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Mode d’emploi

Qu’est-ce que le cahier d’entraînement ?

Le cahier d’entraînement en physique-chimie est un outil destiné à renforcer l’acquisition de réflexes utiles
en physique et en chimie.
Il ne se substitue en aucun cas aux TD donnés par votre professeur ; travailler avec ce cahier d’entraînement
vous permettra en revanche d’aborder avec plus d’aisance les exercices de physique-chimie.
Pour donner une analogie, on pourrait dire que ce cahier d’entraînement est comparable aux exercices de
musculation d’un athlète : ils sont nécessaires pour mieux réussir le jour J lors de la compétition, mais
ils ne sont pas suffisants. Un coureur de sprint fait de la musculation, mais il fait également tout un tas
d’autres exercices.
Ce cahier a été conçu par une large équipe de professeurs en classes préparatoires, tous soucieux de vous
apporter l’aide et les outils pour réussir.

Comment est-il organisé ?

Le cahier est organisé en fiches d’entraînement, chacune correspondant à un thème issu du programme de
première année d’enseignement supérieur.
Les thèmes choisis sont dans l’ensemble au programme de toutes les CPGE. De rares thèmes sont spécifiques
à la filière PCSI, mais les intitulés sont suffisamment clairs pour que vous puissiez identifier facilement les
fiches qui vous concernent.
Chaque fiche est composée d’une suite de petits exercices, appelés entraînements, dont le temps de résolution
estimé est indiqué par une ( ), deux ( ), trois ( ) ou quatre ( ) horloges.
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Les exercices « bulldozer »

Certains entraînements sont accompagnés d’un pictogramme représentant un bulldozer.

Ces entraînements sont basiques et transversaux.
Les compétences qu’ils mettent en jeu ne sont pas forcément spécifiques au thème de
la fiche et peuvent être transversales.

Ce pictogramme a été choisi parce que le bulldozer permet de construire les fondations et que c’est sur
des fondations solides que l’on bâtit les plus beaux édifices. Ces entraînements sont donc le gage pour vous
d’acquérir un socle solide de savoir-faire.

Comment utiliser ce cahier ?

Le cahier d’entraînement ne doit pas remplacer vos TD. Il s’agit d’un outil à utiliser en complément de
votre travail « normal » en physique-chimie (apprentissage du cours, recherche de TD, recherche des DM).

Un travail personnalisé.
Le cahier d’entraînement est prévu pour être utilisé en autonomie.
Choisissez vos entraînements en fonction des difficultés que vous rencontrez, des chapitres que vous
étudiez, ou bien en fonction des conseils de votre professeur.
Ne cherchez pas à faire linéairement ce cahier : les fiches ne sont pas à faire dans l’ordre, mais en
fonction des points que vous souhaitez travailler.

Un travail régulier.
Pratiquez l’entraînement à un rythme régulier : une dizaine de minutes par jour par exemple.
Privilégiez un travail régulier sur le long terme plutôt qu’un objectif du type « faire dix fiches par
jour pendant les vacances ».

Un travail efficace.
Utilisez les réponses et les corrigés de façon appropriée : il est important de chercher suffisamment
par vous-même avant d’aller les regarder. Il faut vraiment persévérer dans votre raisonnement et
vos calculs avant d’aller voir le corrigé si vous voulez que ces entraînements soient efficaces.

Une erreur ? Une remarque ?

Si jamais vous voyez une erreur d’énoncé ou de corrigé, ou bien si vous avez une remarque à faire, n’hésitez
pas à écrire à l’adresse cahier.entrainement@gmail.com.
Si vous pensez avoir décelé une erreur, merci de donner aussi l’identifiant de la fiche, écrit en gris en haut
à gauche de chaque fiche.
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GAL01 GénéralitésFiche d’entraînement no 1

Conversions

Prérequis
Unités du Système international. Écriture scientifique.

Unités et multiples

Entraînement 1.1 — Multiples du mètre (I).
Écrire les longueurs suivantes en mètres et en écriture scientifique.

a) 1 dm . . . . . .

b) 2,5 km . . . .

c) 3 mm . . . . .

d) 7,2 nm . . . .

e) 5,2 pm . . . .

f) 13 fm . . . . .

