.-5|u[F5|v]5 T
. o7 97 =
8.81)..... {ﬁ”’”’kez}u{ﬂ”k”’kez} 8.98) it [o,iﬂ U [T,zn
8.98) . oiit i (0,37 /4] U [57/4, 27] -
‘ ‘ B9 ) i [—7/4,3m /4]
89a) . .o [—37/4,3m /4] 3 0 -
us T 1lm s
8.9D) . m/3,5m/3]] SO {0’ 8] - [8’8] N {S’QW]
m 7
89b) ......................... —T, — :|U[ 77'(-:| 89h _ 7577[- U 7?31 U 7£
3 3 ) =g 38 R
m om
8.9 C) i [0, g} u [6,271'}
Corrigés
8.3 a) Utilisons la relation % = % + % puis les formules d’addition. On obtient :
™ T i T s . .
cos( 13 ) =cos(§ + 7 ) = cos(§) cos(§) —sin(F) sin(])
VB VR 1 VR Vo
T2 2 27 2 4
8.3 b) Pour commencer, remarquons que 1 % — % Ainsi, avec les formules d’addition, on obtient :
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8.3 ¢) De méme, on a :

tan(1>_sin(%) _ 2 VE-vE_VA(B-1) VB
12 cos(&) M2 VE+v2 V2(VB+1) VB4

Simplifions encore ce résultat, en appliquant la méthode de la quantité conjuguée. On trouve :

tan(f),\/5—1,(\/?7—1)(\/3—1)7\/§2+12—2\/§74—2\/572_\/g
12/ V3+1 (BHD(WB-1 3oz 2 '

sin2x  cos2x _ sin2zcosx —cos2zsinz  sin(2z —z) 1

sinx cos T sinx cosx sinx cos x coszx

On peut aussi faire cette simplification a ’aide des formules de duplication :

sin2x  cos2x 2sinzcosxz  2cos’x —1 1

sinx cosT sinx cosx Ccos T

8.5 b) On calcule :

cos(3x) = cos(2z + x) = cos(2x) cos x — sin(2z) sinz = (2cos” & — 1) cosz — 2 cos xsin” z

3

; 2 3
=2cos’z —cosz —2cosz(l — cos” z) = 4cos” & — 3cos .

V2

241 242 2 2
8.6 a) Onacos—:2c052§—1donccosQZ: 22 =f4+ .Deplus,cosz>0donccoszz%[.
8.6 b) On a sin® % =1 —coszg = 2_4\/§et sin% > 0 donc sin% = 2%\/5

1 — cos(2x) 2sin’ z

8.7 a) On a cos(2z) = 1 — 2sin” z donc = tanz.

sin(2z) " 2sinzcosw

8.7 b) 0 sin3z cos3z sin3zcosx —cos3zsinz  sin(3x —z) sin(2z) 2sinzcosw
. n a " —_ = - = " = " = -
sinz cosx sinz cosx sinz cos sinz sinz cosz

V2

: s 2
8.8 ¢) Cela revient a résoudre « cosx = 5 OucosT=——7-

8.8 g) Si on résout avec z € [0, 27|, alors t = 2x € [0, 47].

Or, dans [0, 47], on a cost = ? pour t € {%,H%, 13%, 23%} et donc pour = € {112, 111—;, 113—;, 213—;}
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8.8 h) Le réel sinx est solution de 'équation de degré 2 : 2t +t — 1 = 0 dont les solutions sont t = —1 et t = =
1
Ainsi, les réels x solutions sont ceux tels que sinz = —1 ou sinz = =
T ™ . . . . . om
8.8 )) On a cos 7= sm<f - 7) = sin —. Finalement, on résout sinz = sin VR
. N 1
8.9 d) Cela revient a résoudre —— < sinx < 3
8.9 f) On résout 'inéquation « tan(xz) > 1 ou tan(z) <

8.9 g) Siz e [O,27r},alorst:9c—E e |-Z

™ ™ ™
7 _T . > T T .
i 7 [ 34,27r 74} On résout donc cost > 0 pour t € [ 4,27r 4],ce qui
™ T Y ™ ™ ™
donne t € |:—Z,§:| |:?7T:| et donc x € |:O, T:| @] |:Z,2ﬂ':|

8.9 h)

Si z € [0,2n], alors t = 2z — T IS —%,47r— %} On résout donc cost > 0 pour t € [—%,4#— g}, ce qui
donne t € [,E E} U [31 51} [ﬁ 15—”} uis x € [ 31} U [E H—ﬂ} U [LS—W 2TI':|
12 22 21 P '8 88 g
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Fiche n° 9. Dérivation

(2 + 3)(2sin(x) + 3) — (22 + 3x) x 2cos(x)
95a)...... (2sin(@) £ 3)2
2 -3z
9.5 b) .............................. m
2 : ,
9.5¢)... .. _2(1; +1)sin(2x 4 1) + z cos(2z + 1)
(22 +1)2
(4 4+ 3)In(z) — 22 — 3
9.5 d). .. I
9.6a). ...t 2x sin(i) - cos<1>
9.6 b) .
OBDh) DN
1
9.6 C) enei 1=
x cos(x) — sin(x)
9.6 d). ..ot 2 ein(D)
10z — 5
9.7 a) ........................... m
2 1++3 1-V3
9.7b) oo x+1(x+ 5 )(w—i— : )
222+ 2+ 5
97 C) ............................ m
2
x
9.7 d) e @)
2
9-7 e) .............................. m

Réponses
8L 8)ere oo
) D [50* — 62° + 4o — 15
9.1¢C) i ’ (22 — 22 + 10) exp(22) ‘
2 _
9.1d) . i (62— 1)In(z —2) 4 2 =7
x—2
9.2 8) it |5(2% — 52)" (22 — 5)|
9.2b) i 4(22° + 42 — 1)(32% + 2)|
9.2¢C). i ’ 8 cos?(z) — 6 cos(w) sin(z) — 4‘
9.2d)....... ’ —3(3 cos(z) — sin(x))?(3sin(z) + cos(z)) ‘
9.3 2z
B ) P
1
9.3 D) e SO
9.3C) i, ’ (—22% + 3z + 1) exp(z? + z) ‘
9.3d)..iiii ’ 6 cos(2z) exp(3sin(2z)) ‘
6z 222 — 1
94a)....coiiiiiii. @+ 1) cos( 21 )
20 +20 -8  (2z+1
94b).......l @21 )? 51n(z2+4>
9.4 C) i _cos(@)
24/sin(x)
cos(v/x)
9.4 d) o\ NG
Corrigés
9.1 a) On caleule : f'(z) = (22 + 3)(2z — 5) + (2° 4+ 3z + 2) x 2 = 62° 4+ 2z — 11.
9.1 b)
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9.1 ¢) On calcule : f'(z) = (22 — 2) exp(2x) + (2 — 2z + 6) x 2exp(2z) = (2z° — 2z + 10) exp(2z).

9.2 ¢) On calcule :

f/(x) = 2(sin(z) + 2 cos(x))(cos(z) — 2sin(z)) = 2(sin(z) cos(z) — 2sin’(x) + 2 cos®(z) — 4 cos(x) sin(z)
= —6cos(x) sin(z) — 4sin’(z) + 4 cos®(z) = —6 cos(z) sin(z) — 4(1 — cos®(z)) + 4 cos®(z)

= 8cos®(z) — 6 cos(x) sin(z) — 4.

9.2 d) On calcule : f'(z) = 3(3 cos(x) — sin(z))? (=3 sin(z) — cos(x)) = —3(3 cos(z) — sin(z))? (3 sin(z) + cos(z)).
En développant, on trouve : f'(x) = —54 cos”(z) sin(z) — 78 cos” (z) — 9sin(x) + 51 cos(z).

9.3 a) On calcule : f'(z) = xQZ—T— T C’est une application directe de la formule de dérivation quand f = Inowu.
1/z 1

©
S
o
=
©)
=]
Q
=
]
=)
@
~
~
8
=
I
\

9.3 ¢) On calcule :

f(x) = (=) exp®+ )+ 2 —2)expa® +z) x 2z +1) = (=1 + (2—2)(2x + 1)) exp(z”® + z)
= (—1+4z+2—22% — z)exp(z® + 2) = (—22° + 3z + 1) exp(z® + z).

9.4 a) On calcule :

fl(z) = cos(

__ bz 227 — 1
T (z24+1)2 22 +1 )

2% — 1 . qa(z® +1) — (22° — 1) x 2z 2% — 1 42® 4 4o — 42 + 2z
(z2+1)2 o 72 +1 (x2 +1)2

9.4 b) On calcule :

Flz) = —sin(2“’+ 1) L 2@ +4) — Qo 41) x 20 _ _Sin(2x+1) 20° +8—42® — 2z
B 22 +4 (22 +4)2 - 244 (22 +4)2
_22°+22-8 .n(2w+1)
(1'2 + 4)2 x2 +4 :
/ cos(zx)
9.4 ¢c) On calcule : f'(z) = cos(x) =
24/sin(zx) 24/sin(x)
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9.4 d) On calcule : f'(x) = cos(v/x) x NG = %\/\/g’).
. a2
9.5 a) On calcule : f'(z) = (22 +3)(2sin(z) + 3) = (z~ +3) x 2 cos(m)' En développant le numérateur, on trouve :
(2sin(z) + 3)2
Fl@) = —222 cos(x) + 4x sin(z) — 62 cos(x) + 6sin(x) + 6z + 9
o (2sin(z) + 3)2 ’
x 3V/x X2/
9.5 b) Oncalcule‘f'(m):ﬁ(3m+2)7\/§><3:32‘;%27 Q‘X/E _ Bz+2-6z 2 -3
’ ’ (3z +2)2 (3z +2)2 2v/x(3z +2)2  2y/x(3z +2)2°
_ 3 2 _ 2 .
9.5 ) On caleule : f/(z) = 2sin(2z + 1) X (z° 4+ 1) —cos(2z + 1) x 2z _ 9 (z° 4+ 1)sin(2z + 1) + z cos(2x + 1).
(22 +1)2 (22 +1)2
2
9.5d)  On caleule : f/(z) = (42 +3) In(2) — (227 + 3z) _ (4x +3)In(z) — 2z — 3
(In())? (In())?
9.6 a) On calcule : f'(z) = 2xsm(f) + 2° cos(f) X (;—21) =2z Slﬂ(*) = cos(7>
IS (-a) Vet A g ;
9.6 b)  On calcule : f'(z) = 9; = Vo L
Vo2 9 — a2 9—a2  (9—22)V9 22
9.6 c) On a trois

s 7 . s /
dérivée d’une fonction composée : f'(z) =

On calcule :

fonctions composées a la suite : f = In(y/u)). Donc on a, en appliquant deux fois la formule de
1

1
x ' () x

2¢/u — ) u(ac)

Fz) = 1 1(z —1) —7(x —21— 1) x1 1
x+1 (z—-1) r+1
r—1 r—1
1 -2 —1
2 2L @17 T @A -1
rz—1
-1 1

9.6d) On caleule : f'(z) = cos(z) X x —sin(z) x 1 T _ x cos(z) — sin(z)
x? sin(x) x sin(x)
, —(-1) -1 (24 2)% — (3 —x)? 10z -5
. lcule : = = =
9.7 a) On calcule : f'(z) (32 + 2+2)? (3—2)2(2+ 2)2 (B-2)2(2+2)2
TP | C2z(z+1)—1 22420 -1
9.7 b) On calcule : f'(z) = 2z oo porat = pr

Pour le trindéme 2z” + 2z — 1, on calcule son discriminant A =4 — 4 x 2 x (=1) = 12. On a deux racines :

Enfin, on a f'(z) =

xr1 =

—2—-12 —2-2V3 —-1-+3 ot o 143
2x2 4 2 T
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22+1 Ix(@-1)—-(z+2)x1 _ 2z+1 n 3
2243+ 2 (x —1)2 T2t —-2 (z—1)2

9.7 c) On calcule : f'(z) =

On cherche les racines du trinéme z> + z — 2 dont le discriminant est A = 1+ 8 = 9: on identifie deux racines

x1 = —2, 25 = 1. Dot la forme factorisée : z° +z — 2 = (z + 2)(z — 1).
22+ 1 3 2z +1)(z—1) 3(z +2) 22° 4+ 22 + 5
Al 5 & ! = = = .
s S = e e T e T 1@ -1  @+)@+? @ro@—1)?
Le trindme 22% + 2z + 5 dont le discriminant est A =4 — 4 x 2 X 5 = —36 < 0 ne se factorise pas dans R.
222 + 2245
(z+2)(xz—1)%

Ona: f'(z) =

oy Ix(z+1)—xx1 11 2 1+ (z+1)?—2(x+1)
fa) = (z4+1)2 +1_2x+17(x+1)2+1_x+17 (z+1)2
_1—|—x2—|—2x—|—1—2x—2_ x>
a (z+1)2 BNCES e
‘ 11-In(z)) - (1 +In(z)Zt 12l 14 o) 2 B 2
9:7¢)  Oncaleule: f'(z) = (1 —In(x))? T (-m@)? (1-@)®  z(l-In(@)?
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Fiche n° 10. Primitives

Réponses
10.1A) oo In |t + 1|
3
101 D) o s
3
10.1C) e I
4
101 d) e —Cosi 2
3 3 4
10.28) oo SA+1)F =285
1
10.2b) i et
|
10.2C) i iarcsm(?t)
1
10.2d). ..o garctan(?)t)
2 3
10.38) 0o S+
1 o3
103 b) i g(1+2t9)7
10.3C) vt —V1-1¢2
3 2
10.3 d) . L7
10.3€) i —In(1 + 3¢%)
1
10.36) o e
104 8) ot ~In*t
10.4D) oo 2vInt
2
104 C) e G
2
10.4d). oo 3

104 e) i ’ln\l—e_t—l—etw
104 £) . —e?
10.5 8) coeiee e —— cos t
105 D)oo
105 C) oo
105 d) .. —In|1 —sint|
056
1.
105 f) oo —sin(rlnt)
T
105 ) oo
Lo o
10.50) ..o 5 tan“t + In | cos t|
. L4
105 1) oot 1 tan® ¢
105 ) oo 2v/tant
1
105 K)o Y
1 1
10.5 1) oo —
) 2 (1 —sint)?
1
10.5 M) e iarctan(%)
105 1) oot arctan(e")
1 . 9
10.6 ). oeiniii §(arcsm(t))
10.6 D) oo In |arcsin(t)]
t 2t
107 8) e 5+ bmi )
0 o) e
L 3
10.7C) e —cost + 3 cos t

26
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10.7d) e In(1 4 sin?t) 10.96) ooveeee e 3632 puis ée3t—2
10.7€) et -ln | tan t|
10.9 g) o P42 is L In(|¢ — 1))
107 £) 0o [—cotant + tant| B -2 +t+10z g™
1 2 _9p
10.7 g) o 1 In | tan 2¢| 10.9 h) _% puis gln(t2 +1) — arctan(t)
1 1
10.8 a) ............................. t+ In |t| — g 10.9 1) ............ COSt(?) COSQt _ 2) puis _g COSSf
10.8 D)o In|t| — 1 . 2tsing +cost 1
2t2 10.9§) .ot ————pg  buiscosy
10.8 ¢) 2Lt 2t
T o J 3 5 10.9 k) .................. (2 = et)Q puis 111(2 + et)
U
10.8d) .o t——+ — 2cost+3 1
) 2 73] 1001)....... % puis — 5 In |2+ 3cos |
108 €) ..o t—2In|t+ 1| :
s /1 — 42
t2 t3 10.9 m) ............... m puis 1 t
10.81f) oot t——+ - —Injt+1]
228 3cos®t—1
cos®t — .
1 ) 109 n)....... 1+ cosZ )2 puis — In(1 + cos?(t))
10.88) . evviiiiiiiiinn. 3 In(1 + ¢t°) — arctan(t)
1
1 10.90). .o 1—2t%)e " puis —se !
10.8 1) oo Injt+1]+—— ) ( Je" puis =3
t+1
Int—2 1
A U 10.9p).cvevinii... - 5— puis Int — & In? ¢
109a)...........nnn 2(t — 1) puis gt —t* 45t t 2
1+1Int
1/9 1 109q) cvvvnii —L;l puis In|In¢|
10.9b)............. —— (7 +1) puis —— +1In|t| t21n" ¢
2\ t t
coslnt —sinlnt¢ .
10.9 ¢ 1 N 3 2t§ N 1 10.971).......... ———p  buis —cos(Int))
Y A O R - = e —12 .o
¢ vt PR T op
et(e2t _ 1) ) .
109 4 1 3 1 11 5 10.11a)............ —m) puis arctan(e’)
Od)..... —— ————puis —-—= — —
5 22 P TEE T
1
10.11Db)....... sinh(t)? + cosh?(t) puis = sinh?(t)
. 1 1 _.
109¢)............ 2¢?" — 3¢ puis —e*' — —e 3 2
2 3
Corrigés
10.1 a) Admet des primitives sur | — co, —1[ ou | — 1, +00][
10.1 b) Admet des primitives sur | — co, —2[ ou | — 2, +o0]
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10.2 a) Admet des primitives sur ]0, +oo].

t t
10.5h) Ona / tan® 0 d0 = / ((tan® 6 4 1) tan @ — tan 0) d6 = %tath +1n| cost| + C**.

10.7 a) Ona/ cosQOdG:/ H#S(%)d@_% e

/ " cos(0) sin(30) 9 — / t %(sin({i@ +6) +sin(30 — 0)) o

t 3
- / %(sin(40) +sin(20)) do = —COST(‘“) - @ + ot

¢ sin(26) * 25sin @ cos 2 N
10.7 d ———df = ——F——df =In(1 in“¢ e,
0.7.d) Ona/ 1+ sin?6 / 1+ sin%46 n(l+sin") +C

' de tcos2¢9+sin2¢9 ‘ cos 0 sin 6 . ste ste
10.7e) Ona /sinGcosQ = / prm y— do = / (m + m) df = In|sint|—In|cost|+C* = In|tant|+C>.

t t o2 2 t
10.7f) Ona / - do 0 = / sin 6 + cos” do = / (L + ! ) df = —cotan(t) + tan(t) + C**.

sin?(0) cos2(0) sin? ' cos?6

Y do " cos®(20) + sin®(20)
/ sin(460) _/ 28in(26) cos(20) dé

t1(2cos(20) = 2sin(26) 1 ) 1 ste 1 ste
,/ 4( n020) "+ cos(ad) ) 10 = g I5m(20)] = 3 Incos(21)| + O = JIn tan2t] + O

tg—1 fp4+1-2 £ 2 ste
10.8 ¢) Ona/ md@_/ Wde_/(1—m)d9_t—2ln|t+1|+c .

3 _ ¢ _ 2y _ 2 43
10.8 f) Ona/e+1 /0+1 ldG—/(e—i_l)(1 6+07) 1d€—t7t—+tffln|t+1|+CSte.

0+1 0+1 2 3

¢ 0 fo+1-1 ¢ 1 1 t
10.8 h = ———df = —_— = =In|t+ 1|+ - ste
0.8 h) Ona(/ @112 de / CEE do / +1 (G112 df =1n|t |+t 1—|—C
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Fiche n° 11. Calcul d’intégrales

Réponses

11.1a)........ 11.3 0) 1 11.5€)....oiie. .. 6]  11.7¢) i

30
11.1b)....... Négatif 1 11.7d)........ -3 —4
) B) 11.5 f) ...... 5 — ? ) ©
iti 11.3f)......... -
11.1¢)........ Positif ) 101 11.7 )0, _

1

o_ 1

11.5a)............ 78 11.8d)........ e

113a)....ooonnnen ) LT £) e, % ) 2
3 J—

11.3b)........... 11.5b)..... 2(e” — 1) — s 2

g - - 117 a) 1 8e) 3
11.3¢) eevnnnnnn Sl 1150 fln(l—&—f) 2 e+l

3 0 2 ; o

17 11.81) ........... —

11.3d)............. [0] V2| 1wTb) = ) 9
11.5d) ... - 2

-3 5
11.1 b) / |sin 7z|dz = 7/ |sin 7z|dz. Cette derniére intégrale a ses bornes « dans le bon sens », on peut

5 -3
Iinterpréter comme une aire. Elle est positive car on intégre une fonction positive. Le signe de I'intégrale initiale est donc

négatif.

-1 0

11.1 ¢) / sinxdr = — / sin z dz. Cette derniére intégrale a ses bornes « dans le bon sens », on peut l'interpréter

0 —1
0

comme une aire. La fonction sin est négative sur [—, 0] donc sur [—1,0]; donc, I'intégrale / sin x dz est négative.
-1
Le signe de l'intégrale initiale est donc positif.

11.2 a) 1l s’agit de laire d’un rectangle de largeur 2 et de longueur 7.
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-3
11.2 b) On commence par mettre les bornes « dans le bon sens » / —5dz
7

7 7
: f/ —5dz = / 5dz. Cette
—3 =
derniére intégrale est I'aire d’un rectangle dont les co6tés mesurent 10 et 5.

-3

11.2 ¢) Il s’agit de l'aire du triangle dont les sommets sont lorigine O, le point A(7;0) et le point B(7;21). Ce triangle
1

est rectangle en A et son aire est = x AO x AB.

11.2 d)

Les bornes sont « dans le bon sens », on peut donc interpréter 'intégrale comme une aire algébrique. Sur
Pintervalle [2, 8], la courbe de f(x) = 1 — 2z est située sous I'axe des abscisses, l'aire algébrique sera négative.

11 s’agit de calculer aire du trapéze rectangle dont les sommets sont A(2;0), B(8;0), C(8; —15) et D(2; —3). L’aire de
ce trapeéze rectangle est % x AB x (AD + BC) = 1 X 6 x (34 15).

2 0 2
11.2 e) Avec la relation de Chasles, on a / sinzdr = / sinz dz —|—/ sinz dz. La fonction sinus étant impaire,
—2 2 0
0
les aires algébriques /
—2

2
sinz dzx et / sin z dz sont opposées, il suit que leur somme est nulle.
0
11.2 f)

Les bornes étant « dans le bon sens », on interpréte cette intégrale comme une aire algébrique. Cette aire est
composée de deux triangles rectangles (les intégrales de —2 4 0 et de 0 a 1).

1, 111
6 571 6 5 30
- 1 2
11.3 f 100 4. — {7 101} 2
) /1 v 01" 101
11.4 a) La fonction intégrée est impaire, son intégrale sur un segment symétrique par rapport a 0 est donc nulle.
© ©
11.4 b) / coszdx = {sinx} —281[1(7) =1
% %
2 2
dx 1 1 1
11.4 =2 =—Z41=-=.
| [ x} Tt Eg
) 100 Y 100
11.4d —dx:[Z a:} =18
1 VT 1

30
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33 1 9 33
11.5 —— dz= {7\/3 1} —2(10-1)=6
e) Y e EA i ( )
3 T z 47 1 V3
11.5 f) /ﬂcos(ff;c) dx = {751n(57$>]7ﬂ fsm(ff)Jrsm(?) =3~ 3
3 z—2 1 2 3

et
=
(=]
3
N
S—
ol
-+
Q
=]
8
o,
8
\
S—
o3
S|
2|5
SRS
8
Q.
I
—
|
—
=
~
o)
o
w0
8
N
| I
S ol
I
|
=
7 N
S
~__

Ly 1-1 1 Yoy

1 T 1 T 1
e e 1 1 1
11.7 ¢ = — 4 :[—7} - =
2) /O 02 v 41 /0 (er +1)2 " e t+1lo” er1 2

3 -1 3

11.7 b) x+1 est négatif sur [—2, —1] et positif sur [—1, 3]. On en déduit : / |lz+1|de = / f:vfld:r+/ r+1da.
—2 —2 -1

Ces deux intégrales se calculent avec des primitives ou en les interprétant comme des aires de triangles.

11.7 d) /wdx:?)/ dz — 2 ln—xdﬂc:?)(efl)fQ[l(lnx)z} =3e—4.
1 T 1 T 2
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11.7 e) On calcule :

/0% cos(2zx) sin(x) dz

Il
s—
[N
—
[
o
(@]
@
—~
8
N
|
—_
N2
28
=
—~
8
N
(oW
8
Il
[}
(SE]

cos”(z) sin(z) dz — /2 sin(z) dx
0 0
2 3 3 1
=-3 [0053@)}02 + {cos(x)}: =-3
Y 71 1 (%
11.7 f) / |coszsinz|dz = / \5 sin(2z)| dz = 5/ | sin(2x)| dz. Le signe de sin(2z) est négatif sur [—f, O} et
Py 7% o 7% ,g
positif sur [0, %} , il suit que :
T 0 T 1 0 1 T
/ |sin(2z)|dz = / —sin(2z) dx + / sin(2z) dx 5 {cos(2x)} —3 {cos(?m)} -
-3 -% 0 -z 0
. 5
Le résultat final est donc —

11.8 a)

La fonction intégrée est impaire, son intégrale sur un segment symétrique par rapport a 0 est donc nulle.

_T
o 4
2 2 1 2 G210 _ g 99
11 11‘ — x1n 10 7|: zlnl():| —
8¢) /O 0" de /0 ¢ dr= 5 0 In 10 In 10
.................. 116_;
11.8 d) /ch(m)dx [sh(ac)} =sh(1) = £
0 0
1 1 1
11.8 ¢) Ve dx / z2dz = {gx%} g
0 0 3 o 3
9 = . 2
11.8 f ‘ de =2 d:2{7t3}3:7t 3) ="
) /o 5o 42 /0 ¥ (3272 x arctan(3z) . arctan(v/3)
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Fiche n° 12. Intégration par parties

Réponses
P
12.108) . 0o ~ -1 R =R
5 12.28) o { s (ot 2)e"
5 1 3
121 b) e —ch(2) — =sh(2) — = R* = R
2 2 2 +
12.2Db) oo = 1+ Inz
1201 C) ettt x
(In(2))%22 — 21n(2) — 222 4 2 R — R
12.1d)........ 2 12.2¢)........ 1 )
(In(2)) r — warctan(x) — 3 In(1+ x%)
121 €) oo 1
°) R — R
3] 122d) . 2 s ash(z)  ch(x)
12.16) o 21n(2) — 1
12.3 a) S _ e
12.108) oo In(2) — 2 + g T 2
1 ez +1
121 0) oo Tl 123bB) 3
4 2
R—R
T V3
_ 124 a)... 1
12.1 1) .............................. E + 7 1 a) { T = 5(_ COS(ZC)Sh((E) + Sll’l((E)Ch(l’))
2v2 4 *
12.15) 0 EEVEIN 12.4D). oo Ry >R
3 3 x = xnz —2zxlnz + 2z
4 4
12.0K) .o f\/§ln(2)—§\@+* R* —» R
3 9 9 +
12.4¢)...... o1 5 2 2
r—=az°(-In"z——Inx+ —
12.1 1) 0 In(2) 72 3 9 27
Ao 1 3 3
]-1L,1[ - R
12.4 d) e T %earccos(z) (LC o m)
Corrigés
12.1 a) On choisit u'(t) = cost et v(t) =¢. On a /E tcostdt = {tsint} - /5 sintdt = - —1
0 0 0
12.1 b) On choisit u'(t) = sh(2t) et v(t) =2t +3. On a :
1 1 ,
/ (2t + 3)sh(2t) dt = [(m 452 / ch(2t)dt = 2en(2) — 5 — 2
0 2 0 2 2
...................................................................... foQfo2
12.1c) On choisit v(t) =t et v'(t) =e2. On a / te2 dt = [2te§} - 2/ e2 dt = 4de — 4[e5} =4.
0 0 0 0
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12.1d) On choisit v(t) =t et u'(t) =2°. On a :

In(2 In(2 In(2) In(2
/ P ot :/ P v P B - / P ) gy ey 21 21"
1 1 In(2) 1 In(2) J,

(In(2))%2® — 21n(2) — 2" 4 2
(In(2))? '

12.1e) On choisit v'(t) = 1 et v(t) = Int. Ona/ lntdt:{tlnt} —/ ldt=e—(e—1)=1.
1 1N

e

2 2 2
12.1 f)  On choisit u'(t) =t et v(t) =Int. On a / tlintdt = [%tQ lnt} —/ %tdt =21In(2) — i[tﬂj =2In(2) — 2
1 [T

=1In(2) —2 [t — arctan(t)}; =1In(2) -2+ 5

1 2 1 142 1
t 1 t T 1 1 T 1
12.1 h (0] tarctantdt = | — tant| — - dt=—-— = (1— )dtzf—*.
) na/O arctan |:2arc an ]O 2/0 T+ 0 3 2/0 e 173

1 1 1
12.1j) Ona/o \/%dt:[Qt\/l—i—t}o—Q/o \/1+tdt=2\f—§[(1+t)

12.1 k) On choisit ' (t) = V1 +t et v(t) =In(1 +t). On a:

ol
[
=} [

[\~
>

/01\/17+tln(1+t)dt: [%(Ht)gm(lﬂ)}; - %/le/mdt: %x/iln@) - {*(Ht))%}

4 8 4
= g\/5110(2) - §ﬁ+ 3

™

T 1 T
12.11) Onmn a / ttan®tdt = / t(l + tan® t) dt f/ tdt. On choisit, dans la premiere intégrale, v(t) = ¢ et
0 0 0

NE)

s =z 2
u/(t) = 1 + tan® . On obtient {ttant} - /4 tantdt — [t} =I5 [ln cos(t)} — =
0 0

12.2 a) Cette fonction est définie sur R, y est continue et admet donc des primitives. Soit € R. En choisissant
xr

w({t)=¢e" etwv(t)=—t+1,ona / (—t+1)e"dt = [(—t + l)et} +/ eldt=(—z+1)e" +e" —2=(—z+2)e" — 2.
0 0

0

12.2 b) Cette fonction est définie sur R}, y est continue et admet donc des primitives. Soit x > 0. Par intégration
1 “Int Int]® 1 1 1
par parties avec u/(t)ztjet v(t) =Int, ona/1 ?—th: {—HT]I—F/l tgdtz—%—;—i—l‘

12.2 ¢) La fonction est définie sur R et y est continue. Soit & € R. On a, en choisissant u'(t) = 1 et v(t) = arctant,

v » ot 1
/ arctan(t) dt = [t arctan t} — / —— dt = zarctan(z) — = In(1 4 2°). D’ol1 une primitive.
o o Jo 1422 2
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12.3 a) On effectue deux intégrations par parties successives : pour la premiére, on prend u'(t) = e et o(t) = t°+3t—4,

1 2t 71 1 2t
et on trouve / (t> +3t —4)e* dt = {(t2 + 3t — 4)62} - / (2t+ 3)% dt. Puis, pour la seconde intégration par parties,
0 o Jo

2t
avec v(t) = 2t +3 et u'(t) = 7 on trouve :

1 2t 2t 1 1
(S} (S} 1 2t 11 52 1|:Qti| 5 2
- AW4+3)—dt=2— |2t +3)—| + = = ———-e" + - =—-—e".
/O(t 3)2dt l:(t 3)4:|0 2/06 dt T 1¢ tale e

bl E bl
12.3 b) On choisit d’abord u’ = exp et v = sin, d’ou : / e'sintdt = [et sint]o2 —/ e’ costdt. Ensuite, avec
0 0

™

T s 2 2 T
u' = exp et v = cos, on trouve ez — [et cost} 2 — / e’ sint d¢. Finalement, on a 2/ e'sintdt =e? +1.
0 0

o

12.4 a) On effectue deux intégrations par parties successives pour déterminer, pour z € R, / sin(¢)sh(t) d¢. On

0
T

commence par choisir v’ = sin et v = sh; cela donne / sin(¢)sh(t) dt = {— cos(t)sh(t)} + / cos(t)ch(t) d¢. Puis, on
0 0

0

— /9C sin(¢)sh(t) dt.

choisit u’ = cos et v = ch, ce qui donne — cos(z)sh(z) + [sin(t)ch(t)}
0

Finalement, on a /Oz sin(¢)sh(t)dt = %(— cos(z)sh(z) + sin(z)ch(z)).

12.4 b) Cette fonction est définie sur R% et y est continue. Soit 2 > 0. En choisissant u/(t) = 1 et v(t) = In’¢, on

x x
obtient / In’tdt = [t In® tH — / 21Intdt. Puis, en choisissant u'(t) = 1 et v(t) = Int, on obtient :
1 1

@ T
xln2x72[tlnt] +2/ ldt=zIln’z — 2zlnx + 2z — 2.
1

1

T

T2 2 2 2 [7 5
/ t“In“tdt = | =In"t —7/ t“Intdt.
1 3 . 34

12.4d) Soit z €] — 1,1[. En posant u'(t) = 1 et v(t) = ™" on obtient :

@ Y - ,
earccos(t) dt = [tearocos(t):| _/ earccos(t) dt.
/0 0 0o Vv 1-— t2
t ,
Ensuite, en posant u/(t) = ————— et v(t) = ") on obtient :

V31—t
wearccos(z) _ |: /1 _ tharccos(t)] v +/z /1 g2 -1 earccos(t) dt = Iearccos(m) _ /1 _ IQearccos(z) _’_e% _/z earccos(t) dt.
0 V1—1t? 0

0
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Fiche n° 13. Changements de variable

Réponses
™ ™
13.108) oo il 1802 €) e —
2 12
i 1. 5
13,1 D) o - 13.2 6) o ZInZ
) HEREL
13.1¢) i 2arctan(e) — g 13.38) i 2¢?
1 13.3b)........ —2((V3-1)In(v3-1) —4+2V3
13.0d) e [
4 T R
T 1348 Jo. 5{ ~
13.10€) o o r + tanz + Intan(v)
3 R — R
131 6) o 2ln(2> 13.4Db) i, r e
|_> —_
’ 2 14
13.2 a) T
D @ T B T T T I R R Y 3\/3 Ri % R
13.4¢)..oennn. { v o 2arctan(ye =)
1 2e+1
13.2Db) oo 2111( 3 ) R, — R
13.4d)...... 3., 2
p z — iln(gc3 +1)
18.20C) e E
1 —- R
1 13.4¢)......... 1, +ool
13.2d) .0 - +- r +— arctanz? -1
4 8
Corrigés
13.1a) On pose  — sinf cee[—fq ona 2 — cosd et done :
. pose t = s ave 2, 2 . a a9 = COSU e (o) :
1 z jus s
/ 1—752dt:/2 \/1—Sin2t9COSt9dt9:/2 cos2(9d0:/2 %:g.
= -3 -3 -3

3 V3 V3
/ ¥dt: ziusdu:2[arctanu} :2<E7E> = z.
1 Vi VB 1 utu N

dt 1 d
13.1¢c) Onposeu=c¢e' avect € [0,1], donct=1Inuet u € [1,e]. On a = o et donc dt = Zu On obtient :

1 1 e e 1 e
idt:/ Ldt:/ 2 T d—u:2/ 7du:2[arctanu} :Qarctan(e)—z.
o cht o e +et 1 U+ ou 1 14u? 1 2

36 Fiche n° 13. Changements de variable



d ! z
13.1d) On poseu =sint avect € [0, g} .Ona =% = cost et donc du = cost dt. Ainsi, / uw?du = / sin® t cos t dt.
0 0

dt

: T g 1t 1
Finalement, on trouve sin®tcostdt = |—u =-.
o 4 1o 4

. d
13.1e) Remarquons quon a cos’ ¢t = (1 — sin®t) cost. On pose u = sint avec ¢ € [0, g} On a d—? = cost et donc
! E E 1 1" 1 1 1
du = costdt. Ainsi, / (1 —u?)du = / sin® ¢ cos® t dt. Puis, / sin® t cos® t dt = [ ut — fuﬂ =-——-—=_
. o o 1" 76 )y 176 12
2 dt
13.1f) On pose u =t avect € [1,4], donc t = v’ et u € [1,2]. On a Tu = 2u.
u

A L, RPN L SR P ® _ 2(n(3) — In(2
insi, t= u = u = {n +u} = n —In .
/1 t+ Vit /1 u? +u /1 L+u (1+w)] =2(n(3) —In(2))

d Yol T sint
13.2 a) On pose u = cost avec t € [0,7]. On a & _sint. Ainsi, / ——du = / L et, finalement,
dt 1 34 u? o 3+cos?t

T sint 1 (1 1 1 u ! T
7dt:7/ —— du = — |arctan — = —.
/O 3+ cos?t 3/ (&)2 \/§[ ﬁ}_l 3v3
V3

dt 1 1
13.2b) On pose u =e' avec t € [0,1], donc t =Inu et u € [1,¢]. On a a4 = g done dt = Edu.

d
1 e e
. 1 1 1 1 1 € 1 2e +1
Finalement, dt = L du= d:[flz 1]271( )
inalemen /0 o /1 2+ Tu u /1 a1 2n(u—i— )1 53

1 ! ! 1 1 og

13.2 ¢ En osantu:ft—l,ona/ 7dt:2/ 7du:[arcsinu] = —.

) P 2 5 VAt —t2 o V4 —4u? o 2

dt
13.2d) On pose t = tanu avec u € [0,4} On a Tu = (14 tan” u)
1 Ed ™ ™ (9 1
Ainsi,/ #dt:/él%du:/ékcofudu:/élwdu:lJrz
o (1+412)2 o l+4+tan®u o o 2 4 8
dt 1
13.2 ¢) Onposeu:favecte[\/i,Q].On —=-—
] d U

Ainsi / ’ ! dt = / ’ L ! du ? ! du {arcsinu}% T
) P e T /T oa g2 T Ny =~ 19
vz Vi —1 Lty —1u 2 Vi-u L 12

2
e Int 2w 1 512 1. 5
LI P d :[71 1 ] 12
/e t 4t /11+u2 u=gh@Fu)] =53

4 2
13.3 a) En posant u = Vt, on a / eVidt = / 2ue” du. Cette nouvelle intégrale peut se calculer en faisant une
21 ! 2 2
intégration par parties. On trouve : / 2ue" du = {Zue“} - / 2¢" du = 2¢°.
1 1 1

41ln(+/t—1 2 1 2
13.3 b) En posant u = /%, on a / g dt = / MQUdu = / In(u — 1) du.
3 Vit V3 u V3
On fait maintenant une intégration par parties :
2 2 2
2/ ln(ufl)du:2[(ufl)ln(u71)] 72/ du=—2((vV3—-1)In(v3—1) — 4 +2V3.
V3 V3 V3
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2
13.4 a) La fonction est bien continue. Soit (a,z) € }0, % [ .

¥ cost + sint . [ cost
On calcule —— 5 dt qui est aussi ——>2+ dt en posant u = tant.
o sintcos®t o cos“t

x t int tan 1 tan R
2tdt:du et, ainsi, / wdt:/ <1+5) du = {u—i—lnu} = tanz + Intan(x) + C**°.
a tana

sint cos2t tana

13.4 b) Cette fonction est définie sur R, y est continue et admet donc des primitives. Soit z € R. On s’intéresse a

x
/ _ dt dans laquelle on pose u = e, ¢’est-a-dire ¢ = Inw. On a donc de = 1 et ainsi :
o 1+th(t) du u
A | e* 11 S| 1 1 11 x e .
—dt = ———du= — 4+ —du=|=lnu—->— == — (O
/0 1+ th(?) /1 1+"ﬁ u /1 20 " 2w {2 ey 2} 2 1

On pouvait aussi faire sans changement de variable en écrivant, pour t € R :

1 1 et +et 1 ot
- - = :
L+th(t) 14 oer 2 gt te™)

13.4 ¢) La fonction est définie sur R} et y est continue.

dt 2
Avec le changement de variable u = v/ef — 1, on a ¢ = In(1 + u?) et, ainsi, =1 +u 5
U U
T 1 Vet —1 1 2u eT —1 "
Soit = > 0. Onaainsi/ 7dt:/ dqu{arctanu} = 2arctan(v/e* — 1) + C**°.
1 Vet—1 1 ul4u? =1 ( )

13.4 d) La fonction est définie et continue sur R} .

: dt
Le changement de variable u = /t donne ¢ = > et, ainsi, T 3u®. Soit > 0. On a :
U

Ve 32 Ve 3y 3 Ve 3 2
= du = | =1 2 1 ] =21 3 1 ste.
/1 t+\/ / u3+u /1 w1 [2 n(u”+ )1 2n($ T+
13.4 ¢) La fonction est définie et continue sur |1, +o0].
dt U
Le changement de variable u = 1/t2 — 1 donne t = y\/u? 4+ 1 et, ainsi, — = ———. Soient a > 1l et x > 1. On a :
g % % du” Varil

x 1 ste
du = arctan v/ x 1+C
/,l t\/ﬁi a2 U\/F \/T /,/ 1 u2 +1
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Fiche n° 14. Intégration des fractions rationnelles

Réponses
3 14.6 b)...... A=—-let B=1 2
14.1a) ..o, ln<2) ’ ‘ 14.11a)........ (x + 1) + 3
4 2 4
14.6C) .o 2In -
3
14.1 b) 1ln<5) 3\* 1
Ty 27\3 14.78) oo “n3)| 1411b)...... 2<»L4> 3
14.2a). ...l 21ng 14.7 b) ané NG 1)2 \[15
0| #47b)... 3 14.11 C) 2(1._’_1) + 2176
14.2Db) ...l In(a +1) 1.3 2 3
14.7 C) ................. §ln§ 14.11 d) .... a(x+%) 3%
14.3a)....... 3 +1n(3) — In(2)
2 1 1 1 1
14.7d) e Tl 1412a) -
14.3 b) LA 2
Bb)...... S ! Ve a -
14.8 ....... ﬁln T va 14.12b) ..o =
7 3v3
14.4a)................ In{ =
5 14.9 a) ! 2n
Da). e 14.12¢). 0o We
33
14.4Db) ... In 2 -
14.9b) . o.on. z arctan(,) 14.12d) ... In(2)
a
14.5a)....... In{2y/v2-1 ) o
) ( 14.108) ..o [ 1418 a) oo 12
1 a-+1 a2
14.5b)......... —1 T A3b) ...l
) % n( 5 ) 14.10b) ..o Ve 14.13 b) 1n<a2_1>
14.6 ). o T 1
14.10c¢).. .o — 14.14 ........ ~(In(2) + —=
2V2 3 V3
Corrigés

14.1 a) La fonction ¢t — 1/(¢t+1) est bien définie et continue sur [1,2]. Une primitive de cette fonction est la fonction

2
t — In(¢ + 1). Donc, on a / H% dt = [ln(t + 1)} = In(3) — In(2). Enfin, on remarque que In(3) — In(2) = ln(f).
1

14.1 b) On procéde comme précédemment, mais on remarque qu’une primitive de t — 1/(2¢+1) est t —

2

3
1 2

attention & ne pas oublier le facteur 1/2! On calcule ensuite :

/2 Ly [ln(2t+1)]2 _In(3) —In(3) _ lln@).

2
1
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1
14.2 a) On commence par simplifier 'expression intégrée. Pour ¢ € R convenable, on a : n = P
2

en multipliant

N
N

« en haut et en bas » par 2. Donc, on a :

1 1
1 1 .

8 2

o= g

9 5 9x8 9
72(1nﬁ—1n§) 721115)(16 721nﬁ.

Le résultat est strictement négatif puisque 9/10 < 1.

C’est cohérent car on intégre une fonction positive ou nulle entre 1 et -, donc « & rebours ».
8 16°

2

a a?
14.2 b) On calcule / —dt = [ln(t + a)} =In(a+a”) —In(a) =1In (a(a + 1)) —1In(a) =In(a+1)
0 0
14.3 a) On commence par faire la division euclidienne de Iexpression 24+t+1 par t + 1. On trouve :
P rt+1=(+1)t + 1.
1+t+t° 1 .
Donc, pour t € R convenable, on a Tri t+ T+ Donc :

2 2 2 2
1+t+t 1 3 3
——dt = tdt ——dt= - In(3) —In(2)) = = + In(3) — In(2).
/1 141 /1 +/1 =3+ (G) = () = 5 +1n(3) - In(2)
Pour la seconde intégrale, on a utilisé un calcul fait précédemment.

14.3 b) D’abord, on fait une division euclidienne et on trouve 3t> 4 2t + 1 = (4t + 5) (%t — %) ol
Puis, apres calcul, on trouve :

1
2/3 7 5 7 1 2 1 1 19
é (4t 16) “=56 "9~ 1 /?1) T 4(n(?) n 3)

1 51 . 21
Ainsi, I'intégrale cherché —— 4+ —In—.
insi, l'integrale cherchée vaut 3 + o1 n 19

o=

2241 > 2 7

1 1 1
g Y » 2\1Z 11 7 11 %9 33
= [P ar= w2 = —m L= — 22
/é . /§t2+§ {n< +3)}% T2 M n(12><7) 198

14.5 a) On calcule :

vzot+ L
/ STV g
1

1 V2
242 2 .
1
2

ZTVE = [ha(lt2 + ﬂt)} -

1
2
4 _ 1l 4(vV2-1) 1l M -
ln<1+\/§>—21 ((1+\/§)(\/§—1)>_21 (4v2-1)) =1 (2 V2 1),

1
3 (In(4) — In(1 + v2))
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14.5 b) On force & apparaitre la dérivée du dénominateur au numérateur. On calcule :

1

:%(m(aﬂ)fln(?)) :%m( 2 )

1 1
t 1 2at 1 )

dt = — ————dt = — | In(at” + 1
/L at?2 +1 2a /L at?+1 Qa[ n(at” + )}
Ve Ve

s

14.6 b) Supposons que A et B soient trouvés. En particulier, pour ¢ convenable, on a :

1 B(t—1)
= A .
t—2 R

Cette égalité est encore valable pour ¢ = 1 (par exemple par continuité). En évaluant en ¢ = 1, on trouve A = —1.

De méme, on trouve B = 1.