Entraînement 1.2 — Multiples du mètre (II).
Écrire les longueurs suivantes en mètres et en écriture scientifique.

a) 150 km . . . .

b) 0,7 pm . . . .

c) 234 cm . . . .

d) 120 nm . . . .

e) 0,23 mm . .

f) 0,41 nm . . .

Entraînement 1.3 — Vitesse d’un électron.

La vitesse d’un électron est v =
√

2eU
me

, où e = 1,6 · 10−19 C est la charge d’un électron, U = 0,150 kV est

une différence de potentiel et me = 9,1 · 10−28 g est la masse d’un électron.

a) Calculer v en m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer v en km/h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.4 — Avec des joules.
On considère la grandeur T = 0,67 kWh. On rappelle que 1 J = 1 Ws.

Convertir T en joules, en utilisant le multiple le mieux adapté . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 1.5 — Valeur d’une résistance.

La résistance d’un fil en cuivre est donnée par la formule R = ℓ

γS
, où γ = 59 MS/m est la conductivité du

cuivre, où ℓ = 1,0 · 103 cm est la longueur du fil et où S = 3,1 mm2 est sa section.

L’unité des résistances est l’ohm, notée « Ω ». L’unité, notée « S », est le siemens ; on a 1 Ω = 1 S−1.

Calculer R (en ohms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.6 — Ronna, ronto, quetta et quecto.
En novembre 2022, lors de la 27e réunion de la Conférence générale des poids et mesures, a été officialisée
l’existence de quatre nouveaux préfixes dans le système international :

Facteur multiplicatif Préfixe Symbole
1027 ronna R

10−27 ronto r
1030 quetta Q

10−30 quecto q

On donne les masses de quelques objets :

Soleil Jupiter Terre proton électron
1,99 · 1030 kg 1,90 · 1027 kg 5,97 · 1024 kg 1,67 · 10−27 kg 9,10 · 10−31 kg

Convertir ces masses en utilisant ces nouveaux préfixes (en écriture scientifique).

a) Soleil (en Rg) . . . . . . . . . . . . . . .

b) Soleil (en Qg) . . . . . . . . . . . . . . .

c) Jupiter (en Rg) . . . . . . . . . . . . .

d) Jupiter (en Qg) . . . . . . . . . . . . .

e) Terre (en Rg) . . . . . . . . . . . . . . .

f) Terre (en Qg) . . . . . . . . . . . . . . .

g) proton (en rg) . . . . . . . . . . . . . . .

h) proton (en qg) . . . . . . . . . . . . . .

i) électron (en rg) . . . . . . . . . . . . .

j) électron (en qg) . . . . . . . . . . . . .
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Règle de trois et pourcentages

Entraînement 1.7 — Un peu de cuisine.
Les ingrédients pour un gâteau sont : 4 œufs, 200 g de farine, 160 g de beurre, 100 g de sucre et 4 g de sel.
On décide de faire la recette avec 5 œufs. Combien de grammes faut-il de :

a) farine ? . . . . . . . . . . . . . . . . . . . . . . . . .

b) beurre ? . . . . . . . . . . . . . . . . . . . . . . . .

c) sucre ? . . . . . . . . . . . . . . . . . . . . . . . . . .

d) sel ? . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.8 — Pourcentages.
Convertir en pourcentage :

a) 0,1 . . . . . . . . . . . . . . . . . . . . . . .

b) 0,007 . . . . . . . . . . . . . . . . . . . .

c) 1
2 . . . . . . . . . . . . . . . . . . . . . . . .

d) 1
20 . . . . . . . . . . . . . . . . . . . . . . .

e) 9
5 . . . . . . . . . . . . . . . . . . . . . . . .

f) un quart de 2 % . . . . . . . . . .

Entraînement 1.9 — Énergie en France (I).
Les origines de l’énergie primaire consommée en France (en 2020) sont : nucléaire 40,0 %, pétrole 28,1 %,
gaz 15,8 %, biomasse 4,4 %, charbon 2,5 % hydraulique 2,4 %, éolien 1,6 %.

Quel pourcentage occupent les autres énergies (solaire, biocarburants, etc.) ? . . . . . . . .