14.6 ¢) D’apreés ce qui précéde, on a :

/34ﬁdt:/:mdt:2/:mdt:2/:$—t_%dt:Z[ln(t—%—ln(t—l)L

1
= 2{1n(u)}4 = 2(lng 71n1> :2(1n§ +ln(2)> = 21n§.

t—1/13 3 2
14.7 a) Pourt € [0,1], on a ! —1< LI )Donc on calcule :
: Y 2—4 4\t—2 t+2)° ’ ‘
/1Ldt_/1(L_L)dt— [ln(Q—t)—ln(Q—&—t)T— [ln(Z_t)T—lnl——ln(?))
o 2—4  Jo\t—2 t+2 N o 2+t/lo 3 ’
14.7 b) Déja, pour t € [2,3], on a 1 _ 1t 1 Donc, on calcule :
* .]7p ) ’ tQ_t_t_l t ’ .
/kgidt*2/3(if1>dt*2[ln(t71)fln(t)r*2[ln(g)r*2(lngflnl>*21né
, t2—t Ty \t—1 ¢t - 2 t 2 3 2) 3

1 1 1
14.7 Déja, te10,1], P +4at+3=0+1({t+3 tizf(———).
c) éja, pour t € [0,1], on a t” + 4t + t+1)(t+3)e T IR AT
On calcule ensuite :
1 1
/;dtzl/ (L_L>dt
o 2H+4t+3 2o \t+1 t+3
1 1 1 t+1\1t 1 1 1 1.3
gL mern s =3[ m(g)] =g(mg-mg)=gm

1 1
/3 21 dt—1/5< 11_11>dt
, A2 —1 )y \t—-L1 141

1
14.8 Déja, on remarque que, pour ¢ € R convenable, on a = — . ,
! due qaue, b 2—a 2a (t —Va t++va

S| 1 o 1 Va—t\]" 1 Va—a
/0tz_adt—M[ln(\/&—t)—&—ln(t-i—\/a)}o_M{ln<t+ﬁ>}o_2aln(a+\/&).
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2 1 t\1? 1 ~1 1 1
/71 m dt = |:\/§ arctan(\/g)] » = ﬁ (arctan(\@) — arctan(\/E)) = ﬁ <arctan(ﬁ) + arctan(Z) )

. . . 1 T
Or, on sait (c’est un exercice « classique ») que, pour tout > 0, on a arctanz + arctan — = bx Donc, on a :
T

14.11 a) On force le terme en z & apparaitre comme le second membre du développement d’une identité remarquable

2 . N . . . N N . . .9
(z + a)”, ol a est & déterminer. Puis, on force & apparaitre le troisitme terme de 'identité remarquable (ici, a”), qu'on
ajoute-soustrait. On trouve :

5 5 1 9 1 1\2 1\2 23
¥ +zrxt+l=z —|—(2><§><:c)—|—1::c —0—(2><§><a:)—|—(§) —(7> —|—1:<x—|—7) +1.

14.11 b) On procéde comme précédemment mais on commence par factoriser par 2. On trouve :
3 1 3 3\2 3\2 1
T T + T 5 X x+ 2 T X 1 X x+ 1 1 + 3

3\ 2 1 3\ 2 1
—2(($‘4) ‘m)—z(xw) ~3 (car 3 =35 = —16)

14.12 a) Orl(:aul(:ults/1;d7f*/1 L dt = [ -1 T 1
’ o T+2t+t2 7 J, 1+6)2 7 l14+tly 2

0 0 3
/ %dt:/ ;zdt:/z1 %d@z 2{arc‘can<29>] (en posantﬁzt—&—%)
L+ttt (b4 1)+ 2 1 @) 3 V3/)]

_ 2 arctan € — arctan 1 —iXarctan 1\ 4r 2
J V3 3 3 V3 V3x6  3V3
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1 1
1 1 1 (2 1
14.12d) DeJa,ona6t2—5t+1=6(t—%)(t—%),pourteRDonc,/ mdtzg/o (t_l)(t_%) dt.
Or, pour ¢t € R convenable, on a : ! = ( ! — ! ) Donc :
-’ R CERICER AL B VA

/01 mdt = [m(g —t) —In(} —t)]j = {m(i _Z)K _1n<11//f‘2> —h(ig) =In(3) — In(3/2) = In(2).

[SMIN]

2 2 2

1 3 1 3 1 3 1
/1 3t2+2t+10dt:/ 3(e2 1 2 mdt:/l 10 dt:/ a
1 0 L34+ -3 3( -

14.13 b) Déja, on remarque qu’on a, pour ¢ € R convenable, t* — (2a + 1)t + a*> + a = (t — a) (t —(a+ 1)) et

1 1 1

t-a)t—(at1) t-(a+1l) t—a

Donc, on a :

/01 tz(2a+1)t+a2+adt_/ol<t(i+1) _t1a> dt = [ln(a-l—l—t)—ln(a—t)}:: [ln(%)};
= (=) —m(“H1)) = (1>

_ 1
14.14 Déja, pour t € [0,1], on a TP %(1 —ll—t + T —Qt—it2>' Ensuite, on calcule /o %H dt = In(2).
Puis, on remarque que 2ot —_%(Qt_l)—i_%et ue :
’ R S aue

/1$dt—[1n(1—t+t2)}1—1n(1)—1n(1)—o
o I—t+t2 0o -

1
1 2
Or, on a vu plus haut que / — 5 dt= il Donc, on trouve :
o 1—t+t 3v3

| 1 3 27 1 7
‘/01+t3dt—3<ln(2)+2><3\/§>—3<ln(2)+\/§).
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Fiche n° 15. Systemes linéaires

Réponses
15.18) .ot (B, 1)} 15da). {(2,-1,3)}
151 D) i {(7,2)} 15.4Db) i {(-1,4,2)}
1 92 1504 C) it
15.1C) cvii - =
33 9
15.4d).....ooiiinl. {(—7—2, ,z);zeR}
15.0.d) oo (L)
32 15.58) vt {(1,1/2,1/2)}
1
15.28) oo {(1_Z’+2“>} 155 D)ottt
15.5C) oo [{(52,1-42,2) ; 2 €R}]
15.2 b)) (2,-3)
1 1
1 5 2 3 15.5 d) ..................... 7?7?
_ 2 _ 22 a a
15.2¢) ... {(13a+ 3% 3% 13% >}
15.68) .o {(5,3,—1)}
2 2
15.2.d) ’(“_QC"C‘“LQ)‘ 156 D)o
15.38) .o ’{(1—&—2,—2,2’);261&}‘ @ta-1 a®—atl —a®+atil
0. [ [t e )]
15.3b) .o {(1,y,3+2y); y € RY] ¢ ¢ ¢
157 8) oo {(0,0,0)}
1 1 4 o
15.3¢)....... {(6332’3+32’Z) ; ZER}
15.7b) oo {(z,y,—z—y); (z,y) € R?*}
-5 3 =25 7
3d)..... — ——x,— — -z 15.7C) i r,x,x); x €R
15.3 d) {(az, 2 ~ 3% 57 4az>,x€R} ) ’{( ) }‘
Corrigés
15.1 a) On a les équivalences suivantes :
r—2y=1 r=142y r=142y 10y = 10 y=1
{3x+4y—13 <:’{:<;(1+2y)+4y_13 =\ 1w0y+3=13 {x1+2y {x 3
15.1 b) On a les équivalences suivantes :
2z +y =16 y=16—2z 3r=5+16=21 rx=17
{xy—5 <:’{:Jc16+2m_5 y =16 — 2z <:’{11_1614_2.
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15.1 ¢) On a les équivalences suivantes :

2
— = — — = — — = — y=z
3x — 6y 3 T — 2y 1 T — 2y 1 3 )
20 +2y =2 r+y=1 Lo+ Lo—L1 3y=2 r=—1+42x2=-
3 3
15.1 d) On a les équivalences suivantes :
3r — Ay = —/2 3r — Ay = —/2 3x—4y:—\/§
62+ 2y =3V2 LoclLo2m, | 8y+2y=2V2+3V2 10y = 5v2
) _ V2
V=5 Y=
= 2 3 =
3
15.2 a) On a les équivalences suivantes :
a
3 3 r=1-7
{3m+iy2 y=1-3z y=1-3z
2rtdy=a 2r+4—6x=a —dz=a—4 *1—§+§a*_—1+§a
YT TR T o TR
15.2 b) On a les équivalences suivantes
T —ay=3a+2 z=ay+3a+2 rT=ay+3a+2
ax+y=2a—3 a*y+3d>+2a+y=2a—3 (a2+1)y:2a—3—3a2—2a
_a_ 9.2
Pk

1+ a2

r=—-3a+3a+2=2.

3z +5y=a y:2m—a2 y:2a:—a2
{2xyza2 {3x+5><(2xa2)—a — 13z — 5a° = a
—ia+£a2
13 13
2><(ia+£a2) a2—3a—32
v= 139713 139713

15.2 d) On a les équivalences suivantes :
T+ 2y = 3a 4+ 2y =3a y:a+a2
— —
{ 2x+3y=5a—a2 Lo+ Lo—2L1 { —y=5a—a2—6a=—a2—a { x:3a—2(a+a2) =a—2d>.

15.3 a) On a les équivalences suivantes :

r+2y+z=1 r+2y+z=1 Yy=—z r=1+z
{3x+y2z=3 LzefiBLl{ -5y —52=0 =
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15.3 b) On a les équivalences suivantes :

3r —2y+2==6 4o =4 r=1 r=1
TH2y—2=—2 LicLi+Ls r+2y—z=-2 20—z =-3 z =2y + 3.

15.3 ¢) On a les équivalences suivantes :

T — —|—3z—§ T—y+3z=2 —_—1+éz
Y =3 Y = Y= 3 3
Lo+Lo—L
3 leslz—ln 3 5 1 4 5
Qy—z =2 _4r=2_2=_ = 4, 2
T+2y—=z 3 3y z 573 3—|—3z 3z—|—2
P
3 3
= 15
6 37
15.3 d) On a les équivalences suivantes :
5 5 5 5 =25
5x+y+22—75 y—7575x72z 7$+4z_,§,§_ 6
— —
5 5 5
2x—y—|—22:—§ 2m+§+5m+2z+2z:—§ Yy=———50x—2z2
z—_25 73;
T 24 4
- *—§—5$+%+zx*_—5—§x
Y=73 1272712 2"
15.4 a) On a les équivalences suivantes
r+2y—z=-3 r+2y—z=-3 r+2y—z=-3
2 —y+2z=28 — —5y+3z=14 — —5y+4+3z=14
3t4y+2:=11 L2+ Ly —2I —By+5z=20 "tz (o,=¢
L3<*L3*3L1
z=3 z=3 z=3
=< r+2y—-3=-3 <= rT+2y=0 <~ y=-—1
—5y+3x3=14 —5y=14-9=5 T=—-2y=2
15.4 b) On a les équivalences suivantes :
a—b—c=-T7 a—b—c=-T7 a—b—c=-T7
3a+2b—c=3 — 50+ 2¢c =24 = 50+ 2c =24
da+b+2=4 L2+ Ly—3L1 | s5b+6c=32 702 | 4c=38
Lz <+ L3 —4L1
c=2 c=2
= a-b—-2=-7 <<= b=4
504+2x2=24 a=-5+4=-1.
r+3y+z=1 z+3y+z=1 z+3y+z=1
15.4c¢c) Ona: 20 —y+2z=-1 — —T7y=-3 -7y =-3
z+10y+2=0 Ly < Ly — 2Ly Ty =—1 Fscbatlo | g = g,
L3+ L3 — L1

Le systéme est incompatible car ’équation 0 = —4 n’a pas de solution.

Fiche n° 15. Systemes linéaires



15.4 d) On va extraire y de la deuxiéme équation, puis résoudre par substitution. On a les équivalences suivantes :

3x+2y+32=0 y=2xr+2z+1 y=2xr+2z+1
2 —y+2z2=-1 = 3z +4x+424+2+32=0 = T+ T72z= -2
dr+5y+4z=1 4+ 10z + 10z +5+4z=1 14x + 14z = —4
2
{y-?m—i—Zz—}—l r=—%—z
g 2 g
r=—z—— 4 3
7 y:f227?+2z+1:?.

15.5 a) On a les équivalences suivantes :

z+y—z=1 r=2—-2y r=2—-2y r=2—-2y
r+2y=2 <~ 2-2y+y—2z=1 <= —y—z=-1 <~ y=1—-=2

20 +22=3 4—4y+22=3 —4y+2z=-1 —44+4z+2z2=-1
r=2-2y z=23/6=1/2
= y=1—-2 <= y=1-1/2=1/2
6z=3 r=2-1=1

15.5 b) On a les équivalences suivantes :

r+y—z=1 r+y—z=1 r+y—z=1
T+2y—2z=2 <~ y—z=1 <~ y—z=1
2w —2y+2:=3 Le+Lo—1Ls —dy 4z =1 "3l | g=5
Ls <+ L3 —2Ly
Le systéme est incompatible car I’équation 0 = 5 n’a pas de solution.
15.5 ¢) On a les équivalences suivantes :
r+y—z=1 r+y—z=1 y=1—4z
r+2y+32=2 = y+4z=1 <:>{ o e _
9 + 3y + 22 — 3 Ly Ly — L s —1 r=—(1-42)42z+1=52—-1+1=5z
Ls <+ L3 — 2L,
15.5 d) On a les équivalences suivantes :
r+y—z=1 r+y—z=1 r+y—z=1
T+ 2y+az=2 = y+a+1l)z=1 — y+(a+1)z=1
2r4ay+2z:=3 Lo+ La—1ILa (a—2)y+4dz=1 LelbstC=ale [ (4L 2 _g)a+1)z=3-a
L3(—L3—2L1
r+y—z=1 z+y—z=1
— y+(a+1)z=1 — y+(a+1)z=1
(4+a+2—-0d’)z=3-a (—a®> +a+6)z=3—a.
On factorise le trinome —(a® — a — 6) = —(a + 2)(a — 3) qui est non nul dans le cas étudié.
5= 3—a _ 1 z = 1
cty—z=1 - —(a+2)(a—3) a+2 a+2
N 2—a-1 1
Dou:q y+(a+1)z=1 = 1 = _a+t =
=1—-(a+1)x Y
(—a®>+a+6)z=3—-a Y ( ) a—+2 a+2 a+2
1 1
r=1—-y+z =1- =1
4 * a+2 a+2
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15.6 a) On a les équivalences suivantes :

r—2z="7 =742z r=T+42z =742z z=-1
20 —y=7 <+ 444z —-y=7 <= y="7+4z S y=7+4z <= y=7—-4=
2—2=7T7 20—2=17 14+82—2=7

15.6 b) On a les équivalences suivantes :
T—z=2 r=2+4+z2 rT=24+z
T-y=2 <+ 242z2—y=2 <= Y=z
y—z=2 y—z=2 0=2
Le systéme est incompatible car I’équation 0 = 2 n’a pas de solution.

15.6 ¢) On a les équivalences suivantes :

Tr—az==c r=c—+az r=c+az
axr—y=c < alctaz)—y=c <= y=(a—1)c+a’z
ay—z=c ay—z=c a((afl)chan)fz:c

r=c+az
— y=(a—1c+d’z
(@®—1)z=(01+a-dec.

Dans R, I’équation ®-1=0a pour unique solution a = 1 (fonction ¢ — 3 strictement croissante). Or a # 1, donc
a® — 10, on peut déterminer z dans la troisiéme équation. On a alors :

—a®+a+1 _—a2—|—a+1

Z:c(a—l)(a2+a+1_ a®—1
r=c+az 9 1 5 1
y=(a—1)c+ad’z <~ y:(a—l)c+a2_a 3+a+ c=2 ;a—k c
(@®=1z=01+a—d)c a® —1 a®—1

—a2+a+1c_a2—|—a—1
a’—1 Toad—1

r=c+a

15.7 a) On a les équivalences suivantes :

dx4+y+z==x 3x+y+2=0 z=-3x—y z=-3r—vy
THdy+z=y <+ T+3y+2=0 <= T+3y—3x—y=0 = =y
r+y+4z==2 x+y+32=0 r+y+3x(=3zx—y) =
<= rz=y=2=0.

dx+y+z=3z TH+y+z=
15.7 b) On a les équivalences suivantes : c4+4dy+z2=3y <+

r+y+4z =3z

15.7 ¢) On a les équivalences suivantes :
x4+ y+ 2z =6x —2rx+y+2=0 z=2rx—y z=2rx—y
r+4dy+2z=06y < r—2y+2=0 <= r—2y+2x—y=0 = 3z —3y =0
Tz +y+4z =06z r+y—22=0 xr+y—2x2x—y)=0 —3x+3y=0

z=2r—xr=u1x.
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Fiche n° 16. Nombres complexes

Réponses
16.1 a) ....... 4 + 321 16.1 g) ..... i _ Ei 16.2 C) ........ \/gei% 16.2 h) 2cos<%)ei%
- 29 29
16.1b) ... 16.2d)........ 2e 1%
: 1 V3 16.32).............
16.1¢c)....... 7 —24i 16.1h)..... - _ Y 8z
2 2 16.2¢)......... 2¢e's 16.3 b) 1 1
16.1d)............. 5 : ) R
: 16.2a)............ 16.2 1) ..... 5v/2e~ 1% V2 V2
16.1¢).. | —119+ 120i : 1 1
16.2b).......... 8e'" 16.2g)........ 1061 % 16.3¢).. | —— +i—
16.19)..... 3L V2 V2
10 10
Corrigés

16.1a) On développe : (2 + 6i)(5 + i) = 10 + 2i + 30i + 6i> = 10 + 32i — 6 = 4 + 32i.

16.1 e) On développe :

(2-3i)" = ((2 —31)2)2 =(4-2x2x3i-9)°=(-5-120)° = (5+12i)> =5 + 2 x 5 x 12i — 12° = —119 + 120i.
Autre solution : avec la formule du binéme de Newton, on a :

4
2-3)' =) (2) 2k (—3i)* "
k=0
= (=3i)* + 4 x 2 x (=3i)® + 6 x 2% x (=3i)% +4 x 2° x (=3i) +2*
= 81 + 2167 — 216 — 96i 4+ 16 = —119 + 120i.

1 i i 1
16.1 f)  On utilise ’expression conjuguée : T € 731;(_31+ ) = 33112 = % + Ei'

2-3  (2-30)(5—2) 10—4i—15i—6 4 19,

5+2i  (5+2i)(5— 2i) 52122 20 20"
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16.1 h) On utilise la définition de ’écriture exponentielle et la trigonométrie :

16.2 f) On calcule |5 — 5i| = \/52 +52 = \/2 x 52 = 5v/2 et on écrit :

5—51—5\/§<1 —112> :5\/§<cos£ —isinﬁ).

4

16.2 h) On écrit que e’

w3
+
CD.-.
ol
Il
(D.-
a3
/N
(D.—
—~
w3y
|
INE)
~
+
m»—-‘
—~
ol
|
INE)
~—
N———
Il
i
—
CD».-
ur
|
+
@
o
N—

Ainsi,

s ¢ ei%| = 2cos(17r—2) (car cos(%) > 0et

On en déduit que I’écriture exponentielle de €5 +e'F est 2 cos(l%)e T,

16.3 b) De plus, en multipliant par le conjugué, on obtient :

(1+v2+i)? (1+v2) +201+v2i—1 _1+2V/2+2+2(1+v2i—1

(1+v2 =) (1+V2+i) (1+v2) +1

72+2\/§+2(1+\/§)172(1+\/§)(1+i)7L+Li
B 4422 CO2V2(V2+1) V2 V2

1+2v2+2+1

\/i \/i ;I 1515 i\ 1515 1515
16.3 ¢) Enﬁn,z:7+71:e‘4,doncz :(e‘4) =e 4 ™. Comme
el5l5m 378ir+ 3% _ eS?Siﬂe%"'i _ eiBTﬂ.

de plus 1 515 =4 x 378+ 3,0n a:
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Fiche n° 17. Trigonométrie et nombres complexes

Réponses

17.0a) 2COS(1)61%
12

17.1b) e —2cos m e 1%

12
—Tim
17.0¢) e QSin(—)e 12

17.1d) e 2005(?%)&951”

17.0€) i 200s(%>c‘1132w

™ lim

17.06) oo 2sin (o )e 4
) sin{ 57 )e

17.108) oo COS(?) oo
sin (%)

27 27 ( T\ iz

17.10h) 2" cos (—)e 1
12

17.208) oo 2cos( 75 )

a) cos| 75 Je
17.2D) oo zsm(%)e—i%
1 3

17.38) i I cos(3x) + i cos(x)

1 1 1

17.3Db) i —1 cos(4z) + 3 cos(2x) — y

Corrigés
17.1a) Onal+ed =¢'12 (efill +ei1%) :2COS(%

17.3 ¢) —é cos(6x) + icos(4x) - gcos(Q:E) + i
17.3 d) _sin(891:) " 3si118(5x) B sin(83x) B 351181(1:)
17.3 ¢) coséQx) n 30058(5x) n coséSm) n 30085(1')
1 . 1 . 1
17.31)....... ~1 sin(11x) + 1 sin(bx) + 3 sin(3x)
174a) ..o ’40053(36) — 3cos(x) ‘
17.4b) ... 4cos® (x) sin(x) — 4 cos(z) sin® (z)
17.58) o ’ 2 cos(2x) cos(x) ‘
17.5D) e ’ 2 cos(4x) sin(x) ‘
17.5C) i ’ 2sin(x) sin(2x) ‘
175 d) e ’ 2sin(4x) cos(x) ‘
17.6a) oo M
n(3)
sin(8x)
17.6 D) oo e
17.6C) oot [0]
1727 8) oo eﬂ; !
177 D) —(e"—2)
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17.1¢) Onae 's —1=¢ 12 (eﬂ% - elﬁ) =e 12 ( 21sm(17r—2)) = 2sm(ﬁ)67i% 2= 231n(ﬁ>6771‘g
i jbm 5im 5 5 Sim
3 = 6 — 12 —_ = —_ 12
17.1d) Onal-+ie l+e e 2cos(12> 2 5(12)e
1'% = ' TF (o712 £ 'T5) = — i3 — i Hr i3
17.1e) Ona—-1l-e e (e +e ) 2008(12)6 2COS( )e 2005(12)e
<0
17.1f) Onal-— e'12 = ¢'21 (72isin(2ﬂ—4>) = 2sin(%)eiﬁeﬂ% = 2sin(27r4)e7i12%.
17.1 g) On fait le quotient de deux des résultats précédents.
17.1h) O (1+‘6)27— 2 T Vi) = 977 cos? ()i
0 na e = (2cos{ 15 Je =2"cos™ {5 Je
s g %'*'% %_% %_% 5m
17.2a) Onae3 +e2 =¢ 2 <e1 z te 2 > ZQCOS<E) el
>0
o - l+£ r_= r_ T - .
17.2b) Onaed —e% =7 <el R ) =-2 5in(1—)1e5‘ﬁ = 25111(%)635‘@_'2 = 25111(112) e 12
———
>0
17.3 a) On calcule :
el +efiz 3 1
COS3(LE) —_ ( 5 ) — g(el}lz +3e2lze—1z +3eu‘e—21z +e—31cv)
_ %(6311 + 67311) + g(eiz +e—iz) = icos(gx) + gcosm.
17.3 b) On calcule :
) 2T | g 2iw el _ iz \ ? 1, o L N o
cos(2x) sin”(x) = 3 5 = fg(e Tte lz) (e T —24e m)
1 iz —4ix iz —2ix
:_§(64 +e ! —2(62 +e? )+2)
1 1 1
=-1 cos(4z) + 3 cos(2z) — T
17.3 ¢) On calcule :
Q2T | g 2w 2/ i _ gz 2 1 ) ) ) )
cos®(2z) sin®(x) = ( 5 > < 5 ) =1 (¥ 424 e7M7) (27 — 24 €77)
1 i i i i —2ix —2ix —4dix —6ix
:_E(eﬁlm_2641m+e21m+2621m_4+2e 2 Te 2 — 2% 4 Te 6 )
1 iz —6ixz iz —dix ix —2ix
:7E(e6 +e 0 _2(eM 4o T) 4 3(ePT 4077 )74)
1 1 3 1
=3 cos(6x) + 1 cos(4x) — 3 cos(2x) + 1
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17.3 d) On calcule :

cos(3z) sin® (2z)

3ix —3ix 2ix —2iz \ 3
e?” +e e’ —e _ L sie, —3iey (6 2ix —2ix
( 5 >< 5 > _—ﬁ(e +e )(e —3e”" 4 3e —

1 iz —9ix iz —bix 3ix —3ix iz —ix
= (eg —e P 3™ — e ") £ &M — e L 3(e — e ))

161
= fé sin(9z) + %sin(t’m) - ésin(i&x) - %sin(m).

e—Gix)

17.4 a) On calcule :

cos(3z) = Re(e””) = Re((eiz)3) = Re((cos(x) + isin(m))3)

= Re(cos®(z) + 3icos®(x) sin(x) — 3 cos(z) sin’(x) — isin®(z))

)
= cos®(z) — 3cos(x) sin®(x) = cos’ () — 3cos(z)(1 — cos(x)) = 4 cos’ () — 3cos(x).