Entraînement 1.10 — Énergie en France (II).
La consommation primaire totale en France est de 2 571 TWh.
À l’aide des données de l’entraînement précédent, calculer (en « TWh ») les quantités d’énergie créées par
les sources suivantes :

a) nucléaire . . . . . . . . . . . . . . . . .

b) pétrole . . . . . . . . . . . . . . . . . . .

c) gaz . . . . . . . . . . . . . . . . . . . . . .

d) biomasse . . . . . . . . . . . . . . . . .

e) charbon . . . . . . . . . . . . . . . . . .

f) hydraulique . . . . . . . . . . . . . .

g) éolien . . . . . . . . . . . . . . . . . . . .

h) autre . . . . . . . . . . . . . . . . . . . .
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Entraînement 1.11 — Abondance des éléments dans la croûte terrestre.
L’abondance chimique d’un élément peut être exprimée en « parties par centaine » (notée %, on parle
communément de « pourcentage »), en « parties par millier » (notée ‰, on parle aussi de « pour mille »)
ou encore en « parties par million » (notée « ppm »).
Les abondances de quelques éléments chimiques constituant la croûte terrestre sont :

Silicium Or Hydrogène Fer Oxygène Cuivre
275 ‰ 1,0 × 10−7 % 1,4 ‰ 50 000 ppm 46 % 50 ppm

Quel est l’élément le moins abondant ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Longueurs, surfaces et volumes

Entraînement 1.12 — Taille d’un atome.
La taille d’un atome est de l’ordre de 0,1 nm.

a) Quelle est sa taille en m (écriture scientifique) ? . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle est sa taille en m (écriture décimale) ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.13 — Alpha du Centaure.
La vitesse de la lumière dans le vide est c = 3,00 ·108 m/s. Une année dure 365,25 jours. Alpha du Centaure
est à une distance de 4,7 années-lumière de la Terre.

a) Quelle est cette distance en m (écriture scientifique) ? . . . . . . . . . . . . . . . . . . . . .

b) Quelle est cette distance en km (écriture scientifique) ? . . . . . . . . . . . . . . . . . . .

Entraînement 1.14 — Avec des hectares.
La superficie de la France est de 672 051 km2. L’île danoise de Bornholm (au nord de la Pologne) a une
superficie de 589 km2. Un hectare (ha) est la surface d’un carré de 100 m de côté.
Donner les superficies suivantes :

a) un hectare (en m2) . . . . . . . . . . . . .

b) un hectare (en km2) . . . . . . . . . . . .

c) la France (en m2) . . . . . . . . . . . . . .

d) la France (en ha) . . . . . . . . . . . . . . .

e) Bornholm (en m2) . . . . . . . . . . . . . .

f) Bornholm (en ha) . . . . . . . . . . . . . .
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Entraînement 1.15 — Volume.

a) Peut-on faire tenir 150 mL d’huile dans un flacon de 2,5 · 10−4 m3 ? . . . . . . . . . . . . . . . . . . . .

b) Peut-on faire tenir 1,5 L d’eau dans un flacon de 7,5 · 10−2 m3 ? . . . . . . . . . . . . . . . . . . . . . . . .

Masse volumique, densité et concentration

Entraînement 1.16 — Masse volumique.
Si on néglige la masse du contenant, une bouteille d’eau de 1 L a une masse de 1 kg. Un verre doseur rempli
indique, pour la même graduation, eau : 40 cL et farine : 250 g.

a) Quelle est la masse volumique de l’eau en kg/m3 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle est la masse volumique de la farine ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.17 — Densité.

La densité d’un corps est le rapport ρcorps
1 000 kg/m3 , où ρcorps est la masse volumique du corps en question.

a) Une barre de fer de volume 100 mL pèse 787 g. Quelle est la densité du fer ? . . . . . . . . . . . .

b) Un cristal de calcium a une densité de 1,6. Quelle est sa masse volumique (en kg/m3) ?

Entraînement 1.18 — Un combat de masse.
On possède un cube de 10 cm en plomb de masse volumique 11,20 g/cm3 et une boule de rayon 15 cm en
or de masse volumique 19 300 kg/m3. On rappelle que le volume d’une boule de rayon R est 4

3πR
3.

Lequel possède la plus grande masse ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.19 — Prendre le volant ?
Le taux maximal d’alcool dans le sang pour pouvoir conduire est de 0,5 g d’alcool pour 1 L de sang.

A-t-on le droit de conduire avec 2 mg d’alcool dans 1 000 mm3 de sang ? . . . . . . . . . . . . . . . . . . .
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Autour de la vitesse

Entraînement 1.20 — Le guépard ou la voiture ?
Un guépard court à 28 m/s et un automobiliste conduit une voiture à 110 km/h sur l’autoroute.

Lequel est le plus rapide ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.21 — Classement de vitesses.
On considère les vitesses suivantes : 20 km/h, 10 m/s, 1 année-lumière/an, 22 mm/ns, 30 dm/s et 60 cm/ms.

a) Laquelle est la plus petite ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Laquelle est la plus grande ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 1.22 — Vitesses angulaires.

La petite aiguille d’une montre fait un tour en 1 h, la Terre effectue le tour du Soleil en 365,25 j.

Quelles sont leurs vitesses angulaires :

a) en tours/min (l’aiguille) ? . . . . . . .

b) en rad/s (l’aiguille) ? . . . . . . . . . . .

c) en tours/min (la Terre) ? . . . . . . .

d) en rad/s (la Terre) ? . . . . . . . . . . . .

Réponses mélangées

10 000 m2 30 dm/s 625 kg/m3 0,017 tour/min 62 TWh 1 · 10−1 m

oui 1,90 · 103 Rg 7,87 722 TWh 1,99 · 103 Qg 7,2 · 10−9 m 1,90 Qg

134 TWh 0,000 000 000 1 m 406 TWh 7 · 10−13 m 4,43 · 1013 km 113 TWh

9,10 · 102 qg l’or 2,6 · 107 km/h 200 g 9,10 · 10−1 rg 1,67 · 106 qg 3 · 10−3 m

5,89 · 104 ha La voiture 1,99 · 106 Rg 4,43 · 1016 m 0,001 7 rad/s 2,3 · 10−4 m

180 % 10 % 1,20 · 10−7 m 250 g 1,50 · 105 m 125 g 6,72 · 107 ha

La boule en or 5 % 64 TWh 1,67 · 103 rg 0,01 km2 1,99 · 10−7 rad/s

5,5 · 10−2 Ω 1 · 10−10 m oui 1,6 × 103 kg/m3 5,97 · 10−3 Qg 6,72 · 1011 m2

1 année-lumière/an 50 % 1,90 · 10−6 tour/min 2,34 m 5,2 % 1 · 103 kg/m3

5,97 Rg 0,7 % 41 TWh 5 g 4,1 · 10−10 m 5,2 · 10−12 m 0,5 % non

2,4 MJ 1,03 × 103 TWh 5,89 · 108 m2 7,3 · 106 m/s 2,5 · 103 m 1,3 · 10−14 m

▶ Réponses et corrigés page 200
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GAL03 GénéralitésFiche d’entraînement no 2

Signaux

Prérequis
Fonctions trigonométriques.
Signaux périodiques (fréquence, période, pulsation, longueur d’onde, phase).

Autour des fonctions trigonométriques

Entraînement 2.1 — Cercle trigonométrique.

Sur le cercle trigonométrique ci-contre, cos(α) se lit sur l’axe des
abscisses et sin(α) se lit sur l’axe des ordonnées.
Exprimer les fonctions suivantes en fonction de cos(α) et sin(α).

cos(α)

sin(α)

α

a) sin(α+ π) . . . . . . . . . . . . . . .

b) cos(α+ π/2) . . . . . . . . . . . . .

c) sin(α+ π/2) . . . . . . . . . . . . .

d) sin(π/2 − α) . . . . . . . . . . . . .

Entraînement 2.2 — Dérivée de signaux.
Pour chaque signal ci-dessous, calculer sa dérivée par rapport à t.

a) sin(2t) . . . . . . . . . . . . .

b) cos2(t+ 4) . . . . . . . . .

c) cos(t) × sin(t) . . . . .