17.4 b) On calcule :

sin(4z) = Im(e"™) = Im((eiz)4) = Im((cos(m) + isin(m))4)
= Im(cos” (z) + 4icos® () sin(z) — 6 cos®(x) sin® () — 4i cos(x) sin®(x) + sin” (z))

= 4 cos®(z) sin(z) — 4 cos(x) sin®(z).

-
\]
(S}
[V}

Na
o
=]
o
Q
o
@

—~
8

N

_|_
Q
o
@

—
w
8

-~

Il
=Y
D
—~
CD.-
8
+
[¢]
@
8
—
I
=Y
[¢]
~~
CD.-
)

—

CD.-
T
&

_|_
g

—

—
=}
¢

—
@
»
g
[\]
Q
o
@

—~
8

-

SN—

Il

[\
Q
o
@

—~

[\
8

N
Q
o
@

—~

—

_ iz Sizy _ i3 j(_g) iz
cos(z) — cos(3z) = Re(e'™ —e”) = Re (e 2 (e —e ))

=Re (eQiI(—Zi) sin(x)) = 2sin(z) sin(2z).

17.6 a) Siz € 27Z, alors cette somme vaut 0. Sinon, on a :
sin(x) + sin(2z) + sin(3z) = Im(e'” + e** 4 &**)
— Im(l + eiw + (eiac)Q 4 (611)3).

) . ) . 1— diz
Or, e # 1 donc 14" + ()" + () = 5 ,eeiz :

En utilisant maintenant I’astuce de ’arc-moitié, on obtient :

i

sin(z) + sin(2z) + sin(3z) = Im | —% —
e'2 7215111(

[SIE]
S—

2ix P . . . Bi .
e —2i sm(2a:)> — Im (eiém S{n(?x)) _ sm( 5 ) s1n(2x).
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17.6 b) Sixz € 27Z, alors cette somme vaut 4.

Si x est de la forme 7 + 2kw avec k € Z, la somme vaut —4.

Sinon, on calcule :
cos(x) + cos(3x) + cos(5z) + cos(7x) = Re(e'” 4 e** + & 4 ™)
_ Re(eiw(l =+ (e2iZ) 4 (62ir)2 + (e2iw)3))'
Or, ¢®* #£ 1 donc :

w1 — (eB7)? Y (e%17) _ iz e*® —2isin(4x) _ i sin(4x)
1 — ez 1 — e%ix el —2isin(z) sin(zx)

eix (1 + (EQix) + (eQix)Q + <62ix)3> —e

Finalement, on a :
cos(z) + cos(3x) + cos(5x) + cos(7x) = Cos(tﬁ(sxlf)l(llx) - ;1;518(2))

17.7 a) On calcule :

/ e’ sin(z) dz = / “Im(e'”) da = / Im(e”e"”) dz = Im (/ el dx)
0 0 0 0
(I+i)z ] ™ T AT AT s
(18 : (¢ : 1 :Im< e _1>:Im (—e (1 -1
141 0 1+1 141 2

e +1
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Fiche n° 18. Sommes et produits

Réponses
n(n+1) 1
18.1a) ... n(n +2) 18.3b) .o 5 18.7d) i n;’
n
181D) ... . T+ )n+4) | g84a)................ 5" (n)? .
18.84a).............. 1—
18.4 D) it [0] n+1
18.1 ¢) n(bn + 1) : :
e 2 D 18.8b) ... -
18.5a) . ...cc.o..... 5 ) 5 13
(n—2)(n—"17)
18.1d)..on 5 185 D) v [0] 189a)................ 212 4 n
18.5¢)...... 2"t 4 2(1 —2n 1
2w, [WEIOED] 1880 [Ny i+
n?(n+1)2
185d)............
18.2D)... [n(n+ )(n +n+4)] : 4 18.10a)............ n*(n+1)
2
9 18.6a).......... (n+3)*—2°
18.2¢)........... 5(3 2.1) n(n+3)
18.10b) .............
18.6Db) .............. In(n +1) 4
) 5n+1 _ 2n+1
18.2d)........... S 1 n(n? —1)
3 186¢c)........... 1-— A0c¢) oL _—
: c) RN 18.10 ¢) 5
n
18.2¢€)... 6(7 —1)+n(n+4) 18.6d)............ (n+1)1—1 18.10 d). n(n+1)(7rf2+ 13n +4)
n+1 18.7a). ..o, n+1
18.2f) ..o o ) 18.10 ¢) n(n+1) In(n)
Jdvue)....... — 1n(n.
18.7D) oo, 2 "
183a).........cconnn. 24— pt1 - YT
18.7 €)oo S 18.100)..... n(n+1n-1)
n 6
Corrigés
n-+2 n+2
18.1 a) On utilise la formule suivante : Zn = nz 1=n+2-14+1)xn=n(n+2).
k=1 k=1
n+2
18.1 b) On utilise la formule présente en prérequis : Z Tk=17Xx (nt+2-2 +21)(n +2+2) = T+ lg(n + 4).
k=2
18.1 ¢) On utilise la linéarité de la somme :
» @Bk+n—-1)=3Y k+(n-1) 1:%%1(7%1):@.
k=1 k=1 k=1
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18.1 d) On utilise la linéarité de la somme :

18.2 a) On développe et utilise la linéarité de la somme Z k(k+1) = Z K+ k= Z k> + Z k.
k=1 k=1 k=1

k=1
Puis, on utilise la formule suivante : Z k= w D’ou Z k(k+1) = w
k=1 k=1
18.2 b) On utilise la linéarité de la somme :
D4k +2)) =4 K 48 k=47 (n4+ ) +8n(n2+ ) — n(n+ D+ 1)+ 4) = n(n + (n? +n+4).
k=0 k=0 k=0
n—l 1_gn—1-241 ¢
18.2 ¢) On utilise la formule pour les sommes géométriques : on a Z3k = BZW = 5(37172 —1).
k=2
18.2 d) On factorise pour faire apparaitre une somme géométrique :
n n n n+1
B _ ) k 1— 2\n—0+1 _ (2 5n+1 2n+1
Z2k5n k:5nzzk5 k:5nZ(g) _5n (5_)g 5n+1 (;) . .
k=0 k=0 k=0

18.2 ¢) On utilise la linéarité de la somme :

n n n 7
k _ k B _ _ _ Lo
> —I—4k—n+2)—k§:7 +4;k+( n+2)k L=Tr— 4t (nt Yn= (7"~ 1) +n+4,
=1 =1 =1

s . 1 2 n 1 n+1
18.2 f)  On utilise la formule suivante el +t S+t 5= Z k= o
k=1
a
18.3 a) On utilise la formule suivante H 2=2x-..-x2=20"Pt
k=p

3
[T5vkxk=5"]]** :5"<Hk> 2 =5"(n))?
k=1 k=1 k=1
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18.5 a) Avec ce changement ou renversement, on a k = n+ 1 — j, les bornes varient alors de n & 1, on les remet dans

n n 1
le bon ordre. Onaznﬁ-l_kzzj':%.
k=1 j=1

18.5 b) On utilise la linéarité de la somme et on effectue ce changement ou renversement dans la seconde. On a

k =mn+1—j, les bornes varient alors de n a 1, on les remet dans le bon ordre. On a :

1w 1 "1 w1
PIFED Do ey D DD DE-S
k=1 k=1 k=1 j=1

18.5 ¢)  Avec le changement d’indice, on a, en notant S, = Z k2"
k=1

n—1 n—1 n—1 n—1 n—1
Sp=> (G412 =) g 4y 2 =23 "ol 42y "
j=0 j=0 j=0 j=0 j=0
- 12"
_ ‘0] n - _ _ n+l __on
=2|) 2 —n2 +25 5 =25, —n2 2(1—2").
j=1
Dot S, =n2"t +2(1-2") = (n—1)2"""' +2
n+2 n 2
3 _ 3 n*(n + 1)
185d) Onay (k-2°=) ;= i
k=3 j=1
18.6 a) On reconnait une somme télescopique
n+2
De+1)* -k =8 -2 44— 4 4 (n43)° - (n+2)° = (n+3)° —2°
k=2

18.6 ¢c) En écrivant k=k+1—1,0ona:

ok “[k+1-1] [ k1 1 [ ! :
;MZZ[M]:Z[<k+1>!‘<k+1>!}zz[k!‘<k+l>!}:1_“””"

k=1 k=1 k=1

D kxk =Y (k+1-1k = [(k+1)x k= k] => [(k+ 1)l —kl] = (n+1)! - 1.
k=1 k=1 k=1 k=1
k+1 2 3 n+1 n+1
18.7 a) Onecrltkli[lT_ngx — = =n+1
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18.7 b)

Dans cet exemple, il faut aller un terme plus loin pour voir le télescopage :

“T2%+1 3 5 7 2n—1)4+1 _ 2n+1
H _7><T><§><"'><

X
k712k—3 -1 2n—1)—3 " 2n-3
2("_11)+1 x 2"1+1 = @n-2+1)2n+1)=—(2n—1)2n+1) =1 — 4n>.
18.7 ¢) En mettant au méme dénominateur : H(l — %) = H(%) = % X % X o ; L = %
k=2 k=2
18.7 d) 1l faut remarquer I'identité remarquable et faire deux produits télescopiques :
- 1 T k-1 T (k—1)(k+1) Thk-1 Tkt
H(l_kz)_H( = )_H i =) < 1
k=2 k=2 k=2 k=2 k=2
B lxgx ><n—l) (§><é>< n+1> 1 +1 n+1
273 n 273 n /) n 2 2n
18.8 a) D’apres la décomposition en éléments simples, on a =2 + b En réduisant au méme dénomi
: P P pres, kk+1) &k E+1
nateur et en identifiant, on trouve a = 1 et b = —1.
. 1 1 1 1
D’ou ; m = 2 P ETd =1- e en reconnaissant une somme télescopique.
18.8 b) D’aprés la décomposition en éléments simples, on a L =2 4 b En réduisant au méme
: P P pes, k+2)(k+3) k+2 k+3
dénominateur et en identifiant, on trouve a =1 et b = —1.
D’ou ; it 2)1(k 3 = > B i 3% i 3= % ——rt en reconnaissant une somme télescopique.
18.9 a) Séparons les termes d’indice pair et ceux d’indice impair. On a :
2n
SEVE = DT 0 Y D= Y E Y (DR
k=0 0<k<2n 0<k<2n 0<k<2n 0<k<2n
k pair k impair k pair k impair
n n—1 n n—1
=@ =) @+’ =) 4> (4 +4p+1)
p=0 p=0 p=0 p=0
n n—1 n—1 n—1 ( 1)
_ 2 2 o 42 nn—=4 5 2
f4Zp 4Zp 4Zp Zllen 4= n=2n*+n.
p=0 p=0 p=0 p=0
=4n?2
18.9 b) Séparons les termes plus petits que n et les autres. On a :
2n n 2n
Z min(k,n) = Zmin(k,n) + Z min(k,n)
k=0 k=0 k=n+1
- & (n+1) (n+1) (3n+1)
_ _n(n _ _n(n 2 n(3n
_kz;k—i—kz n—iz +n[2n (71—}—1)—1—1]_72 ==
= =n-+1
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18.10 a) Comme il n’y a que l'indice j dans la somme, nous pouvons factoriser :

T - <27> <Z ) _nnrn), n2(n2+ 0y

1<i,5<n j=1

18.10 b) On somme d’abord sur I'indice i; on calcule donc :

S - SE S S S S

1<z<]<n Jj=1 i=1 i=

Signalons que, en revanche, 'autre ordre de sommation ne permettait pas de conclure.

18.10 ¢) 1l faut faire attention a 'inégalité stricte :

E: (i+37) E:E:z+] §:<§:2+§:j> 2:{j;1)+j01ﬁ

Shool-iir-£)-1(E) - £)-
3n(

ZS[n(n+1)(2n+1) _n(n+1):| _ n(n+1)2n+1-3) n(n+1)(n—-1) n(nzfl)‘

6 2 3x2x2 a 2 2

18.10 d) On développe d’abord puis on choisit 'ordre de sommation qui semble faciliter les calculs :

Yoo+ = D> @42+ = > P42 Y ij+ >4

1<i<ysn 1<i<ysn 1<i<ysn 1<isgsn 1<i<gsn
n J n J n n n J n J
() n(B) 2 (5) -2l 505 2l )
i=1 \ j=1i =1 \i= j= i= i= = j= i=1 i=1

—Z (n—i+1)+2 Z ]+1 +Z :Z (n+1)—i _|_ZJ 5% (n4—|—1)
(n+1 Z Zl +Zy +Zy + ”H)

_ (n+2)n(n+ 1)6(271-1-1) 4 (n4—|— 1)?
n(n + 1)(7n2 +13n + 4).

12
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18.10 f) On fait une sommation par paquets :

Z max (i, j) Z max (i, ) + Z max(Z,j) + Z max (i, j)

1<i,5<n 1<i<j<n 1<j<i<n 1<j=i<n

IR z‘+zn:z'

1<i<j<n 1<j<ign i=1

n j—1

. on(n+1) o
2 Z Z] + — par symétrie

j=2 i=1

e

P [z;jz B ;]. N n(n;- 1 _ 2[n(n+ 1)6(2n+ ) n(n2+ Dl n(n2+ 1)
_n(n+1) _nn+1)(4n—-1)
== n+2-6+3) = ————".
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Fiche n° 19. Coefficients binomiaux

Réponses
19.1a)......coen. 10 100 -1 -2 19.5d). ...t 12 x 15™
) 10.3b) ..., n(n—1)(n-2) )
19.1b) i 720 6 5
n
1 k+1 19.6a) ......... 2><Z< )
193c¢). v,
19.1C) i, % c) p— =\
19.1d) .o 19.3d)......... (n+2)(n+1) 19.6b) ..o, 2n !
19.1€) i 105 ¢) 1 19.78) i
WDE)
1
19.10) oo 140 DY ez by I
9! n! x (n — 3) n—2
19.28) i s 1930 gz | 19T n(n+1)2
|
9 (n+1)3 19.7d) ..o
19.2b) ... 194a)........... _
) <4) 2) n X (n+2)! ntl
2n
19.20) i x| o b) 33n+2)Bn+1)]  19.8a)...iiiiiiii... ;
Ab)..... IEERE
(2n+1)!
19.2d) ...l R
2n x n) 19.5a) o ciiiiii 19.8Db) . ... .. Z (k)
-1 19.5D) e =0
19.32) oiiiii. ”(”2 ) ) [o]
19.5¢) e 19.8¢).. 2n
n
Corrigés
101! 101 x 100! _ 101 x 100 x 99!
19.1 a) On calcule : oI = 90l = 001 = 101 x 100 = 10 100.
| |
19.1 b) On calcule : % _ 10x9x8xT_ 10 x 9 x 8 = 720.
11 1 5-1 4 4
191 e) Onealeule: = 5= o~ 51~ 51 51 5xax3x2 30
6 6! 6x5x4 6x5
19.1 d) On calcule : <2> Y T Y R 15.
8 8! 8XT7x6x5 8xT7x6
19.1¢) On calcule (3) = 3 %El TRV %8 = 8 x 7= 56.
7 7! 4XxTx6x5x4x3 7Tx6x5x4
19.1 f) On calcule : 4 x (4) =4x TRV IR 553 = 140.
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!
19.2 a) Pardéﬁnition,9!:(2><3><4><5)><6><7><8><9:5!><6><7><8><9.Donc,6><7><8><9:%.

6x7x8x9_g!xl_ 9\ (9
2x3x4 5174 \4)  \5)°

19.2 ¢) On peut mettre 2 en facteur de chaque nombre du produit 2 x 4 X 6 x --- X (2n), produit qui contient n

facteurs. Ainsi, on a :
2Xx4Xx6x--x(2n)=2"x(1x2x3%x---xn)=2" xnl

On obtient ainsi le produit de tous les entiers compris entre 2 et (2n + 1). Il s’agit donc de (2n + 1)!.

Donc, on a :
(2n+1)! (2n+1)!

T2x4dx6x--x(2n) 20 xnl

3XEXTx - x(2n+1)

P ny n! _nx(n—-1)xMn-2)! nn-1)
19.3 a) Par définition, (2> S xmo % (12! = 3
PP n! nxn—-1)x(n—-2)x(n-3)! nn-1)(n—2)
o P fi = =
19.3 b) ar définition, (3) % (n = 3)] 3% (1= 3)] 5
19.3 ¢) On calcule :
W) wmem n! CEADIX (= (kD)) (kD) xR X (n—k =1 _ k41
(kil) WM k! x (n —k)! n! E'x(n—k)yx(n—k—1)! n—k
! !
19.3d) On calcule ( +'2) _(nt2x (T'L+ Doxnt_ (n+2)(n+1)
n!
L. R ; . 1 n - n+1 n _(n+1)—n 1
19.3 ¢) On réduit au méme dénominateur Wt i) xnl it it mrDl

(n+1)! n! (n+1)! 22 xn! (n+1)!—4xnl (n+1l)xnl—4xnl nlx(n-—23)

92(n+1) T 92n T T92nt2 | 92 % 92n 22n+2 - 22n+2 22n+2

1 2n(n+1)(n+2) 1 . n+2 ot 1 _ n
n! ~ nlx2n(n+1)(n+2)’ 2n(n+1)!  2nx(n+1)!x (n+2) 2n+2)! " 2x(n+2)! xn’
D’ou
1 1 1 2n(n+1)(n+2)+n+2+n
n! 2nx(n+1)!  2x(n+2)! 2n x (n+2)!
2m+D(nn+2)+1)  (n+1)(n®+2n+1)
N 2n X (n+2)! N n(n + 2)!
3
Ainsi, onaiJr ! + ! = (nt+1)

n! 2nx(n+1)!  2x(n+2)! nx (n+2)!°
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19.4b) Ona:

B(n+1))! . (3n)! (3n+3)! a®™ x (nh)?
@B3FD 5 (n+ D)3~ adn x ()3 a®n 13 x ((n+ 1)1)3 X Bn)!
Or :
Brn+3)!=Bn+3)x(Bn+2)x (3n+1) x (3n)!
a3n+3 — aSn % a3
(n4+ 1D = ((n+1) xn)® = (n+1)° x (n)>.
Ainsi :
(B(n+1))! . Bn)!  _ (Bn+3)Brn+2)(Bn+1)
a3+ % (n+1)1)3 © adn x (nh)3 a® x (n+1)3
_3(n+1)Bn+2)Bn+1)  3(3n+2)(3n+1)
N a® x (n+1)3 N a?(n+1)2

> (Z) =3 (-1 x (Z)(—l)k x1"F =1 x Y (Z) (—1)F x1"7*F = (1) x (-1 +1)" = 0.

k=0

19.5d) On calcule :

Z ok +2 (Z) x g2kl Z 22 % 2F x (Z) x 3" w37 R — 4 % 37 (Z) ok w gn—k
k=0 k=0

k=0
=4x3"T X (243)" =4x3"" x5" =4 x3x3" x5 =12 x 15",

19.6a) On développe (1+1)" +(1—1)" =Y <:> +> (=) (Z) =3 (Z) (14 (=1)%).

k=0 k=0 k=0
Or, 1+ (—1)F = 2 si k est pair et 1+ (—1)F = 0 si k est impair.
Ainsi, en notant P = {k eN | 0<k<netk pair}7 on a :

T+ +(1-1" =Y (Z) x2=2x> (Z)

keP keP

Or,sikeP,ilexistepENtelquek:2p.CommeOgkgn,onaalors()<2p<netdoncogpgg.

Comme p € N, on peut aussi écrire 0 < p < L2 |
Ainsi :
L5 L5
n n n
E = t (1+1)" 1-1)"=2
(k> <2p> ety : (2P>
keP p=0 p=0

Fiche n° 19. Coefficients binomiaux 63



p=0
19.7a) Ona (1+z)" = Z (Z) #¥. En évaluant en z = 1, on obtient (1+1)" = (Z) Ainsi, Z (Z) =2
k=0 k=0

k=0

19.7
k=0

On obtient n(n —1)(14z)" % = Z (Z) xkx (k—1)xz" 2.
k=2

n (“) x ke x (k—1). Ainsi, zn: (Z) xkx(k—1) = n(n—1)2""2.

On évalue en = = 1 pour obtenir n(n—1)(14+1)""% = Z
k=2

. <Z>><k><(k1)— . <n>><k><(k1)—zn: (Z)xkzi <Z>><k.Donc:

¢) On dérive deux fois par rapport & z la relation (14 z)" = Z (Z) a".

Or, par linéarité, on a E
k=0

k=2
S (1) x =2 () <k o0 4 X (1) skmntn 02t a2
k=0 k=2 k=0
19.7 d) On intégre entre 0 et z la relation (1+z)" = (Z) 2", On obtient :
k=0
1 n41 1 - n 1 k41
1 -
nrit o) n+1 g(k>xk+1

En évaluant en x = 1, on obtient
n+1

19.8 b) On obtient une contribution en 2™ dans le produit (1+z)"(1+2)" & chaque fois que I’'on multiplie un terme de

la forme ak:pk dans le premier facteur avec un terme de la forme bn_kxnfk dans le deuxiéme facteur, et ce pour toutes les
n n
n Z n K

> (i K

valeurs de k entiéres naturelles et inférieures ou égales a n. Or, (14+z)" x (1+z)"
k=0

k=0

n 2
. n n
Donc, le coefficient de " vaut E (k) .

k=0
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Fiche n° 20. Manipulation des fonctions usuelles

Réponses
[ ]
20.18) .o Z
6]
20.1b) o
20.1 ¢) K
dC) 1
(7]
20.1d) .o -
) 5
20.1 ¢) K
de) 1
(7]
201 0) ... -
) 3]
20.28) .
20.2D) ..o [0]
20.2C) .. 5/4
20.2d) ... 4/3
20.2€) ... 13
12
20.20) ... 3/5
20.3a) ..., sh(z +y)
20.3b) ...t ch(z —y)
In(2)
204 a).......l
2) In(3)
204 D) .o
20.4C) ..t _In@3)
In(2)
Corrigés
arcsin(?)
20.1 b) On calcule :
arccos(?)

In(4)
204d).............