Entraînement 2.3 — Transformer des sommes de signaux en produits.
On rappelle les formules trigonométriques :

cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)
sin(a− b) = sin(a) cos(b) − cos(a) sin(b).

Mettre les signaux suivants sous la forme C cos(Ωt) cos(ωt) ou C sin(Ωt) sin(ωt) (où les constantes C, Ω et
ω s’exprimeront en fonction de A, ω1 et ω2).

a) A cos(ω1t) +A cos(ω2t) . . . . . . . . . . . . . . . . . . .

b) A cos(ω1t) −A cos(ω2t) . . . . . . . . . . . . . . . . . . .
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Entraînement 2.4 — Formules d’addition.
Mettre le signal A sin(ωt+φ) sous la forme B cos(ωt)+C sin(ωt), où B et C dont des constantes à exprimer
en fonction de A et φ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 2.5 — Représentations graphiques.

α0 4 8 12 16 20

0

0,25

0,5

0,75

1

courbe 1

α0 4 8 12 16 20

−1

−0,5

0

0,5

1

courbe 2

α0 4 8 12 16 20

0

0,5

1

1,5

2

courbe 3

α0 4 8 12 16 20

−1

−0,5

0

0,5

1

courbe 4

Pour les quatre graphiques ci-dessus, α est exprimé en radians.
Associer chaque fonction à sa courbe représentative.

a) sin(α) . . . . . . . . . . . . . . . . . . . .

b) cos(α) . . . . . . . . . . . . . . . . . . .

c) 1 + sin(α) . . . . . . . . . . . . . . . .

d) cos2(α) . . . . . . . . . . . . . . . . . .

Entraînement 2.6 — Formules trigonométriques.
Le signal cos(ωt) + sin(ωt) peut s’écrire sous la forme :

a cos2(ωt+ π/4) b 2 cos(ωt+ π/4) c
√

2 sin(ωt+ π/4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Étude graphique

Entraînement 2.7 — Paramètres d’un signal sinusoïdal.

En travaux pratiques, vous faites l’acquisition d’une tension sinusoïdale u(t) = U0 cos
(

2π
T
t+ φ

)
et obtenez

l’oscillogramme ci-dessous.

t (en s)0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

u
(e

n
V

)

Par lecture graphique ou par le calcul, déterminer :

a) l’amplitude U0 . . . . . . . . . . . . . .

b) la phase à l’origine φ . . . . . . . .

c) la période T . . . . . . . . . . . . . . . . .

d) la fréquence f . . . . . . . . . . . . . . .

e) la pulsation ω . . . . . . . . . . . . . . .

Entraînement 2.8 — Différence de phase.
La figure ci-dessous donne les représentations graphiques de deux signaux : le signal u1(t) = U0 cos(ωt) et
le signal u2(t) = U0 cos(ωt+ φ), où on a ω = 2π

3 rad · s−1.

temps (en s)0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

te
ns

io
n

(e
n

V
)

u1(t)
u2(t)

a) Le signal u2(t) est-il en avance ou en retard sur u1(t) ? . . . . . . . . . . . . .

b) En déduire le signe de φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Déterminer graphiquement φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 2.9 — Qui est qui ?
En travaux pratiques, vous faites l’acquisition de trois signaux périodiques : u1(t), u2(t) et u3(t).
Malheureusement, vous ne vous souvenez pas quelle voie d’acquisition vous avez utilisée pour chaque signal !
Vous savez que la tension u1(t) a pour période 300 µs, que la tension u2(t) a pour fréquence 8,0 kHz et que
la tension u3(t) a pour pulsation 1 × 104 rad · s−1.

t (en ms)0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10
−4

−3

−2

−1

0

1

2

3

4

te
ns

io
n

(e
n

V
)

Voie A
Voie B
Voie C

Attribuer chacun des graphes au signal qui lui correspond.

a) Voie A . . . . . . . . . . b) Voie B . . . . . . . . . . c) Voie C . . . . . . . . . .

Valeur moyenne et valeur efficace

La valeur moyenne Umoy et la valeur efficace Ueff d’un signal u(t) périodique de période T sont définies par
les formules :

Umoy = 1
T

ˆ T

0
u(t) dt et Ueff =

√
1
T

ˆ T

0
u(t)2 dt.