) In(20/3)
o [P
D A) i 1n(2)
20.5b) ... {0,%}

In(2)
20.5C) ..., 1—
0.5 c) In(3)
ln(\/‘z_l
205d).. ...
0-5d) In(3)
20.68) ...iiii
206 D) .. [0]
20.6¢).......... {2km ; k€ Z}
T4 o%kn; keZ
20.6d).. | 7 T e J
U{Z +2kr; keZ}
20.6 ¢) {%+2km; kez)
U{r—31+2kr; kez}
206 ).
20.7 ). | {In(v5 —2).In(v/5 +2)}
20.7Db). ... In(1+v2)
1
20.7C) i 5In(2)

20.7¢)..... [111(3 +/10), +oo{
1
20.7f) ......... } —00, 5 ln(S)]
20.8 a) ... ’xﬁln(2)x2‘”+2w‘
20.8 b) = 15% In(3/5) + 3% In(3)
(5;17 + 1)2
20.8 ¢c)...... ’a: — (In(z) + 1)z” ‘
™
20.8 d) e 2v/1 — x? arccos(z)?
1
209a)....... T 2z
1—a*
20.9 b) z +— ch?(x) 4 sh?(z)
n2
20.9¢)........ o 12t @)
7 + th*(x)
20.9 d).... [ > sh(z)ch(ch(z)) |
20.10a)................ x—0
20.10b)................ =
20.11 a) |z~ (In(z) + 1)z"e *
20.11 b). [z 2@ 1
ch(z)? o In(ch(z))
20.11¢) ........ 2 > arcsin(x)
20.11d)........ x +— arctan(x)
T
T
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2 2
In(3) _ ,—1In(3) 3_1 8 4
20.2d) On calcule : sh(In(3)) = < 26 =—2=-2-2
In(2/3) | o-In(2/3) 243 13
20.2 €) On calcule : ch(In(2/3)) = € +26 =3 5 2 — % = 12.
In(2) _ ,—1In(2) 9_ 1 3 3
e e
20.2 f)  On sait que th(In(2)) = — e = 2 =2 =c,
e e~ 241 2 5

20.3 a) Développons :

z T LY aTY Y —Y \T _ T x —x Yy _ -y y —y z -
ch(z)sh(y) + ch(y)sh(z) = =+ & —¢© elteet—e" (e 4eT)(e! —eT) (e teV)(e" —eT)

2 2 2 2 - 4
TtV _ eV 4 e¥T _ e~ (@+y) etV oVt 4 oY e (&+y)
o 4
26Tty _ 9e~(z+y)

20.4 d) Soit z € R. On a les équivalences suivantes :

10" =4 x 5" x 9% <= In(10**) = In(4 x 5" x 92) <= 2zIn(10) = In(4) + zIn(5) + gln(Q)

2In(3) \ _ _ In(4) _ In(4)
— x<21n(5) +21In(2) — In(5) — 3 ) =In{4) <= z = 3@ T n(5) —In(3) _ n(20/3)"

20.5 a) Soit z € R. Posons X = 27, Alors 2° + 4" =4 <= X + X? — 4 = 0. Cette équation a pour discriminant

-1+ V17 V17T -1
1+ 16 = 17, et deux racines, — Seule la racine —5 est positive. D’ou les équivalences suivantes :

20.5 b) Soit z € R. Notons X = 4. Alors, on a les équivalences suivantes :

16" —3x4"4+2=0 < X’ —3X+2=0 <= (X -1)(X—-2)=0 <= 4" =1loud" =2 <= z=0ouz=1/2
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20.5¢) Soit # € R. Posons X = 3". Ona2x9”" —3° -3 =0 < 2X°>— X —3 = 0. Cette équation a pour

discriminant 1 + 4 x 2 x 3 = 25 : les deux solutions de I’équation sont %, i.e. 3/2 et —1. Comme la seule solution
In(2)
In(3)"

20.5d) Soit # € R. Posons X = 3. Ona 3" 4+3" -1 =0 <= X?+ X —1 = 0. Cette équation a pour
-1++5 V5 —1
2

positive est 3/2, ona 2 x 9" —3" -3 < 3" = g <= zIn(3) =In(3) —In(2) <= z=1-

discriminant 1 4+ 4 = 5 : les deux solutions de 1’équation sont

V5 — ﬁ—l)_

. La seule solution positive étant ,on a

3437 _1=0 < 3" = 5

L < zIn(3) :1n<

20.6 b) Soit x € [—1,1]. Alors cos(arccos(z)) =0 <= Jk € Z : arccos(z) = g—&—kﬂ" Mais comme arccos est & valeurs
dans [0, 7], on a cos(arccos(z)) =0 <= arccos(z) = g — z=0.
20.6 c) Soit z € R. On a les équivalences suivantes : arccos(cos(z)) =0 <= cos(z) =1 < z € {2kn; k € Z}.

20.6 d) Soit z € R. On a les équivalences suivantes :

_ V3 me{ngka;keZ}u{%rJerw;keZ}.

1
20.6 ¢) Ici, pas besoin de connaitre sin<§) ! Soit x € R. Alors :

arcsin(sin(z)) = % < sin(x) = sin(%) — z¢c {% +2km; k€ Z} U {71'— % +2km; k€ Z}.

20.6 f) Soit z € R. Alors tan(arctan(z)) =1 <= 3k € Z : arctan(z) = % +kr — z=1.

20.7 a) Soit z € R. On pose X = e”. Alors, comme € > 0, on a les équivalences suivantes :

T —x _ 1
ch(z) = V5 — %:\/5 = et =2V5 — X+§:2\/5

= X’+1=2V5X <= X°-2V/5X +1=0.
Il s’agit donc d’une équation du second degré, dont le discriminant est 20 — 4 = 16, donc les deux solutions de ’équation

2v/5+4 s s P .
ont \[T =+/5+ 2. Ces deux quantités sont positives, on a donc les équivalences suivantes :

ch(z) =V5 <= " =V5+2 < z=In(V5+2).

Ainsi, les deux solutions sont In(v/5 — 2) et In(v/5 + 2).

20.7 b) Soit x € R. On pose X =e”. On a sh(z) =1 <~ £7° -] =
+v8
2

2
de discriminant 4 4+ 4 = 8, de solutions =14 /2. La seule solution positive étant 1 + /2, on a :

sh(z) =1 <= " =1+V2 < z=1In(1+V2).
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20.7 ¢) Soit x € R. On pose X = e”. Alors, on a les équivalences suivantes :

1 e®—e ¥ 1 X-—+ 1 2 1,9
th(z) = - +—= ——— == = X =2 = X'—1=2(X’+1
@=3 e 3 X+L 3 g+

— gxg—gzo — X?’=2 = X =42

X+ 41
tx <4 = X’+1<8X «— X?-8X+1<0.

8+ 215
2

positives, donc ch(z) < 4 <= 4 —V15e” <4+ V15 <= In(4 — V15) < z < In(4 + V/15). On remarque ensuite que
1 _ 4++/15 — 44 V15
4-V15  (5—I5)(A+15)

20.7 e) Soit z € R. Posons X =e”. Onash(z) >3 < " —e " <6 <— X—%SG — X?_-6X-1<0.

6+ 210
2

20.7 d) Soit x € R. On pose X =¢”. On a ch(z) < 4 «<—

Ce polyndéme du second degré a pour discriminant 60 et pour racines = 4 £+ V/15. Les deux racines sont

Ce trindme du second degré a pour discriminant 40, et a donc pour racines = 3+ Vv10. La premiére racine est

négative, la seconde positive, et X > 0, donc sh(z) >3 <= e” >3+ V10 < z > In(3 + V10).

20.7 f)  Soit z € R, posons X = e”. Alors, on a les équivalences suivantes :

1 X-1 X2-1 1
th(z) < = 2t -
2 X+ 4 X241 2

20.8 d) On dérive un quotient. En notant f la fonction et pour z € ] — 1,1[, on a :

L arcsin(z)

1
v arccos(z) + i B 7r
arccos(z)? 2v/1 — 2 arccos(z)?

1
20.9 a On dérive une composée r — 20 ——.
) P —

20.9 ¢) 1l s’agit de dériver th. Pour x € R, on a :

h(z)ch(z) — sh(z)sh(z)  ch(z)? — sh(z)? —1_

ch(z)? B ch(z)? ch(z)

th(z) = <

La suite se dérive comme la dérivée d’une composée.

V1= 22
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20.10 b) La fonction est dérivable sur R* et sa dérivée est x — T —&—1302 + pe3 -~ (l)2 “Tre  Piis 0.

20.11 b) Il s’agit de dériver une composée. La dérivée de  — In(ch(x)) est x — Z};Ex; = th(z)
z
Donc, la dérivée de  — F(4/In(ch(z))) est :
. sh(zx) 1 o= Ineh(@) _ Sh(it)Q 1 )
ch(z) 2,/In(ch(z)) ch(z)? 2, /In(ch(z))
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Fiche n° 21. Suites numériques

Réponses
12 6a) .
211 a). .. = 21.6 )
21.6b)................. 10 000
21.1b) .o 216 ) 5001
211c) .. (2n + 5; X2 916 d) 10 201
17
21.7a) —
3n+2
21.14)..... 32n+1) x2 24
d 1
L7D) o —
21.2a) ..ol 2n1In(n) 21.7b) 24
21.2b) ... Anln(2n) | 21.8a) ... 5%
21.38) ..o 13
2) 3] . 3 069
21.3b) .o 21.8b) .o 512
1
21.4a). ... 2% 3
) 21.8 C) .................. m
214 b)), =
6 141
21.58) i 21.8d) ..o 1024
215 D) i

/5
.................. =
115
................. 5
21.10a)........... 3" 4 (—2)"
21.10b). ... 211
1+v2)" — (1 -v2)"

2
2111 b) .o 2v/2
21.128) ..o 257
21.12b) ... 65 537

21.12¢C) .
21.12d) ...

21.12¢)......... Foyq+22"H

21.120) ..

21.1d) Onaug,=—— X2

21.2b) On a ts, = In((4n)*") — In(2*") = 8n1n(2) + 4nln(n) — 4n1n(2) = 4n1n(2) + 4nln(n) = 4nln(2n).

21.3a) Onawui=2x1+3=5etus=2x5+3=13.
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21.3 b) On calcule : ug =2 x 13+ 3 = 29.

100 x (1+199) _ 100X 200 _ o (000

21.6 b) On a S100 =

101 x (1+201) 101 x 202

21.6d) Ona s = =101° = 10 201.

2 2
217a)onab102_6101;b103 % ;— 2_81;29 _ ;Z ..................................................................................
217b)onar_u102_u101_;1_§ ..... 214 ..............................................................................................
21.8 a) Onagg:3><(%>9 2%—5—?2.
21.8b) Ona o = go X ll_i‘] = 621;3 L3 X512023 = 35?629.
21.8¢) Ona gio =go X (%)10—3>< 2}0 —ﬁ

2" —1  3x2047 6141
211 1024 1024

/5

h — 11 11

21.9b) Onar=-2=_5 _mVhx Il 1V
hi1 o 5 X 5m 25

21.10 a) L’équation caractéristique est r? — 7 —6 = 0 dont les racines sont 3 et —2. Ainsi u, = a3" + B(—2)" avec

e . . o at+p=1 .
a, B € R. Les conditions initiales conduisent au systéme linéaire {3 62ﬁ ) dont les solutions sont @ = 8 = 1.
o — =
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21.10 b) D’aprés ce qui précéde, on a us = 3° + (—2)° = 3° — 2° = 211.

21.11 a) L’équation caractéristique est ici r>—2r—1 = 0. Ses racines sont 1+v/2 et 1—v/2 et v, = A(1+v2)"+u(1—v/2)"
1

1
avec A, it € R. Les conditions initiales donnent ici A = 5 et u= —35

21.11 b) Le plus simple (pour un si petit indice) est d’utiliser la relation de récurrence de la suite : v2 = 2v1+vg = 2v/2.

(1+v2)°—(1-v2?® _ 342v2-(3-2v2) _, 5
2 2 '

Pour travailler les identités remarquables, d’apres le a) : va =
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Fiche n° 22. Développements limités

Réponses
3 4
22,0 8) .t 3z — 2%+ R Igo(a:4)
3, 11, 25, .
22,1 D) T =352 58 3% z—)O( )
3
D200 N 3 "5 mgo(arﬁ)
3 5 6
2 T T 6
22 L )t T+ a7+ 30 90 wgo(z )
er llex® Tex® 2 44T7ex? 5
2202 A) i -3 51 16 + 5760 —ﬁ—x__)o(x)
1o, 14 19 ¢ 7
22,2 D) 1—1x ~56% " 57e0” +I90(:c)
. 2 9. 3 3
22,2 )it e(1+1z9: —gle ) + oo(z )
z—
3 2 2
22,2 d) o 1—az+§(x—1) +x31((x—1) )
372 2 2
2203 8) e 1—%(3:—%) +I3ﬂ<(m—g)>
3
2 3 4
22.3 b) L 1+2(x72>+2(x71> +§<x—g) +x97r<<x1)>
4
n? m\4 m? m\6 m\7
22.3C) .............................................. —1+§(.’E—§) _478<m_§) +J_O>ﬂ_<($—2))
2
1T 1 1, )
22.4 a) ...................................................................... —% -+ ﬁ — %ZE +12)0(x )
1 1 ) 5 1
2204 b) .............................................................. ? - E @ - @ aj*)+oo<.x,6)
1 1 1 1
2204 C) o —ln(x)+1—2x+3:62 13 m—goo(ﬁ)
_1f . € e’ e’
224d) .............................................................. € 2( +37x— 36x2> T—)?&-oo(x)
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Corrigés

22.1 a)

11 suffit d’effectuer la somme des parties réguliéres des dévelopements limités & 1’ordre 4 en 0 de sin(z) et

In(1 + ). On écrit donc :

22.1b)
de

T+ 1

11 suffit d’effectuer le produit des parties régulieres des dévelopements limités & I'ordre 4 en 0 de In(1 4 z) et

suffit puisque celui de In(1 + z) a son terme constant nul. On écrit donc :

22.1 ¢)

22.1 d)

1
et de ne conserver que les termes de degré au plus 4. Observez que le développement limité a ’odre 3 de |
T

@ = (=T + 5Tt o0 @) (1-arat-at s o ()
- 2 3 4 x—0 x—0
_p 32 13 254 4
—TTRT T % +,9,@)
11 suffit d’écrire :
3 2 4 3 5
. w1 = (2 YA N A 5.
sin(z){cosh{z) = 1) (x 5 .o ))(2 METRHCRN el st VIR )
11 suffit d’écrire :
2 3 4 5 3 5
. . x x x T 5 z ol 6
9 — 1 _— —_— _— —_— - Tan
¢ sin(z) ( trt eyt T T 120 LY )>(m 5 120 .2 ))
3 5 6
_ 2, _r Z 6
ekt T o5 g L)

22.2 a)
obtient :

En utilisant les développements limités en 0 de In(1 4 z) (& lordre 5) et de exponentielle (& l'ordre 4), on

In(1
(1‘*‘90)% :exp(n( +$)> =exp(1— Iy
T 2
=eex —E—I—
%—e 1_|_ _§+Ilj_lj+li _A'_l _E_F‘I'j_ﬁ
o 2 3 4 5 2\ 2 3 4

T 5

4

z 5

z 22\° 1 z\* 5
‘2+3> +32(-3) ] +.9,6"

Observez qu’il n’est pas utile de faire apparaitre tous les termes de la partie réguliere du développement limité de

M selon la puissance a laquelle on la considere. D’ou :
T
1 ex 1lex? Tex® 2 44Tex? 5
1 T = — — — .
(Ita)r =e—o+— 16 5760 e 0@
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22.2b) Ona:

2 4 6
cos(z) =1— :% + ;—4 — % + 190(337)
V=14 g(u—1) - gl 1P+ =1+ 0 ((u—1)").
e 1 z? ! x5 1 22 2*\? 1 22\°
VGM@:1+2<_2+M_7m>_8<_2+2J +m<‘z)*@%@”
=1- ixz - %xd‘ - %wﬁ + ﬁ(_))o(aﬂ).
22.2 ¢) Ona:eile—l—iw—%z—i%s—i—mgo(xs) et e$:e+e(x—1)+e(x;1)2 +e(x;1)3 +Igl((a:—1)3)

iz 2 3 _? iz)?
D'ou : e° —e+e(ixmix>+e +e(lx) + o (xg):e(1+ix7m2f%ix3)+ o (z%).

2 6 2 6 z—0 z—0
, In(2 —
22.2d) Etablir Pexistence et donner le développement limité de f(x) = %, en 1 a Pordre 2, revient a le
In(l—¢ t2
faire, en 0 & Pordre 2, pour application g définie par g(t) = f(1+¢) = % OrIn(l —t) = —t— 5 + too(tz) et
—
1 2
— =1t t =1-2t t). D’ou :
(1+1)2 ( + t—0>0( )) + t—o>0( ). Dot

22.3 a) La formule de Taylor-Young affirme que cos(z) = % — ? (x — %) + o (x — —) (observez que l'ordre 1
sera suffisant !) et :
1 m\? T\ 2
Sm@1—20‘2)+t%(@‘2)>
32 T2 ™2
Dol si — 1 — _ —
ou sin(w cos(z)) 3 ( 3) +z_0>7r<(x 3))
................................................ t3
22.3 b) On sait que tan(t) =t + 3 + Oo(t4). Ainsi
—
¢ 4
L+t+ =+ O (Y 3
1+ tan(t 4
tan(t+f): +tan(t) _ 3 =0 L (144 4 oY (1+t+t2+7t3+ O(t4)>
4 1 — tan(t) t 3 t—o0 3 t—0
1-t——+ O ()

N T m™\% 8 m\3 m\*
Douﬁnalementtan(m)—1+2(m71)+2<x71) +§<x71) +191<(x4) )
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1 2 1 4 5
22.3 ¢) La formule de Taylor-Young affirme que sin(z) = 1— = (x — z) +— (w - I) + o (x - E) (observez
2 2) T2 2) .5z 2

que Vordre 5 sera suffisant!) et cos(t) = —1 + 1(t -1+ o ((t - 7r)3) (observez que l'ordre 3 sera suffisant !).

2 t—m
D’ou :
COS(TI'SiH(m))—*1+1 fi(xfE)QJrl(xfz)Al 2+ o (xfﬁ>7
N 2\ 2 2 24 2 e 2
1 2 m\4 2 m\6 m\ "7
=145 (e-5) ~Hl-5) o ((=-3)
22.4a) Ona
1 1 1 1
z(e* —1) a2 2 2 2t 20 . 22
et e ot Lo
1 1
=2 2 3 1 -1
S P[RR SIS AR )
2 6 24 120  z—o0
R O S S C RN N 3+(7>4+ o @)
T2 2 6 24 120 2 6 24 2 6 z—0
111 e ( 2)
27 12 7200 aS0"
. (1
, sin( —
22.4 b) Etablir 'existence et donner le développement limité de f(x) = erl , en +oo a ’ordre 5, revient a le faire,
en 0 & Pordre 5, pour Papplication g définie par g(t) = f(%) = tfli(? Or,on a :
tsin(t) = t° — 2 + 0 (t% et S i o) (th).
6  t—0 1+t t—0
5 5 1 1 5 5 1
D'od _42_ 43,94 95 6 . _ Lt r . 5 5 (7)
ol g(t) =" 1"+ 6t 6t + t9>0(t ), puis f(z) x2 3 + 6z%  6xb +m—>O+oo 26
22.4 c) Ona"J:ln(x—‘,—l)—(m—}—l)ln(m)——ln(m)—i—xln( +7>——ln(m)+1— ! —l—i 1 o (—)
' a o 2¢ 32 423 aotoo\z3 )
22.4d) Ona:

ce(e(1o L oL o (1)
- P z 222 333  4xt  aotoo\zt
— e T ex i—i—i— o (i)

- p 3x 412 zo+oco\ 22

_e*%<e”+§_ 763:)_’_ o (i)
- 3x 361‘2 xr— 400 £L'2 ’
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Fiche n° 23. Arithmétique

Réponses
23.1a)......... 6,7 234 ... 23.7a)....... (=5,2)|  23.9d)
23.1b)....... (—7,2)] 285a).......... 154]  2371b).. [8 (mod 13)] 23.10a)..........
23.1¢)....... (6.7 235D).... Bl 2870 [T moary] B0

....... 29 160 (3331710548) 23.110)............@

) 5] 23.6a)....[(216,192) 23.9a)... PBALD s
33a)..cooi. 5 23.11e)..........
23.3b)............. 23.6Db)...... (12,30)]  239b).oe

24 24
23.2a) Ona 524 =26d+r avec 0 <7 < d. On en déduit que 26d < 524 < 27d et 52—7 <d< 5276 D’ou d = 20.

23.3b) Ona3’>=4=—1 (mod5) don 3* = (-1)> =1 (mod 5). Le reste de 3" modulo 5 dépend du reste de n
modulo 4. Puisque 1 790 = 447 x 4 + 2 = 2 (mod 4) alors 3' ™ = 3> =4 (mod 5).

23.4 On a 1003 = 3 (mod 10) et 3> = 9 = —1 (mod 10), par conséquent 3* = (=1)> = 1 (mod 10). Les restes
modulo 10 des puissances de 3 sont périodiques de période 4. Puisque 1 002 = 250 x 4 + 2 = 2 (mod 4), alors on a

Vn>2,1002" =0 (mod 4). Finalement 1 003'°°2" """ =3° =1 (mod 10).

23.5 a) L’algorithme d’Euclide s’écrit ici: 10 010 = 3x2 77241 694;2 772 = 1x1 69441 078;1 694 = 1x1 078+616;
1078 =1 x 616 + 462, 616 = 1 x 462 + 154 et 462 = 3 x 154 + 0. Le dernier reste non nul est 10 010 A 2 772 = 154.
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10 001 _ 65
2772 18’
23.5 ¢) L’algorithme d’Euclide pour 729 et 360 donne : 729 = 2 x 360 + 9 et 360 = 40 x 9 + 0. D’ou 729 A 360 = 9

et, comme a x b= (a Ab) x (aVb), 729v360:M:40x729=29 160.

23.5 b) En utilisant le résultat du a), on établit que 10 001 = 154 x 65 et 2 772 = 154 x 18 d’ou

Ces calculs (et surtout les calculs fractionnaires) auraient été plus digestes en utilisant la décomposition en facteurs
premiers des deux entiers : 360 = 36 x 10 = 2° x 3 x 5 et 729 = 3°. Ainsi 729 v 360 = 2° x 3° x 5... Il faut néanmoins
effectuer ce produit d’une fagon ou d’une autre.

s . . 360 _ 360 729 729 L. .
23.5d) D’apres les calculs faits au c), puisque T9A360 - 9 = 40 et TON360 — 9 = 81, on réduit au méme
2 81 2x40 81-80 1

1
360 729 360x81 729x40 29160 29 160

dénominateur :

23.6 a) Puisque aAb = 24, il existe (z,y) € N2 premiers entre eux tels que a = 24x et b = 24y. Le systeme s’écrit alors

(24z)% — (24y)° = 24° x 17 L@ty @—y) =17
zAy =1 5ol cAy=1

de 17. Puisque z et y sont des naturels, on a z — y < z 4+ y et donc nécessairement x +y = 17 et z —y = 1. On obtient

une unique solution : (z,y) = (9, 8). On vérifie que (a, b) = (216, 192) est bien (I'unique!) solution du systéme de départ.

. Ainsi les deux entiers x + y et © — y sont-ils des diviseurs

a x b= 360
23.6 b) Puisque Y(a,b) € Z* ab = (a Ab) x (a V' b), le systéme de 1’énoncé équivaut & { a A b= 6 . Posons a = 6z
6<a<b

zy = 10
et b = 6y de sorte que x Ay = 1. On obtient le systeme équivalent ¢ z Ay =1
l<z<y

Puisque 10 =2 x 5 et 1 < = < y, la seule solution du systéme est (z,y) = (2,5) et, par conséquent, (a,b) = (12, 30).

23.7 a) L’algorithme d’Euclide pour 13 et 5 donne : 13=2%x5+3; 5=1x34+2; 3=1x 2+ 1. On « remonte »
ces égalités : 1 =3—-1x2=3—(5-1x3)=2x3—-1x5=2x(13—-2x5)—1x5=2x13—5x5. Et (—5,2) est
solution.

23.7c) Onabr+4=7 (mod13) <= 5z =3 (mod 13). On en déduit que 8 x bz =8 x 3 =24 =11 (mod 13) et,

puisque 8 est I'inverse de 5 modulo 13, que z = 11 (mod 13). Réciproquement, on vérifie que tous les entiers congrus a
11 modulo 13 sont solutions de ’équation. Son ensemble de solutions est donc {z € Z | z = 11 (mod 13)}.

23.8 a) L’algorithme d’Euclide pour 19 et 6 se résume & 19 =3 x 6+ 1 et 6 = 6 x 1 4+ 0. Ceci donne directement une
solution particuliere de (F) : (1,3). Si (x,y) est solution de (F) alors 19z — 6y =19 x 1 — 6 x 3 et 19(x — 1) = 6(y — 3).
Comme 19 A6 =1 et 19 divise 6(y — 3), d’apres le théoréme de Gauss, 19 divise y — 3. Ainsi 3k € Z : y = 19k + 3. On
en déduit que 19(x — 1) = 6 x 19k et finalement que z = 6k + 1. On a prouvé que si (z,y) est solution de (E) alors
Ik e€Z: (x,y) = (6k+1,19k+ 3). Réciproquement, un couple de cette forme vérifie 19(6k+1) —6(19k+3) =19—-18 =1
et est bien solution de (E). Ainsi, ’ensemble des solutions de 1’équation est S = {(6k + 1,19k + 3) ; k € Z}.

(z,y) €S — (z,y) = (6k + 1,19k + 3) PN (z,y) = (6k + 1,19k + 3)
3001 <x<3331 3001 <6k+1<3331 500 < k < 555
Iy a N =555—5004 1= 56 entiers entre 500 et 555 inclus.

On a les équivalences : {
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23.8 b) La fonction k — 19k + 3 est croissante; le plus grand y est donc atteint lorsque k = 555.
D’ot, (zo,y0) = (3 331,10 548).

23.9 a) L’entier 2 022 est pair et divisible par 3, et 2 022 = 2 x 3 x 337. Puisque V337 < 19, il faut tester la divisibilité

de cet entier par tous les nombres premiers inférieurs ou égaux a 17. L’entier 337 n’est pas divisible par 5 et on obtient
successivement 337 =1 (mod 7), 337 =7 (mod 11), 337 = 12 (mod 13) et 337 = 14 (mod 17). Ainsi, 337 est premier.

23.9 b) En appliquant les critéres, on établit que 2 023 n’est pas divisible par 2, 3 ou 5. La division euclidienne

de 2 023 par 7 s’écrit 2 023 = 7 x 289. Si on ne reconnaissait pas le carré de 17, il fallait tester la divisibilité par 11
(6videmment fausse), 13 et 17 pour obtenir la décomposition 2 023 = 7 x 17°.

23.9¢) Ona V2021 <45 : il suffit donc de tester la divisibilité par tous les nombres premiers jusqu’a 43. Or, 2 021

n’est pas divisible par 2, 3 ou 5. On obtient (en posant les divisions) un résultat négatif pour le test de divisibilité
par tous les nombres premiers compris entre 7 et 41. En revanche, 43 divise 2 021 et le quotient vaut 47. Enfin, on a
2 021 = 43 x 47, les deux facteurs étant premiers.

23.9d) On a V2027 = 45. Il faut donc tester la divisibilité par tous les nombres premiers jusqu’a 43. C’est le bon

moment pour programmer une fonction en Python qui teste la divisibilité de son argument par tous les entiers impairs
compris entre 3 et sa racine carrée. Le résultat du test est ici systématiquement négatif, 2 027 est donc premier.

23.10 a) On écrit 477 = g x n+8 avec 0 < 8 < n. D’ott ¢ x n = 469. L’entier n est donc un diviseur de 469 strictement
supérieur a 8. Puisque la décomposition en facteurs premiers de 469 est 469 = 7 X 67, on a nécessairement n = 67.

23.11 a) D’aprés le théoréme de Fermat, puisque 3 est premier & la fois avec 5 et 7, 3* =1 (mod 5) et 3° =1 (mod 7).

On en déduit, d’une part, que 3** = (3*)° = 1° = 1 (mod 5) et, d’autre part, que 3** = (3°)* = 1* =1 (mod 7). Clest
un corollaire connu du théoréme de Gauss (& démontrer en exercice!) que, puisque 3%* — 1 est divisible par 5 et 7, deux
entiers premiers entre eux, alors 3** — 1 est divisible par 5 x 7 = 35. D’ou 3** = 1 (mod 35).

23.11 ¢) Puisque 2A 5 = 2A 7 = 1, on établit comme aux a) et b) que 2> = 1 (mod 35). D’ol1 67° = (2 x 3)"* =
2% % 3™ =1 x1 (mod 35). Enfin, 6 =6 x 6° =1 x 6® =6 (mod 35).
Il y avait plus simple, sinon. On a 6% = 1 (mod 35), d’otu le résultat final.

23.11 d) En procédant comme aux a) et b) avec 561041
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Fiche n° 24. Polynoémes

Réponses
_ 2 _ 3 _ 2
2418) oo Q=X 42X 41 24.3D) . [R=—2x*—3X2+1]
24.3¢)..oiiiiil |R=—8X®+21X> — 20X +5]
Q=X?—4X+7 — 3 5
24.1b) ... o ax s 24.3d) ... |R=—20X° 4 11X% 42X — 1]
24.48) 0 | R=—36X + 24]
Q=X"-1
24.1C) i Re — X4 X 41 24.4 D) . 24 — 36i
5 24.58) i |R=-108X — 150
Q=13X + =
24.1d) ..o 1 2 24.5D) i —150 — 108v/2
R =5 (20X* - 5X - 23)
2406 8) .. 76 — 92V/2
242 8) e B L g6 b) oo 8 — 206i
24.2 D) .o R=
24T 8) o (X - 1*(X% 4 1)
24.2C) i |R=—2nX +4n —1]
- 247 D). (X2 - 2X +2)(X% —2X +5)|
24.2d). .. R=X’4+X-1]
2 2
2038) Ro2x 3] PTO (X 1P+ DX DX —2)]
Corrigés
24.1a) Ona
xX* + X - X + 1 X -1
(x* - X?) X7 42X +1
2X7 — X + 1
—(2X? — 2X)
X 4+ 1
(X -1
2

Ainsi, Q = X*+2X +1et R=2.

a)

X"=Qx(X—-1)+R,

Notons @ le quotient de la division euclidienne de A par B. Ainsi :

ou deg(R) < deg(B) = 1.

Ainsi, R est un polynome constant. On évalue la relation précédente en 1. On obtient alors 1" = Q(1) x (1 — 1) + R(1).

Donc, R =1.
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24.2 b) On constate que :
X3n+2 +)(—377‘«%1 +X3n — XJn X (X2 +X+ 1)
Ainsi, X* 4+ X + 1 divise X*"? 4+ X*"* 4 X°" et donc R = 0.

24.2 ¢) Notons Q le quotient de la division euclidienne de A par B. Ainsi :

() (X=3)"4+(X-2"-2=Qx(X—-2)2+R, oideg(R)< deg(B) = 2.
Ainsi, R est de la forme R = aX + b. On évalue la relation () en 2. On obtient alors :
(2-3)""+(2-2)"—2=Q(2) x (2—2)° + R(2).
Donc, —1 = 2a + b. On dérive la relation (). On obtient alors :
M(X =3)" X —2)"=Q x (X -2 +Qx2(X-2)+R.
On évalue cette derniére relation en 2. On obtient ainsi :
(2 =3 422" =Q(2) x (2—-2)* + Q(2) x 2(2—2) + R(2).

Donc, —2n = a. On en déduit que a = —2n puis que b = —1 — 2a = 4n — 1. Ainsi, R= —2nX +4n — 1.

24.2 d) Notons Q le quotient de la division euclidienne de A par B. Ainsi :

() X" X" X" =Qx (X®—-2X +1)+ R, o deg(R) < deg(B) = 3.

Ainsi, R est de la forme R = a(X” + bX + ¢). On constate que X° — 2X + 1 s’annule en 1. Ainsi, X — 1 divise
X? — 2X + 1. Par division euclidienne, on obtient X* —2X +1 = (X — 1)(X” 4+ X — 1). On constate également que
X" X" X" = X" x (X* 4+ X —1). Dong, () devient (X°+X —1) x (X" —Q x (X —1)) = R. Ainsi, X*+ X —1|R.
Or, deg(R) < 2. Donc, R = a(X> + X —1). On évalue (%) en 1. On obtient a = 1. Donc, R = X° 4+ X — 1.

24.3 a) Trouver le reste de la division d’un polyndéme par X * revient a trouver les coefficients constants, de degré 1,
de degré 2 et de degré 3 du dividende. Ici, P = A+ B = X’ + X* +2X —3=X*(X + 1) + 2X — 3. Ainsi, R = 2X — 3.
24.3 b) Trouver le reste de la division d’un polyndéme par X 4 revient & trouver les coefficients constants, de degré 1,
de degré 2 et de degré 3 du dividende. Ici, P=Ax B=Q x X* —2X% —3X? + 1. Ainsi, R = —2X°® - 3X°% + 1.

24.3 ¢) Trouver le reste de la division d’un polyndéme par X* revient a trouver les coefficients constants, de degré 1,
de degré 2 et de degré 3 du dividende. Ici :

P=A0B=(X-2°)?-3X-2°+1=(X-2)"-3(X-2°41=0Q x X* —8X® +21X° — 20X +5.

Ainsi, R = —8X® 4+ 21X?% — 20X + 5.

24.3 d) Trouver le reste de la division d’un polyndéme par X* revient & trouver les coefficients constants, de degré 1,
de degré 2 et de degré 3 du dividende. Ici :

P=AoB=2(X"+X"-2X+1)* - 3(X’+ X* —2X+1) > - (X’ + X*—2X +1)+1=Q x X" —29X® +11X° 42X — 1.

Ainsi, R = —29X% + 11X? + 2X — 1.
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24.4a) Ontrouve @ = X* —2X® —9X? — 20X —44 et R = —36X + 24.

24.5a) On trouve Q = X* —2X® —6X? — 26X — 65 et R = —108X — 150.

245b) Ona P = Q x (X°—2) 4+ R. On évalue en V2. Ainsi, P(v2) = Q(V?2) x (\/52 — 2) + R(v/2). Donc,
P(V2) = R(V2) = —150 — 108V/2.

24.6 a) On commence par chercher un polynéme simple ayant V2 — 1 pour racine. Posons X = V2 — 1. Ainsi,

X?=2-2V241=3-2V2.0r, V2= X +1. Donc, X> =3 —2(X +1) = —2X + 1. Ainsi, V2 — 1 est racine de
X2 492X —1. On effectue ensuite la division euclidienne de P par X% +2X —1. On trouve Q = X* —4X3+ X% — 28X +4
et R=—92X —16. Donc, P = Q x (X* +2X — 1) + R. On évalue enfin en v/2 — 1. On obtient

P(V2-1)=Q(2-1)x (vV2-1)* +2(vV2-1) = 1) + R(V2 - 1).
Donc, P(vV2 —1) = R(vV2 — 1) = 76 — 92V/2.

24.6 b) On commence par chercher un polyndme simple ayant 1 + i pour racine. Posons X = 1 + i. Ainsi,

X?=142i4+(1)> =2i. Or,i= X — 1. Donc, X* = 2(X — 1). Ainsi, i + 1 est racine de X*> — 2X + 2. On effectue ensuite
la division euclidienne de P par X? — 2X + 2. On trouve Q = X* — 10X? — 42X — 117 et R = —206X + 214. Donc,
P =Qx(X?>—2X+41)+ R. On évalue enfin en i+ 1. On obtient P(i+1) = Q(i+1) x ((i+1)> = 2(i4+1)+2) + R(i+1).
Donc, P(i+1) = R(i+ 1) = 8 — 206i.

24.7 a) On constate que P(1) = 0. Ainsi, 1 est racine de P. On constate que P’(1) = 0. Ainsi, 1 est racine double.

Donc, P est divisible par (X —1)*. On effectue la division euclidienne correspondante pour trouver P = (X —1)*(X*41).
On aurait aussi pu remarquer que i est racine et donc i également car le polynéme est & coefficients réels.

24.7 b) On constate que P(1+41i) = 0. Comme P est a coefficients réels, 1 +1 = 1 —1i est aussi racine de P. Ainsi, P est

divisible par (X — (1+1))(X — (1 —i)), c’est-a-dire par X* —2X + 2. On effectue la division euclidienne correspondante
pour trouver P = (X? — 2X + 2)(X? — 2X + 5).

24.7 ¢) On constate que P(i) = 0. Comme P est a coefficients réels, i = —i est aussi racine de P. Ainsi, P est divisible

par X? + 1. Par ailleurs, on constate que P(1) = 0 et P'(1) = 0. Ainsi, 1 est racine double de P et donc P est divisible
aussi par (X —1)°. Ainsi, P est divisible par (X — 1)*(X? 4 1). On effectue la division euclidienne correspondante pour
trouver P = (X — 1)*(X? 4 1)(X + 1)(X — 2). Au lieu d’effectuer la division euclidienne, on aurait pu constater que —1
et 2 sont aussi racines de P.

82 Fiche n°24. Polynémes



Fiche n° 25. Décomposition en éléments simples

Réponses
1 1 7 1 3 X -1
25.1a)............. X-3—-—= 25.6b)...... —
2) X TX11 X2 ) X 1) 2X+1)  XPiX il
2 1 3
25.1 b ........... 1— 25.7 a) ................................ 1-— 2111(3)
) X ax s Tax o)
25.7TDb) . —=1In(3) + = In(2
25.1C) e 14— - _ = ) ®) @
2(X —m) 2(X+m
2
25 2 ) e — 1 N 1 25.7 C) ....................... g — 41n(2) + 2111(3)
2a). ..
(e—2)(X +e) (2—e)(X+2) .
25.7d) .o — — =1 —In(2
252 b) 3 1+ 1 ) 13 g )+ g2
2b).....ll SX 1) AX-1  AX+D =
25T €] —
5 4 8
25.2¢). |1- _
(V2+V3)(X +V3)  (V2+V3)(V2-X) 1
25.7 1) oo —In(2) — —In(3)
-3 1 2 1 4
25.3a)..... + + +
X-2 X-3 X-1 (X-1)2 1 lz—1
25.8 8) ...\ “ln
2 2 11 3 3 2 itz
25.3b).. | =+ — — + +
XTX?2TAxX 1) X 124X+ .
25.8 D) coitiiii e & — -
25.3 ) 1 1 1+ 4(1 - 2z)
WODC) i 7r2X 7T2(X n 71') 7'('(X n 7'[')2 1
"
25.8C) it arctan()
25.3d)...... =t e~ =t T eae V2 V2
Lo 1 _ 43 1-3i 25.8d)....iiii 2arctan(2X + 1)
248) | T Ty oD AX—h) WX+ 0) ) V3 V3§ V3
254b). | L4 2 1 25.8 €) 1.
T 2X Te(X+2) T 3(X—1) (X -1)2
X+2) ( ) ( ) 25.8 f) §+2x+%1n|$+1\—%ln\z—1|+13—61n\1’—2|
1 1 1
25.5 8) e W 2D 8 )
8) 2mt1) 2n 4 &)
T — %ln(zQ +2) — %1n|m + 1]+ g arctan(%)
2 1 1
25.5 D). — 4+ ==
n+2 n 3 12z—-1 1. |1—x
25.8h).............. T =~ 4 n
9 1 1_9x 222 -1 2 |1+=z
25.68) . ....oin.... + +
X+1 (X+12 " X241
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Corrigés

25.1 a) Pour commencer, effectuons la division euclidienne de X* — 2 par X(X +1)(X +2) = X* +3X% +2X : on
trouve X* — 2 = (X® +3X” +2X)(X —3) + 7X? + 6X — 2. Ainsi, on a :

x* gy XPHOX -2
X(X+1)(X+2) X(X+1)(X+2)
On écrit ensuite la décomposition en éléments simples de la fraction rationnelle précédente :
TXP46X -2 o b c
X(X+D)(X+2) X X+1 X+2

Pour calculer a, on multiplie la fraction par X, on I’écrit sous forme irréductible, et on évalue en 0 :

MX _w ce qui. évalué en 0 donnea—ﬁ——l
XX+)(X+2) T T X+D(x+2) T ’ T2 T

Pour calculer b, on multiplie la fraction par X + 1, on ’écrit sous forme irréductible, et on évalue en —1 :

% X (X+1)= %, ce qui, évalué en —1, donne b = % =1.
Enfin, pour ¢ :
)(7(?(2;1—()5?;;22) X (X +2)= %, ce qui, évalué en —2, donne ¢ = % = % =T.
D’ou :
7X? +6X -2 -1 1 7
XX+D(X+2) X "X+1 X+2
Donc :

X*-2 _x_3_1 1 7
X(X+1D)(X+2) X X+1 X+2

25.3 a) Pour cette décomposition en éléments simples, pas de partie entiere. On écrit la décomposition théorique :

X+1 _a n b " c " d
(X—1)2(X—2)(X—3)_X—1 (X-12 X-2 X-3

Par les méthodes du premier exercice, on détermine facilement ¢ = —3 et d = 1. De méme, en multipliant par (X — 1)2
et en évaluant en 1, on obtient b = 1. Ensuite, en évaluant en 0, on obtient

d

1 a )
-3’

th+ = 4
6 -1 -2

1 1
doncazl—i—f—g—é:Q.Ainsi:

X +1 3 12
(X-1pP(X-2)(X—-3) X-2 X-3 X-1' (X—-12

25.4 a) 1l suffit de remarquer que X* —1 = (X — 1)(X +1)(X —i)(X + i) et de se ramener & la méthode des poles
simples vue précédemment !

25.4 b) 1l faut remarquer que X*—3x%42X = (X — 1)2(X + 2) X, puis utiliser les méthodes des poles multiples !
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25.5 a) Sil’on considére la fraction rationnelle Wl()(-i-l)’ alors :

1 1 1 1
XXX+ X 2x+0 Tax—1)
Ainsi :
N SN SN B
(k—Dk(k+1) k 2(k+1) 2(k-1)
v v (11
C2(k+1) 2k 2k 2(k—1))°
Donc :
S B (-
kﬂ(k—nk®+1)_kﬂ2®+l) 2k 2k 2(k—1)
— 1 o (r__ 1 (par télescopage)
T2n+1) 2n \4 22-1) P pag
S S S|
T 2n4+1) 2n 4

25.5 b) On remarque que :

k* — 5k —2 1,2 2 1
(k—Dk(k+1)(E+2) k Ek+1 Ek+2 k-1
12 ( 12 )
ko k+2 k-1 k+1)°
. . 2 1 1
Par télescopage, on obtient que cette somme vaut ——— + — — —.
n+2 n 3

a n b +cX+d
X+1 (X+1)2 X2+1°

En multipliant par (X + 1)2 et en évaluant en —1, on obtient b = 1.
En évaluant en 0, on obtient :

4=a+b+d,
donc a +d = 3.
En multipliant par X, en évaluant en z € R et en faisant tendre z vers 400, on obtient :
O=a+c,
donc ¢ = —a.
Enfin, en évaluant en 1, on obtient :
6 a c+d

b
s~ 2tit o
Donc :
3=2a+b+ 2c+ 2d.
Soit, comme a + ¢ =0, et b =1, on en déduit que 2d =3 — 1 = 2, donc d = 1.

Donc a = 2, donc ¢ = —2. Donc :

2X +4 2 1 1-2
(X +1)2(X2+1) X+1 (X412 X241
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X241
25.7 a On effectue la décomposition en éléments simples de ————— :
) P P (X —1)(X +1)
X241 1 1
+ + .
X -1

(X —1)(X +1) X1

Ainsi :

1/2 241 1/2
/ Ldz:/ 1-—- ! + L dx
—-1/2 (z—=1(x+1) —-1/2 z+1 =z-1

1/2
=1+ {—ln(m—l—l)—&—ln(l—x)}
—1/2

=1 fln<g> Jrln(%) +ln(%) fln(g) =1-2In(3).

e ! 1 vz ™
/0 P dz = /0 e dz = [5 arctan(Qx)} .= é(arctan(l) — arctan(0)) = 5
. o 14 . X
25.7 f)  On effectue la décomposition en éléments simples de i1
Ona X*—1=(X—1)(X+1)(X?+1). Donc, on écrit :
X a b cX +d

Xio1 X1 X1 X*y+1

1 1 1
Par la méthode déja décrite, a = T b = —. En multipliant par x et en faisant x — +00, 0 = a4+ b+ ¢, donc ¢ = —3
Enfin, en évaluant en 0, —a + b+ d = 0 donc d = 0. Donc :
X 1 n 1 _ X _ X _ X
X4—1 4(X-1) 4X+1) 2(X2+1) 2(X2-1) 2(X24+1)
Ainsi :
5oz 1,3 =z T
dr = - - ——d
/21'4—1 v 2[2 22—1 224177
e — 1y - L2 r
= 2{21n(a: 1) 2ln(:v +1) ,
1
= Z(ln(S) —1In(10) — In(3) + In(5))
1 1 1
= Z(3ln(2) —1In(2) — In(5) — In(3) + In(5)) = 5 In(2) — 1 In(3).
- . 1 1 s 1 1
25.8 a) On écrit XP-1 7 (X 1) — X T 1) donc une primitive de z — 2@ =) — et D) est
1 1 1, |z—1
=1 —1]-=1 1l ==1 .
x»—>2n|x | 2n|ac—&— | 2n‘1+x‘
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25.8 d)

1

L’idée pour primitiver cet élément simple est d’utiliser une forme canonique afin de se ramener a arctan

_ 1 _4 1 4 1
X2+ X+1  (x4+1)%43 34(x42)241 3/, 1 \?
( 2) 1 3( 2) (WX+\/§) +1
1 443 2 1 2 1
Ainsi, une primitive de x —> ———— est xt +— ——arctan| —X + — | = — arctan| ——X + — |.

P 24+l 32 <\/§ \/§> /3 <\/§ \/g)
u/ .....................................................................................................
25.8 ¢) L’idée est de faire apparaitre —

T 1 2z+2 1
2 +2x+3 222+22+3 22+22+3

1 2 2 1
Or, une primitive de x — 5#_;4_3 est T — 5 In |x2 + 2z + 3|. De plus :

1 _ 1 _1 1
x2+2x+3_(a:+1)2+2_21 et
+(=2)
de primitive z — L arctan z+l Donc une primitive de la fonction x — _r est :
P V2 NoOA P z2 42z + 3 '
1 2 1 r+1
r+— —In|z° + 22+ 3| — — arctan| —— ).

L - Jarctan( 221
.................................................................................... X4
25.8 f La décomposition en éléments simples de est :

) P P (X DX -2)(X +1)
x* =X+2+ ! L + 16
(X —D(X —2)(X+1) 6(X+1) 2(X-1) 3X-2)
2
doncxr—>%+2x+éln|x+1|féln\x71|+13—61n|x72\ convient.