Entraînement 2.10 — Signal sinusoïdal.

On considère le signal sinusoïdal u(t) = U0 cos
(

2π
T
t

)
.

a) Calculer la valeur moyenne de u(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer la valeur efficace de u(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 2.11 — Un signal carré.
On considère le signal périodique carré dissymétrique u(t) représenté ci-dessous.

t (en s)0 1 2 3 4 5 6 7
0

1

2

3

u
(e

n
V

)

Calculer :

a) la valeur moyenne de u(t) . . . . . . b) la valeur efficace de u(t) . . . . . . . .

Entraînement 2.12 — Un signal carré, sans son dessin.

On considère le signal périodique carré défini par u(t) =
{
U0 si 0 < t ⩽ T/2
0 si T/2 < t ⩽ T.

Calculer :

a) la valeur moyenne de u(t) . . . . . . b) la valeur efficace de u(t) . . . . . . . .

Propagation d’un signal

Une onde progressive se propageant dans le sens des x croissants est un signal s(x, t) qui peut se mettre
sous la forme :

s(x, t) = f
(
t− x

c

)
,

où f est une fonction mathématique quelconque. La grandeur c est la célérité de l’onde, c’est-à-dire sa
vitesse de propagation.

Entraînement 2.13 — Éclair et tonnerre.
La foudre est une décharge électrique qui se produit pendant les orages et qui entraîne une lumière intense
(l’éclair) et un grondement sourd (le tonnerre).
La lumière se propage à la vitesse c = 3,00 × 108 m · s−1 et le son se propage à la vitesse cs = 344 m · s−1.
Vous mesurez à l’aide d’un chronomètre la durée entre le moment où vous voyez l’éclair et le moment où
vous entendez le tonnerre : vous trouvez ∆t = 5, 0 ± 0,5 s.

a) On considère que la lumière se propage instantanément entre le lieu de l’éclair et votre position.

Déterminer la distance à laquelle la foudre a frappé . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la durée de propagation de la lumière entre l’endroit où la foudre a frappé et votre position.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) L’hypothèse faite à la première question est-elle justifiée ? . . . . . . . . . . . . . . . . .
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Entraînement 2.14 — Vitesse de propagation.
Une vague s(x, t) se propage en direction des côtes. Ci-dessous, on représente l’allure de la surface de l’eau
aux instants t1 = 0 min et t2 = 1 min.

x (en m)100 200 300 400 500 600 700 800 900 10000

s(x, t1)
s(x, t2)

Déterminer la vitesse de propagation de la vague en km/h . . . . . . . . . . . . . . . . . . . .

Entraînement 2.15 — Onde progressive sinusoïdale.
Une onde progressive sinusoïdale a pour expression, en x = 0 :

s(0, t) = 2 sin(3,9 t+ 0,3π),

le temps t étant exprimé en secondes.
Elle se propage dans le sens des x croissants à la vitesse c = 30 cm · s−1.

a) Déterminer la période T du signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer la longueur d’onde λ du signal . . . . . . . . . . . . . . . . . . . . . . . . .

c) Donner l’expression générale de s(x, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

cos(α) −2 sin(t+ 4) cos(t+ 4) = − sin(2t+ 8) u1(t) oui 48 cm − sin(α)

1,7 km Courbe 4 cos2(t) − sin2(t) = cos(2t) 2A sin
(
ω2 − ω1

2 t

)
sin
(
ω1 + ω2

2 t

)
c u2(t) −2π

3 rad π

2 rad π rad · s−1 A sin(φ) cos(ωt) +A cos(φ) sin(ωt)

1,6 s 2 cos(2t) Courbe 1 0 En retard − sin(α) 1,5 V
√

3 V U0√
2

U0√
2

18 km/h φ < 0 1,5 V u3(t) cos(α) 2 sin(3,9t− 13x+ 0,3π) U0
2

2 s 0,5 Hz Courbe 3 2A cos
(
ω1 − ω2

2 t

)
cos
(
ω1 + ω2

2 t

)
Courbe 2 5,7 µs

▶ Réponses et corrigés page 203
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ELC01 ÉlectricitéFiche d’entraînement no 3

Étude des circuits électriques I

Prérequis
Lois des nœuds. Loi des mailles. Loi d’Ohm. Montages diviseurs.
Constantes utiles
→ nombre d’Avogadro : NA = 6,0 · 1023 mol−1

→ charge élémentaire : e = 1,6 · 10−19 C

Autour du courant électrique

Entraînement 3.1 — Une bataille de courants.
Lequel de ces trois courants électriques présente la plus forte intensité ?

a 5 000 électrons durant 1 ms
b 0,2 mol d’électrons durant 1 an

c 20 milliards d’électrons durant 1 min

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 3.2
L’intensité du courant traversant un fil de cuivre vaut I = 4,0 mA.

Combien d’électrons traversent la section du fil pendant 10 s ? . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 3.3 — Loi des nœuds (I).

i

i

i

•
A

•B •
C

•D

Les courants indiqués sur le schéma ci-dessus sont algébriques.
En utilisant la loi des nœuds, déterminer en fonction de i les courants suivants (on note iAB le courant qui
va de A vers B, etc.) :

a) iAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) iBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) iCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fiche no 3. Étude des circuits électriques I 15



Entraînement 3.4 — Loi des nœuds (II).

400 mA

i1

320 mA i2

i3

−50 mA

+

On considère le circuit électrique représenté ci-dessus.
À partir de la loi des nœuds, calculer l’intensité des courants sans utiliser la calculatrice.

a) i1 . . . . . . . . . . . . b) i2 . . . . . . . . . . . . c) i3 . . . . . . . . . . . .

Autour de la tension électrique

Entraînement 3.5 — Loi des mailles.

Un circuit électrique est formé d’une pile de f.é.m E et
de quatre dipôles. Certaines tensions sont indiquées.
À partir de la loi des mailles, exprimer en fonction de
E et U1 les tensions suivantes :

A

B

C

D

+E U

U1

a) U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) UAB = V (A) − V (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) UDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 3.6 — Calculer une tension.

On considère le circuit électrique formé de deux
sources idéales de tension et de quatre dipôles, comme
représenté ci-contre.

À partir de la loi des mailles, calculer les tensions :
12 V 6 V

U1
U2

U3
5 V

a) U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) U2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) U3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Loi d’Ohm

Entraînement 3.7 — Caractéristiques.
On considère les cas suivants :

• •
Ri

u

Résistance 1

• •
2R i

u

Résistance 2

• •
3R−i

u

Résistance 3

Dans chaque cas, exprimer i en fonction de u et R.

a) Résistance 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Résistance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Résistance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 3.8 — Résistances associées.
Exprimer la résistance équivalente des dipôles AB suivants :

a) •
A

•
B

R/2 R/3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) •
A

•
B

R/2

R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c)

•A

• B

. . .

. . .

N résistances

R R R R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) •
A

•
B

R(1 + a)

R

R(1 − a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 3.9 — Trois résistances équivalentes.

•A

•B

2 kΩ 1 kΩ

1 kΩ

dipôle 1

•A

•B

2 kΩ 2 kΩ 1 kΩ

1 kΩ 1 kΩ

dipôle 2

•A

•B

2 kΩ 2 kΩ 2 kΩ

1 kΩ 1 kΩ 1 kΩ

1 kΩ

dipôle 3

Sans utiliser la calculatrice, calculer la résistance équivalente :

a) du dipôle 1 . . . . . . b) du dipôle 2 . . . . . . c) du dipôle 3 . . . . . .

Entraînement 3.10 — Une autre résistance équivalente.

On considère le dipôle AB constitué uniquement de
conducteurs ohmiques.

• A

• B

2R R′

R

R

Exprimer la résistance équivalente du dipôle AB en fonction de R et R′ . . . . . . . . . . . . . . . .

Entraînement 3.11 — Quelle résistance choisir ?
La résistance équivalente d’un dipôle s’écrit :

Req = 4R(R+R′)
2R+R′ .

Déterminer la valeur de R′ pour que :

a) Req = 3R . . . . . . . . b) Req = 8
3R . . . . . . . c) Req = 2R . . . . . . . .