Fiche n° 25. Décomposition en éléments simples

87



Fiche n° 26. Calcul matriciel

Réponses
1 -3 -1
26.18) .. 3 3
9 -7
-2 -6 -5
26.1b) ... 15 -1 11
18 —26 -1
26.1C)..ii |17 (matrice 1 x 1) |
17 =2
26.1d) ..o 2 14 —4
-1 -7
-1
26.1€) ..
~1
26.16). ... (=5 15 3)
5 4
26.18). .. (4 5>
5 3 -1 1
26.1h) ... (4 - 2)
17 =2
26.11) ..o 7049 14
-2 —14 4
26.2 8) ... ((1) f)
26.2 D) .o ((1) i’)
26.2 C) . ((1) f)
26.2d) . (g g)
26200 ()
k ok _ ok
26.2 ). ..o (20 3 3k2 )

(cos(29) —sin<29)>
..................... sin(20)  cos(26)
(COS(39) - Sin(39)>
..................... s1n(39) 005(39)
(cos(k@) - Siﬂ(k9)>
..................... sin(k‘9> cos(ke)
............................ (n) )
......................... (n?) )
n? ... p?

2i+13j—’i(2n _ 1)

()
)0
|

(i1
207
(j—l

(1 —63,1)(6i—1,541 + 03 5)
+(1 = 6in)(0ij + big1,5-1)

a2 )

1(1 -1-2i
.......................... R

5) 2 -1
% 3 2 -1
-6 -2 2
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) 0 4 0 26.5h0) ... Non inversible !
26.5d) ... — (0 -2 =2
) 4 o -1 0 -1
2 -t 1 1f1 1 0 o0
26.51). ..o Sl o 1 o
(8 4 2 0 0 1 1
26.5 €) ... gl 16 6 7 -
0 2 1 26,6 8) ...
1 -2 2 2 . 4 _1 3
26.5 f) ........................ 6 1 —1 2 26-6 b) ........... 1 )\ 2)\ _|_ 2 )\ _2)\ _ 1
4 2 4 A1 0 12
4 =2 2 0 26.6 C) .o A#1
D) 5|7 5 3 _1 ; a4 1 2-2
_5 3 _1 _1 26.6 d) ..... ﬁ 1 0 _].
- 1—)\2 A—1 A—-1
Corrigés

. » (11 11\ (1 2
26.2 a) Un calcul direct donne A° = <0 1) X <0 1) = (O 1).

e (21 2 1\ (4 5
26.2 d) On calcule : B —(0 3>><(0 3>—<0 9).

s o (45 2 1\ (8 19
26.2¢) Oncalcule: B°=B ><B_<O 9)><<0 3)_<O 27).

2 (cos(f) —sin(6) cos(f) —sin(0)
o= <sin(9) cos(6) > x <sin(9) cos(6) >
_ <cos(9 2 _sin(0)? —2cos(0) sin () ) _ <Cos(29) sin(29))
2sin(f) cos(d)  —sin(0)® + cos(0)? sin(20)  cos(20) /-
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26.2 j) Deux possibilités de faire le calcul : « & la main », ou bien avec la formule théorique du produit.

e A la main, on remarque que, lorsque l'on effectue le produit D x D, chaque coefficient résultera du produit d’une
n .-

ligne de 1 par une colonne de 1, donc sera égalan: D x D = | : (n) .| =nD.

n

n n 1 e
[A X B]z] = Zaikbkj = Z (; . 1) 2k3] k.
k=1 k=1

L o fi—1
Mais si k > i, (k—l) =0, donc :

ax Bl =30 (47 )

1 /.
= Z (Z ; 1) 2¢+137=6=1 op faisant le changement d’indice / =k — 1

:2x3j—1§ <i;1> (%)Z

£=0
. i—1
=2x37!x (g+1)
3
- 5i-1 . .
=2x37'x 3T = 2% 37 x5
26.3 b) On calcule
[Bz]z] —Zbkbk] ZQ 3k 7'2 3] k 23] 122 H—13J 2( 1)
k=1
26.3 ¢) On calcule
- - L 2\ 2k o ANk
T PR i—kokqj—k __ qitj 4 it 4
57 Bl = 308t = Y s = 3290t 0w (3 5 3()
P k=1 k=1 k=1
4\" J .
4 git+s (5)" _ax3® (1_<g) )
9 1-3 5 9
26.3 d) On calcule

S
X
Q
S
Il
8
ol
)
S
<.
I
i\g
R
o~
I
—
~~_
)
&
&,
t
+
>
ol
<.
Il
RS
<.
—
N~
N
KL =
[
[N
~_
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26.4 a) Déja, la matrice A? est triangulaire inférieure (produit de deux matrices triangulaires inférieures). Soit j < ¢
Alors :

[A%);; = Z[A]ik[A]kj = Z <;:11> (]; : i)

k=1 k=1

:kij(,i_i) ()

B 1—1 (k—1)!
Z — k)G =Dk —

!

(i —1)! =)
_Z (=D =) (k=) —j— (k—5))!
COEC-(IE) e
k=j £=0
g ]<z—1>.
j—1

101 0 1 0 1 0 0
02 0 1 0 2 0 1 0
n=4: ,m=25 1 0 2 0 1

1 0 2 0
01 0 1 01 0 2 0
0 0 1 0 1

On calcule :
[02]ij = Zcikckj = Z((Si,kJrl + 0ik—1)(Ok 1 + Okj—1)
k=1 k=1

n n n n
= E Oik+10k,j+1 + E 0 k+10k,j—1 + E 0ik—10k,j4+1 + E 0 k—10k,j—1-
k=1 k=1 k=1 k=1

Si (i,5) ¢ {1,n}", on a
[CQL']' = 0i—1,j+1 + 20, + Sig1,5-1.

Ceci est confirmé par la structure « tridiagonale espacée ».

Sinon, pour (i, ) quelconque dans [1,n]?, on trouve :
[C%ij = (1= 800) (Sim 1541 + 85) + (L= 8i.n) (05 + igr,j—1),

car 01,541 = 0 = 0, k—1 pour tout k entre 1 et n.
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26.5 ¢) Effectuons un pivot de Gauss :

1 -1 0/1 0 O 1 -1 01 0 O
o 2 10 1 0)—1(0 2 110 1 O
3 -1 2|10 0 1 0 2 2|-3 0 1/Ls<+ L3—3L,
1 -1 0|1 0 0
— (0o 1 1/2[ 0 1/2 0|Ly<« Ly/2
0 2 21-3 0 1
1 0 1/2[ 1 1/2 O\ L1+ L1+ Lo
— (0o 1 1/2/0 1/2 0
0 0 1 [-3 —1 1 L3<—L3—2L2
1 0 0/5/2 1 —1/2\Li+ L1 —1/2Ls
— [0 1 0[3/2 1 —1/2|Ly« Ly—1/2L3
0 0 11-3 -1 1

1 5 2 -1
Ainsi, B est inversible d’inverse 3 3 2 —1].

-6 -2 2
1 1 2
26.5 d) Il ne faut pas avoir peur du 7 et écrire que C' = 7r< 1 0 0) . On calcule alors (par pivot de Gauss) que
-1 -2 0
( 1 1 2) 1 <0 4 0 ) 1 (O 4 0 >
1 0 0] est inversible d’inverse = | 0 —2 —2 |, donc C est inversible d’inverse — [0 -2 —2].
-1 -2 0 o 11 T\ 11

26.6 a) Effectuons un pivot de Gauss :

A 1 1|1 0 O -1 -1 2
-1 -1 20 1 0)— | A 1 1
A 1 20 0 1 A 1 2

Si A =1, alors la matrice n’est pas inversible. Sinon :

0 1 0
1 A O0|Le<« Lo+ 2Ln
0 XN 1/ L3+ L3+ MLy

0 1 0 -1 -1 2
1 0 0)Las>Li — [ 0 1—=X 142X
0 0 1 0 1—X 242X

-1 -1 2 10 1 0 —1 0 3/A-XN|1/1-XA) 1/0-X) 0 L1<—L1+ﬁL2
0 1-X 14201 X 0)— [0 1-x 1+2x 1 A 0 -
0 1-X 2+42)\0 X 1 0 0 1 -1 0 1 e Le— L,
10 014/(1=N) /(=N —3/(1—)) L1<—L1—13/\L3
o0 1-x o 2x+2 A =2 =1 |1 Ly (1490 s
o o0 1 -1 0 1
1 0 0 —4/(1—X)  —1/1-2)) 3/(1—A) L+ ILl
— [0 1 0@ +2/a-N N1-N  (=2A=1/0-N) | Lo Lo
00 1 “1 0 1 -
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Fiche n° 27. Algebre linéaire

Réponses
27.0a). i (3,—1)
27.1b) ..o (—1,3)
27.1¢C) ... (9/11,2/11)
27.1d)......... (=2,4/5,11/5)
27.1¢€).......... (-1,1/2,1/2)
27.16) .o (0,2,4,1)
27.1g) ... (1/2,—V3/2)
27.28) i
27.2D) i
27.2C) i

Corrigés

2 19 _
27 e
2
1 0 1
27.4d).......... 3 -1 1
0 1 1
4
1 2
27.4¢€). ... 01 4
00 1
1 -1 -1 1
_5) 27.5a)......... (4 15 O)
010
00 2
27.5Db) ........... 0 0 0
00 0

2p
27.1 b) Notons u = A(0,1) + u(—1,2). Alors, { ) Ainsi, u = —(—1,2) + 3(0,1)
1
27.1 ¢) Notons u = A(1,2) + p(12,13). Alors :
A+12u =3 A+12u =3
AN+ 13 =4 g =2
Ainsi, u = 77(1,2) + 17(12,13)
27.1d) On note u=X\(0,1,3)+ u(4,5,6) +v(—1,0,1). Alors
dp—v =1 A+5u =2 A+ 5p
A+5u =2 < q4dp—v =1 <= {-—v+4u
3AN+6put+rv =1 —u+v =-5 —5u
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27.1e) Notons u=\(1,0,1) 4+ u(1,1,1) + v(-1,-1,3). Alors :

Ad+p—v =-1 Ad+p—v =-1
n—v =0 <= <u—v =0
A4+p+3v =1 4v =2.

27.1f) Notonsu=A+pX +vX(X —1)+6X(X —1)(X —2).

En évaluant en 0, on a A = 0. En évaluant en 1, on a x = 2. En évaluant en 2, on a 2u + 2v = 8 + 4 = 12, soit v = 4.
En identifiant les coefficients de X*® dans chacun des membres, on trouve § = 1.

Finalement, on a u = 2X +4X(X — 1) + X(X — 1)(X — 2).

3 2 1
27.3 a) En effectuant les opérations élémentaires Lo < Lo + L1 et L3 < Ls + 2L1, on obtient <—1 -1 O) .

2 2 0
3 2 1
En effectuant opération élémentaire L3 <— Ls + 2Ly, on obtient { —1 —1 0 |. Ainsi, rg(A) = 2.
0 0 O

27.3 b) Sisinf =0, i.e. s'il existe n € Z tel que § = nm, alors la matrice est égale a <(_Ol) (_?)n> et elle est de

rang 2.

), qui est de

Sinon, on effectue opération élémentaire L1 < sin(f) L1 — cos(0) L2 pour obtenir la matrice <sin6 cos 0

rang 2 car sin(f) # 0.

1 2 1
27.3 ¢) En effectuant Popération élémentaire L3 < L3 — L1, on obtient <0 2 4) .

0o -1 1
1 2 1
En effectuant 'opération élémentaire Lg <— 2L3 + L2, on obtient | 0 2 4 |. Ainsi, le rang de la matrice vaut 3.
0 0 6
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27.3d) En effectuant les opérations élémentaires Lo « Lo — 2Ly, Lg < L3 — 4L, et Ly + L4 — L1, on obtient

1 -1 2 3 1 2 -1 3
8 2 :E7> _—143 . En effectuant 'opération élémentaire C <+ Cs, on obtient g :57) z __143 . En effectuant
0 5 0 -2 0 0 5 —2
1 2 —1 3
l'opération élémentaire Ls < 5L3 — 7L2, on obtient 0 -5 3 —4
’ 0 0 9 37

0 0 5 -2
Comme les deux dernieres lignes sont linéairement indépendantes, le rang de la matrice vaut 4.

Ainsi, Matg(f) = (_15 i’)

1 3\ 1/-4 3
P= <2 4) - 2< 2 —1)'
Ainsi,P<41> = (‘5?2/2> et P(HD = (;‘f}g).]}onc f(1,2) = —%(1,2)+§(3,4) et £(3,4) = —§(1,2)+%(3,4).

Ainsi, Matg(f) = ;<91 ! 2?3)

27.4d) Comme f(1,0,0) = (1,3,0) = (1,0,0)+3(0,1,0)+0(1,1,1), £(0,1,0) = (1,0,1) = 0-(1,0,0)—(0,1,0)+(1,1,1)

1 0 1
et £(1,1,1) = (2,2,1) = (1,0,0) + (0,1,0) + (1,1,1), on a Mat(f) = <3 -1 1).
0 1 1

1 2 4
27.4¢) Comme f(1)=1, f(X) =X +2et f(X°)=(X+2)> = X* +4X +4, on a Matg(f) = (0 1 4).
27.5a) Comme f(0,1,3) = (4,—1) = —1(0,1) + 4(1,0), f(4,5,6) = (15,—1) = —1(0,1) + 15(1,0) et comme

f(—170’1>—(07—1>——(0,1)+0<1,0),onaMat@,@wf)‘<_41 5 _01)
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Fiche n° 28. Equations différentielles

Réponses
28,1 ) et o 56127 | 28.4b) ... 2 (2 - 3i)e” + (3i — 1)e*”
28.1b) ... x— 6e” — 1 285 8) i x— e’
3z —x —2x
O wH863 51 285 b) e |2 — 7e™" — 50
28.5 c) '—>é T _em®
28.1d) .o z—> 92" — 6 O e TreTgt Tt
28.28) i z —s e6-2)/5 28.5d) ... ‘I — (2 —x)e”
28.2b) ... \a; — 1 — 2 20/T+2 \ 28.5€) i \x — (2 — x)e?
28.2¢) . m'_><6+7r>e 5. 6| 28.6a)..... |2 — cosz + 2sinz |
V5 V5
)2 V3z 1 V3
5 5 28.6b).... [z+—re cosTfﬁsm 5
28.2d) .. ... I>—>(12—|—e> ro—n? _ 22
71' 7T
28.6C).ueii ‘m'—>ezsm(x)‘
28.3 8) .t T e** = -
x| 1 2igp I _2ig
28.3 D) i x— e’ 28.6d)....... x»—>e< 2 2 )
28.48) .. ‘1"—>262m e“"‘
Corrigés

28.1 a) Notons yo l'unique solution de ce probléme de Cauchy. L’ensemble des solutions de 1’équation homogene

12z 12z

y —12y =0 est {x —Ae TN E R}. Ainsi, il existe A € R tel que yo :  — Ae

Alors, y0(0) = 56 = \. Finalement, yo : © — 56e ",

28.1 b) Notons yo l'unique solution de ce probléme de Cauchy. L’ensemble des solutions de 1’équation homogene

y' —y =0est {x+— Xe®; A € R}. De plus, si 4 est une solution particuliére constante, alors 0 = p + 1, soit u = —1.
Ainsi, il existe A € R tel que yo : x — Xe” — 1. Alors, 30(0) =5 = A\ — 1. Finalement, yo :  — 6e” — 1.

28.1 ¢) Notons yo l'unique solution de ce probléme de Cauchy. L’ensemble des solutions de 1’équation homogene

y —3y = 0 est {:c — ¥ A e R}. De plus, si p est une solution particuliére constante, alors 0 = 3u + 5, soit
u=—5/3. Ainsi, il existe X\ € R tel que yo : © —> Xe’” — 5/3.

. 83 — 5
Alors, yo(0) =1 = A — 5/3. Finalement, yo : £ — ———.
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28.1 d) Notons yo l'unique solution de ce probléme de Cauchy. L’ensemble des solutions de ’équation homogeéne
y —2y =0 est {a: — e A€ R}. De plus, si p est une solution particuliere constante, alors 0 = 2+ 12, soit u = —6.
Ainsi, il existe A € R tel que yo : & — Ae*® — 6.

Alors, yo(0) = 3 = A — 6. Finalement, yo : © — 9¢%* — 6.

28.2 a) Notons yo I'unique solution de ce probléme de Cauchy. I’équation est homogene et son ensemble de solutions

est {x —s e % N e R}. Ainsi, il existe A € R tel que yo : 2 — e”*/°.

Alors, yo(1) =e = Ae /" Finalement, yo : & — e67%/5,

28.2 b) Notons yo 'unique solution de ce probléme de Cauchy. L’ensemble des solutions de 1’équation homogene

2 _
y' + ?y =0est {x — e /7 ;A E ]R}. De plus, si p est une solution particuliere constante, alors 0+2p = 2, soit = 1.

—20/T+2 4

Ainsi, il existe A € R tel que yo : © +—> e 2/ T4 Alors, yo(7) = -1 = e ?+1. Finalement, yo : © — —2e

28.2 ¢) Notons yo 'unique solution de ce probléme de Cauchy. L’ensemble des solutions de ’équation homogene

vy — by =0 est {:r — eV ; AE ]R}. De plus, si p est une solution particuliere constante, alors 0 — \/gu = 6, soit
6
. Ainsi, il existe A € R tel que yo : z +—> AeV?®

h==7

Alors, yo(0) =7 =X — % Finalement, yo : z — ( +7T)e e _ —,

28.2 d) Notons yo l'unique solution de ce probléme de Cauchy. L’ensemble des solutions de 1’équation homogene
y —my = 0 est {x— Xe™ ; A € R}. De plus, si u est une solution particuliére constante, alors 0 = mu + 2e, soit

2 2 2 2
n= ey Ainsi, il existe X € R tel que yo : © — X" — -, Alors, yo(m) =12 = Xe" — il
T T m

2e

. 26 7rzf71'2
Finalement, yo : x — (12 + —)e
T s

28.3 a) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r> —3r+2=0, dont les
solutions sont 2 et 1 (car 241 = 3 et 2 x 1 = 2 et on reconnait 7> — (2 + 1)r 4+ 2 x 1). L’ensemble des solutions de
I’équation est donc {x — Xe” + pe® ; (A p) € (CQ}. Ainsi, il existe (A, u) € C? tel que yo : 2 —> Ae® + pe®®
Alors, y(0) = A+ p =1 et 3/ (0) = A+ 2 = 2. Ce systéme se réduit en A+ pu = 1 et u = 1. Ainsi, yo :  — ",

28.3 b) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r?—3r+2= 0, dont les
solutions sont 2 et 1 (car 24+ 1 = 3 et 2 x 1 = 2 et on reconnait > — (2 4+ 1)r 4+ 2 x 1). L’ensemble des solutions de
I’équation est donc {x — Ae” + pe®® s (A, p) € (Cz}. Ainsi, il existe (A, p) € C? tel que yo : £ — Ae” + pe®”.

Alors, y(0) = A+ =1 et y'(0) = A+ 2u = 1. Ce systéme se réduit en A +p =1 et p = 0. Ainsi, yo : © — €.
28.4 a) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r?—3r+2= 0, dont les

solutions sont 2 et 1 (car 24+ 1 = 3 et 2 x 1 = 2 et on reconnait > — (2 4+ 1)r 4+ 2 x 1). L’ensemble des solutions de
I’équation est donc {m — Ae” 4+ pe® ; (A p) € (CQ}‘ Ainsi, il existe (X, p) € C? tel que yo : @ — Ae” + pe®”.

T

Alors, y(0) = A+ p =1 et y'(0) = A + 2u = 3. Ce systéme se réduit en A + = 1 et u = 2. Ainsi, yo : x — 2e%" — e”.
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28.4 b) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r> —3r+2=0, dont les
solutions sont 2 et 1 (car 241 = 3 et 2 x 1 = 2 et on reconnait 7> — (2 + 1)r 4+ 2 x 1). L’ensemble des solutions de
I’équation est donc {w — Xe” + pe®™ s (A p) € (CQ}. Ainsi, il existe (A, p) € C? tel que yo : £ — Ae” + pe®”.

Alors, y(0) = A+ =1 et y'(0) = A + 2u = 3i. Ce systéme se réduit en A+ =1 et p=3i— 1.
Ainsi, yo : @ — (2 — 3i)e” + (3i — 1)e*™.

28.5 a) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r?-1= 0, dont les
solutions sont —1 et 1. L’ensemble des solutions de I’équation est donc {:v — e +pe " (A ) € (CQ}. Ainsi, il existe
(A, 1) € C? tel que yo : & — Ae” + pe™ ",

Alors, y(0) = A+ pu =1et ' (0) = A — = 1. En additionnant et soustrayant ces relations, on obtient A = 1 et p = 0.
Ainsi, yo : z — e”.

28.5 b) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r> 4+ 3r+2 = 0, dont
les solutions sont —1 et —2 (car —1 — 2 = —3 et (—2) x (=1) = 2 et on reconnait 7> — (=2 — 1)r 4+ (=2) x (—1)).
L’ensemble des solutions de 1’équation est donc {w —Xe T 4 pe s (A p) € (CQ}. Ainsi, il existe (X, p) € C? tel que

—x —2x
Yo 1 x —> Ae T+ pe
Alors, y(0) = Ap = 2et y'(0) = —A—2p = 3. Le systéme se réduit en A\+u = 2 et —u = 5. Ainsi, yo :  — Te " —5e 2",
28.5 ¢)  Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r*+r—2 = 0. Le discriminant

du trindme vaut 9 et ses racines sont —2 et 1. L’ensemble des solutions de ’équation est donc :
{m — Xe” +pe s (W) e (CQ}.

Ainsi, il existe (A, u) € C? tel que yo : & — Ae” + pe” >".

Alors, y(0) = A+pu = Let 3 (0) = A—2u = 2. Le systéme se réduit en A\+p = 1 et —3u = 1. Ainsi, yo : © —> %ezf%eﬂz

28.5d) Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est r>—2r+1 =0 dont la
racine double est 1. L’ensemble des solutions de 1’équation est donc {x — (A + px)e” 5 (A p) € (CQ}. Ainsi, il existe
(A, 1) € C? tel que yo : & — (A + pa)e”.

Alors, y(0) = A =2et ' (0) = A+ p = 1. Ainsi, yo : * —> (2 — z)e”.

28.5 e)  Soit yo la solution du probléme de Cauchy. L’équation caractéristique associée est > +4r +4 = 0 dont la
racine double est —2. L’ensemble des solutions de ’équation est donc {m — (A px)e > (A p) € (Cz}. Ainsi, il existe
(A, 1) € C? tel que yo : & — (X + px)e

Alors, y(1) = A+ p)e > =1et ¢ (1) = (—2X + o — 2p)e”? = —3. Le systéme s'écrit A + p = e et 2X + p = 3. Il se
réduit en A + p = e’ et A = 2e%. Ainsi, yo : & —> (2 — z)e” ",

—2z

28.6 a) Soit yo I'unique solution du probléme de Cauchy. L’équation caractéristique associée est r>+1 =0, dont les
solutions sont i et —i. Ainsi, ’ensemble des solutions & valeurs réelles de I’équation homogene est :

{x}—))\costrusinx; (A, ) ERQ}.
11 existe donc (A, u) € R? tel que Yo : & —> Acosz + psinx.

Alors, 4o(0) = 1 = X et y5(0) = 2 = p. Ainsi, yo : © — cosz + 2sin .
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28.6 b) Soit yo 'unique solution du probléme de Cauchy. L’équation caractéristique associée est r>+r+1=0. Les

. Lz . 4, . . 2im 1 . 3 - .
résultats sur les racines de 'unité assurent que les solutions de cette équation sont j = e 3 = —3 + 1% et j. Ainsi,

I’ensemble des solutions a valeurs réelles de I’équation homogene est :

{x»—>e_l/2 (Acos\/gx —|—usin\/2§x) 5 (A, ) GRQ}.

1l existe donc (X, 1) € R? tel que yo : @ — e */2 <>\ €08 —— + psin ——

2
Alors, y0(0) =1 = Xet y5(0) = —1 = —% + ?,u. Ainsi, yo : x —> e /2 (cos vz _ 1 sin 3x>

28.6 ¢)  Soit yo l'unique solution du probléme de Cauchy. L’équation caractéristique associée est r>+2r+2=0. Le

discriminant réduit du trinéme vaut —1 et ses racines sont —1 —i et —1 + i. Ainsi, ’ensemble des solutions a valeurs
réelles de 1’équation homogene est {x — e "(Acos(z) + psin(z)) ; (A, p) € RQ}. 1l existe donc (A, u) € R” tel que

Yo : x —> e “(Acos(x) + psin(z)).
Alors, y0(0) =0 = X et y5(0) = 1 = —\ + p. Ainsi, yo : © — e~ * sin(x).

28.6 d) L’équation caractéristique associée est r®>—2r+5 = 0. Le discriminant réduit du trindme vaut —4 et ses racines
sont 1 —2i et 1+ 2i. Ainsi, ’ensemble des solutions de 1’équation homogene est {x — e’ (/\eziz + ,ue_mz) ; (A, ) e (Cz}.
1l existe donc (X, i) € C? tel que yo : & —> " (Aemz + ,uefmz).

Alors, yo(0) =i = A+ p et yo(0) = —i = (A + p) + (20X — 2ip). Le systéme réduit s’écrit A 4+ p =i et 4i\ = 2 — 2i. Ainsi,
-1+ ieZiz n 1+ ie—2ia:)
2 2 '
En utilisant les formules d’Euler, cette solution peut également s’écrire yo : * — ie”(cos(2z) — sin(2x)).

ygzm»—>ez(

Fiche n° 28. Equations différentielles 99



Fiche n° 29. Séries numériques

Réponses

29.1b). ..ol 6 550 29.6b).............
29.1¢)....... 29.3b)... 29.44d)... m 29.7a). ..

54
w0 . n
20.1d)....... 29.52a)............. 1 29.7b) ... —
) 2 x 39 29.4 a) 1 4
a) e — 1
12 2050Db) .. ... ... .. z 29.7¢) i, 16
29.22a). . ..., ) 1 16
2 - © 2e3
29.2b)........ e —3| 294b)........ e—1| 29.5¢)......... m(2)| 29.7d)..... 3
| -
29.2¢c)iiiit ez
29.5d)............ E
4
Corrigés
29.1 a) La série est géométrique de raison 2 ¢ | — 1, 1], donc elle diverge.
N
29.1 b) La série est géométrique de raison = € | — 1, 1], donc elle converge. De plus, Z <§> = 1 =2
k=0 T2
29.1 ¢) La série est géométrique de raison \% €] —1,1], donc elle converge. De plus, on a :
+oo k
(o) e e
k=0 V2 11— V2 V2-1 2-V2
+o0 k
. P . 1 1 1 3
29.1d) La série est géométrique de raison 3 €] —1, 1], donc elle converge. De plus, Z (g) = 11 =3 Donc :
k=0 3
oo oo 10
S &1 & s 1-(8) 3
Zﬁ_zyﬂ_z;@_i_ﬁ_ﬁxgﬁ'
k=10 k=0 k=0 3

=121 1R1 1 13 1
Autre solution, avec le changement d’indice j =k — 10 : Z 3% = Z 37710 = 310 Z — = — X T =3 X —.

310 35 310 12 31
k=10 j=0 j=0 3
1k
29.2 a) On reconnait la série exponentielle Z o
k
ok oo I ok 90 ol
29.2 b) On reconnait la série exponentielle Z R et on a Z o e?, donc Z =i 2 T e’ —3
k k=0 k=2
@)
29.2¢c) Ona o hl ?c' et on reconnait donc une série exponentielle.
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2
; en général, si

29.3 a) Il s’agit d’une série de Riemann convergente, et vous savez peut-étre que sa somme est
o0 1
a > 1, on ne connait pas la valeur exacte de la somme E
k=1

F.

Il s’agit d’une série de Riemann divergente

3 )

29.3 b)
29.3 ¢) La série harmonique diverge!
O L d la séri cométri d 11 De pl
29.4 a) na oop = 5> donc la série est géométrique de raison — € | — 1, 1] : elle converge. De plus
> () ==
4/ 1-1 3
+oo +oo k=0 !
Done 1 1 1 1 1
n — N - - - - —
’ 22k 4k 40 41 12
k=2 k=0
29.4Db) Ona e D —e7kel — e x Or la série géométrique de raison — € | — 1, 1 converge
e e
+oo +oo “+oo
1\* 1 e —(k-1) 1 e e
Deplus’z(é) =TT o done ) e T2k T (e—l 71) et
k=0 e k=1 k=0
R, 1
Autre solution : le changement d’indice j = k — 1 donne Z —=h) = Z I = Z 1)J e e—il'
k=1 7=0
29.4 ¢) 1l s’agit d’une série géométrique de raison — et % €] [, donc la série converge. De plus
+o00 ik _if(i)k_s_i 1 i
Tho1 72 7 CT1-4 49T
k=3 k=3 7
+oo . . .
—i(49+7 1-7
Enfin, en multipliant par I’expression conjuguée, on trouve ; 7; - = 41592 ++721) == 1
1 qui est de module 1 ]—1,1[. Ainsi
1-— i\/ﬁ’ 12 + \/52 \/g T ’

On reconnait une série géométrique de raison

la série converge. De plus

+oo oo 1 k—4
g lflf 1—1\f ;(1—1\/§>
1 1 _(1+i\/§)4i 2—1_<1+iﬁ>4ﬂ+i

(1 71\/5)4 1= 1-iv2
1+i\/§>4_ —T-4iv2

En développant, on obtient (1 + i\/§)4 = —7 —4iV2, don ( 3 8l

—2 —5iV/2

= 1 —T—4iVE VIt
Z(l_lﬁ)ki 81 X N 54
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29.5 a) Soit n € N* fixé. On remarque que Z ﬁ = Z(l — L) =1-
k=1 k=1

29.5 b) Soit n € N* fixé. On remarque que :

> wrmrra =3 oG )~ s 8
k3+3k2+2k 2 k+1 k+2 T 2\n4+2 n+1 2) nostoo 4’

29.5 ¢) Soit n > 2 fixé. On remarque que :

n

Zm(lcgk_l) - Zln<(k_1’;(k+1)> =3 @In(k) — In(k+ 1) — In(k — 1)) = In(2) - 1n<” : 1) = ().
k=2 k=2

k=2

29.5d) Soit n > 0 fixé. On remarque que, pour tout k :

(k+2)—(k+1) ) _ — arctan
arctan(1+(k+2)(k+1)> = arctan(k + 2) tan(k + 1).

1+ (k+2)(k+1)

Donc, Z arctan( (k+2)—(k+1) ) Z(arctan(k + 2) — arctan(k + 1)) = arctan(n + 2) — arctan(1) —
k=0

29.6 a) La série diverge grossiérement.

_ 1 1
29.7a) On a k2 ka T ; la série Zkgk T est une série géométrique dérivée, de raison 3 €]—1,1[, et est

)
k
=1 1
donc convergente. Sa somme est Z ka T = W =4.
k=1 2

29.7 b) La série converge comme somme d’une série géométrique de raison 3 €] —1,1[ et d’une série géométrique

dérivée de méme raison, et :

1 1 1 1 9 3 11
2@t Ng =D mm D g om - e tior ' Tata T T
k=1 k=1 k=0
29.7 ¢) On reconnait une série géométrique dérivée deux fois, de raison =, convergente, de somme =16
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Fiche n° 30. Produits scalaires

Réponses
0L a) A0(2) = 2] 303 1
3
7
B0.L D) -
12]  304a) i (1,2\/§(X - 7)))
30.1C) . | 2sin(1) + cos(1) — 1|
1
30.4b)............. (\/§X, JE2ux? —ox + 4))
30.1d) . —(e?—1) 43
2 -1 -1
2 A) 1 1
302 2) 305 8) et s o2
30.2 D) et -1 -1 2
B0.2C) ottt [0] R
30.3 a) 1 305 D). =(0 00
S < T ——
6\/5 2 0 4
1 9 -6 2
BD) — 1
30-3 b) 5v3|  B0.5C) ... |6 -7 6
2 6 9
Corrigés

1
30.1 a) On calcule (f1, f6) = / 21n(1+¢) dt. Pour cela, on a le choix : premiére possibilité, faire une intégration par
0

parties ; seconde possibilité, utiliser une primitive connue de In (sur R} ) qui est ¢ — tInt — ¢ et on a alors besoin de
faire un changement de variable. Si on applique la seconde technique, on trouve :

2

1

1 1
30.1d) On calcule / ele’dt = / e = %(e2 —1).
0 0
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30.2 ¢) Le calcul est inutile, il s’agit du produit scalaire entre une matrice symétrique et une matrice antisymétrique.
Ces deux matrices sont orthogonales donc le produit scalaire est nul.

30.3 a) Pour calculer la distance demandée, on va faire le calcul du projeté orthogonal pVect(LX)(XZ) de X? sur
Vect(1, X). Soit (a,b) € R*. On a :

(X? = (a+bX), 1) =0 {a——1/6

a+bX = pvect(1, (X2)(:>
Vet (X2~ (a+bX), X) =0 b=1

Alors la distance cherchée est HX2 — (X — 1) H = L
6 615

30.3 b) Pour calculer la distance demandée, on va faire le calcul du projeté orthogonal pyec(1,x3)(X) de X sur
Vect(1, X*). Soit (a,b) € R®. On a :

) X —(a+bX?, 1)=0 =4/15
a—l—bX‘;:pVeCt(l’Xs)(X) — {< ( ) 1) = {a /

(X — (a+bX?), X* =0 b=14/15
. 4 14 _, 1
Alors 1 5 herchée est || X — [ — 4+ —=X = —.
ors la distance cherchée est H (15 + 5 ) ’ 53

30.3 c) Pour calculer la distance demandée, on va faire le calcul du projeté orthogonal pyect(x,x2)(1+ Xz) de 1+ X2
sur Vect(X, X?). Soit (a,b) € R®. On a :
(1+X° = (aX +bX?), X)=0 a=4
aX +bX? = pyee 5 (14 X°) = —
Vect(X,X?2) <1+X2—(aX+bX2), X2>:0 b:_7/3

1
Alors la distance cherchée est Hl + X% (4X — %XQ) H = 3

30.4 a) 1l faut appliquer le processus de Gram-Schmidt.

30.4 b) 1l faut appliquer le processus de Gram-Schmidt.

1
30.5 a) Une base orthonormale (abrégé en BON) de Pt est u = —— (i + j + k). Donc la matrice dans la BON 2 de

V3
la projection orthogonale sur Pt est AAT ol A est la matrice de u dans la base 2 (car u est une BON de ’espace sur
lequel on projette et Z est une BON de l'espace). Donc la matrice dans la BON & de la projection orthogonale sur Pt

1 1 1
est M = = ( 1 1 1 > . La matrice cherchée est Is — M.
1 1 1

1
30.5 b) Une base orthonormale de D est v = —(i + 2k) donc la matrice de la projection orthogonale sur D dans la

V5

1 0 2
base & est AA" ol A est la matrice de v dans la base & i.e. — (O 0 0) .
2 0 4

30.5 ¢) La symétrie o de I’énoncé vérifie 0 = id — 27 ol 7 est la projection orthogonale sur la droite dirigée par le

1 3 -1
vecteur i + 35 — k. Or la matrice P de 7 dans la base # est % ( 3 9 —3) . Donc la matrice cherchée est Iz — 2P.
-1 -3 1

104 Fiche n° 30. Produits scalaires



Fiche n° 31. Autour du groupe symétrique

Réponses
311 a) (1 2 3 4 5 6) 31.2b) ..o (cba)| 3L4Db) ...
SWell4 1 3 26 5
31.2¢) ...l (72531)] 314¢) ... (12653)
1 23456
31.1b).. (2 6 5 1 3 4> 31.2d) ... (acb)| 3L4d)........ \(1674)(253)\
31.2€). e 2154)] 3L5a).
31.1¢).. (1 2.3 45 6) 31.5 b)
6 43251 31.21)............. (L2753)| T
‘ ‘ B1.5C) iuiiiiiiii
1 23456 31.3a) |(174)(26810)(395)
31.1d).. (1 9 6 5 3 4> 31.5d) oo
313b).. [(13106 496G 9| g156).. ...
311 123456
el 65 4 2 3 31.3¢) ... ((1724358)] 3156
s (1 5 3 4 5 6) 31.3d).............. (12)(3 4) 316a)....cciii
6 32 1 5 4 313¢) . ... (146235)] BL6b)
B1.6C) e 1
312&) ................... (ab) 3143) ............ (142)(5 6) )
831.6d) ..o
Corrigés

31.1 a) Pour déterminer la permutation p~ ', il suffit de lire de bas en haut la matrice représentant la permutation p.

1 2 3 4 5 6
4 1 3 2 6 5)°

Ainsi, la quatriéme colonne donne p~'(1) = 4, la premiére p~'(2) = 1, etc. Finalement, p~" = (

31.1c¢c) Par définition, o(1) = 4 et o(4) = 6, ainsi 0°(1) = o(c(1)) = 6(4) = 6. On procéde de méme pour les autres

. o (1 2 3 4 5 6

images et finalement o° = 6 4 3 2 &5 1).

31.1d) Par définition, o(1) =4 et p(4) = 1, ainsi po(1) = p(a(1)) = p(4) = 1. On proceéde de méme pour les autres
. 1 2 3 4 5 6

images et finalement po = (1 2 6 5 3 4>.

31.1f) D’aprésb), o '(1) = 2 et, d’aprés e), op(2) = 6, ainsi opo~ (1) = 6. On procéde de méme pour les autres

6 3 2 1 5 4

images et finalement Jpail: (1 2345 6).
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31.2d) Notons o = (abec). Ona o(a) =bet o(b) = ¢, dott 0°(a) = c. On obtient de méme o>(c) = b et o*(b) = a.
Finalement, (a b ¢)*> = (a ¢ b).

Remarquons que (a b ¢)®> = (a b ¢)™", ce qui était prévisible dans la mesure oti le 3-cycle (a b ¢) vérifie (a b ¢)® = id.
31.2¢) Notons o =(2451). Ona o(2) =4, 0(4) =5 et o(5) = 1, ains 6°(2) = 1. On obtient de la méme fagon
o®(1) =5, 0°(5) =4 et °(4) = 2. Au total, (245 1)> = (215 4).

. . R -1
On pourrait aussi remarquer que o est un 4-cycle, ainsi 6° = ¢~ ~ et on a donc :

(2451)°=(2451)""'=(1542)=(2154).

31.2 f) Puisque (1523 7) est un 5-cycle, ona (1523 7)** = (15237)", avec 7 le reste de la division euclidienne
de 42 par 5, & savoir 2. Ainsi (1523 7)* =(15237)>*=(127523).

31.3 a) Notons o la permutation considérée et partons de ’élément 1. On a (1) =7, 0(7) =4 et 0(4) =1, ot un

premier cycle (1 7 4). On procéde de méme & partir d’un élément de {1,...,10}\ {1,4, 7}, par exemple 2, pour lequel on
ao(2)=6,0(6) =8, 0(8) =10 et 0(10) = 2, d’ott un deuxiéme cycle (2 6 8 10). On continue & partir d’un élément de
{1,...,10}\ {1,2,4,6,7,8,10}, par exemple 3, pour lequel on a (3) =9, 0(9) =5 et o(5) = 3, d’olt un troisiéme cycle
(39 5). La réunion des supports de ces trois cycles étant {1,...,10}, la décomposition est terminée :

123456 7 8 9 10
< 6 0 1 3 8 4 10 3 2>_(174)(26810)(395).

Rappelons que (1 74)(26810)(395)=(174)(395)(26810)=(26810)(395)(174)=...
Bref, les cycles a supports disjoints commutent entre eux.

31.3 b) Notons o la permutation considérée et procédons comme & la question précédente. On a o(1) = 3, o(3) = 10,
0(10) =6, 0(6) = 4 et 0(4) = 1, d’ol un premier cycle (1 3 10 6 4). Ensuite 0(2) = 2 et le cycle (2) est donc omis. On a
enfin 0(5) =7 et 0(7) =5, d’out la transposition (5 7), et 0(8) =9 et 0(9) = 8, d’ou la transposition (8 9). En résumé :

1 2 3 45 6 7 8 9 10
< L7 45 0 8 >—(131064)(57)(89).

31.3c) Notonsp=(1352),0=(2417)et7=(58).0napor(l)=po(l) = p(7) ="Tet por(7) = po(7) = p(2) =1,

d’olt une premiére transposition (1 7). Par ailleurs, po7(2) = po(2) = p(4) = 4 et on obtient de méme por(4) = 3,
po7(3) = 5, por(5) = 8 et po7(8) = 2, d’ott le cycle (2 4 3 5 8). Enfin po7(6) = 6 et le cycle (6) est donc omis. En
résumé :

(1352)(2417)(58) = (17)(243528).

1 2 3 4 5 6
a_(2 L s 16 5>_(124)(56).

Ainsi o' = (1 2 4)*(5 6)*" = (1 2 4)*(5 6)' = (1 4 2)(5 6), dans la mesure o les permutations (1 2 4) et (5 6)
commutent et sont respectivement un 3-cycle et un 2-cycle (47 = 2[3] et 47 = 1[2]).
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31.4b

)  On procéde comme a la question précédente :

168
(1 i i g ? g 7) = (165273 4)'® =idoidoid = id.

31.4 ¢) On procéde toujours de la méme fagon :

168
(1 g 3 j ‘;’ g 7) =(16325)'%=(16325>=(12653).

31.5 ¢) Puisque la signature est un morphisme de groupe & valeurs dans {£1}, une permutation et son inverse ont

méme s

ignature, ainsi 6((1 532 4)_1) =¢((15324)) =1, d’apres la question précédente.

31.5f) Ona 5(((1 3)(267)(4731 2))64) =(e((13)(26 7)(4 731 2)))% =1, puisque I'exposant 64 est pair.

31.6 b

1 23 456 7 8 9 10\) _ i aNa—i gndely gya—l_
((7 PR A 2))—5((174)(26810)(395))_( 1311 (1)t = 1
) De la méme fagon :

5(<é ; 130 ‘f ? 2 g S ‘Z 160)>:5((131064)(57)(89)):(—1)5_1(—1)(—1):1.

) =e((137105824)(69))=(-1)*"(-1)=1.
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Fiche n° 32. Déterminants

Réponses
32.1a) i —2a* 32.2¢). .
321b) i 6] 322d)................
821c). 32.2¢) . ... TV2+13
32 ]_ d) ..................... 32 3 a) ................
32.2 a) .................... 32.3 b) ................
32.2Db) ... 91n(2) 32.3C) i,
32.4a) .
Corrigés

32.3 b) Deux permutations de colonnes, C2 <> Cq puis C3 <> Co, raménent ce déterminant & celui d’une matrice

triangulaire supérieure, dont le déterminant vaut —2 x 5 x 4 = —40.

32.5d) Les opérations sur les colonnes Cy < C2 — C1 et C5 < C3 — Cy raménent au calcul du déterminant de la

T 1 2
matrice | z+1 1 2|, lui-méme nul.
r+2 1 2
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Fiche n° 33. Fonctions de deux variables

Réponses
BBl A et {(z,y) eR?* |z —1<y<z+1}
B8 L D) 110, +00[ x [0, 00
B3 L C) et {(z,y) e R* | y = 0}\{(0,0)}
B3 L )
33.2 a) g(my)z2x+yet—(my):5y4+m
) 50 & By (L
OF (2. 4) = 2y cos(2zy — ) ot X (.y) = (22 — 1) cos(2zy —
33.2b) . %(x,y) = 2y cos(2zy — y) et By (z,y) = (2o — 1) cos(2zy — y)
O () = OF (o) = (2. —
B2 0] e o (x,y) = (2zy,2x) et By (z,y) = (2%, —2y)
af -~ 2 7f - 1
332 d) a—(x,y) BTN et 9y (z,y) = T2t o?
oF oo
B R Y P %(m,y) = —sin(z —y) et 3y (z,y) = sin(z — y)
g _ TY\ : TY\ TY g 2 TY\ TY
33.3b) i . (x,y) = cos(e™) — zysin(e®™) e™ et 9y (x,y) = —z~sin(e™)e
- — ¥ ! - — 7Y
B33 0 et D (z,y) =yx¥ " et 9y (z,y) =2YInx
2/(,2 2
P yly —az7) L
aii(mﬁy) — { (xQ + yg)g ST (lvy) 7é (070)
333 d) .o g:ﬁy sinon
ot ?(m,y) — { W si (z,y) # (0,0)
Y 0 sinon
BB ) ot sin(2t)
at | -2t
B34 D) 20 e
odt _ o2t
BB O i ’ —72 cos(4t) — 46 sin(4t) ‘
Nfop),  10ffutv v—u) 19f(ut+tv v—u
B35 8) i 9 (u,v) = 59z \ 9 5 2 9y 5 " 5a
A(fop) _10f (ut+v v—u 190f(u+v v—u
33.5 a) .................................... 81} (U,U) = 5871' 2 5 2@ =+ ?Caiy 2 s 20
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(fo¢) _ o 9f : L Of :
335 Db) i 5 (r,0) = cosﬁax (rcosf,rsinf) + smﬁay (rcosf,rsin @)
A(f o) o of . of .
33.5Db) i T(r,e) = rsm@a(rcose,rsm@ +rcos€a—y(r0089,rsm9)
Corrigés

33.2 b) Calculons %(m, y). Soit y € R. La premiére application partielle f, : ¢ — sin(2ty — y) est dérivable sur R, et
x

fy 1t 2ycos(2ty — y). On obtient g(x, y) = f,(z) = 2y cos(2xy — y) en évaluant en t = .

Ox
af _ 2 - N . . . ty2
33.3d) Calculons e On fixe a = (z,y) € R". Sia # (0,0) alors la premiére application partielle en a est ¢ — e
€ Yy
2 (42 2 2 20,2 _ 2
- (T —ty° -2t —
Sa dérivée est t — vy (Cty) —ty , d’ou a—f a) = M en évaluant en t = x. Reste a traiter le cas ou
(12 + 42)2 9 (22 + 12)2
a = (0,0). On calcule & la main le taux d’accroissement :
z-02
vrer. J@O-F0,0 FeE-0_ o0
’ z—0 x x3 '
Done 22(0,0) = 1im L&O SO0 _ 5y,
Ox 0 x—0 -0
\ R of
On procede de méme pour 30
Y

33.4a) On pourrait simplement dériver w : t — 4(sint)> + 3(cost)?, mais ce n’est pas l'idée de la fiche. La régle de

o OF ou gy, 0F 00 g int) — 2einteost — s
la chaine donne : o (u(t),v(t)) g (t) + 3y (u(t),v(t)) 5 (t) = 8sintcost + 6cost(—sint) = 2sintcost = sin(2t).

: : 0(f o) _of 91 of 9p2 : notations
33.5 a) La regle de la chaine donne 5 (u,v) = . (o(u,v)) 5 (u,v)+ By (o(u,v)) 5 (u,v), avec les notations
p1(uv) = "0 et pa(uw) =

Remarque : c’est le changement de variables utilisé pour résoudre ’équation des ondes. En physique, on note abusivement
T =1 ety = pa.
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