Résoudre une équation électrique

Entraînement 3.12 — Une équation de maille.
Dans un circuit, la loi des mailles se traduit par la relation R1I +R2(I0 + I) = 2R2I0.

a) On suppose que R1 = 2R2. Exprimer I en fonction de I0 . . . . . . . . . . .

b) Exprimer I en fonction de R1, R2 et I0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 3.13 — Circuit à 2 mailles.

On forme un circuit avec une pile et trois conducteurs
ohmiques. On définit les courants algébriques i et i1
comme indiqué ci-contre.

Exprimer E en fonction de i, i1 et R en appliquant la
loi des mailles dans la maille :

A

B D

EF

C

+E

i1

i

i − i1

R 3R

R/4

a) (ABCF) . . . . b) (ABDE) . . . .

Entraînement 3.14

Dans l’entraînement précédent, les grandeurs i et i1 vérifient le système
{

Ri+ 4Ri1 = 4E
13Ri− 12Ri1 = 4E.

a) Déterminer i en fonction de E et R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer i1 en fonction de E et R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diviseurs

Entraînement 3.15 — Un diviseur de tension.

On forme un circuit avec une pile de f.é.m E et quatre conduc-
teurs ohmiques. On définit les tensions U1, U2 et U3 comme
indiqué ci-contre.
Exprimer en fonction de E, R1, R2, R3 et R4, les tensions :

R1 R2

R4

R3+E

U1
U2

U3

a) U1 . . . . . b) U2 . . . . . c) U3 . . . . .

Entraînement 3.16 — Un diviseur de courant.

αR

R

i

i1

i2

a) Pour quelle valeur de α a-t-on i1 = i/3 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour quelle valeur de α a-t-on i2 = 3i1 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fiche no 3. Étude des circuits électriques I 19



Entraînement 3.17 — Exercice de synthèse (I).

On forme un circuit avec une pile et trois conducteurs
ohmiques. On définit les tensions U1 et U2 comme
indiqué ci-contre. +E R 3R

R/4

U1

U2

a) Calculer la résistance équivalente aux deux conducteurs ohmiques en parallèle . . . . . .

b) À l’aide de la formule du diviseur de tension, exprimer U1 en fonction de E et R . . .

c) Faire la même chose pour U2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 3.18 — Exercice de synthèse (II).

2R R

R

R

E

i
i1

i2

a) Après avoir simplifié le circuit, calculer i en fonction de E et R . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire i1 à partir de la formule du diviseur de courant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire i2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées
3
4R

3
4E

R2
R1 +R2

I0
ER1

R1 +R2 +R3 +R4
2R 3E

4R R

I0
3

−ER4
R1 +R2 +R3 +R4

1 V 2 −6 V −u/R u/3R
5
6R b 13

4 Ri− 3Ri1
4R(R+R′)

2R+R′ 0 0 E − U1 1 kΩ

7 V 80 mA 30 mA 2,5 · 1017 U1 − E
E

4R u/2R −E

4
R

(
1 − a2

3 − a2

)
R

N
− E

8R
R

5
E(R2 +R3)

R1 +R2 +R3 +R4
3 2i

i
3E
8R

E

R
1 kΩ −350 mA 1 kΩ E − U1

1
4Ri+Ri1

▶ Réponses et corrigés page 208
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ELC02 ÉlectricitéFiche d’entraînement no 4

Étude des circuits électriques II

Prérequis
La fiche Étude des circuits électriques I et les équations différentielles.

Bobines

En convention récepteur, l’inductance L d’une bobine vérifie l’équation différentielle :

u(t) = L
di(t)

dt .

L
i

u

Entraînement 4.1 — Bobine ou pas ?
On donne l’évolution de l’intensité i(t) et de la tension u(t) aux bornes d’un dipôle inconnu.

t

i(t)

t

u(t)

Ce dipôle inconnu se comporte-t-il comme une bobine ?

a oui b non
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.2 — Inductances équivalentes.
On considère deux bobines, d’inductances L et L′, regroupées dans les montages suivants :

L
i

L′

u

montage a

i

L

L′

u

montage b

a) Donner la relation entre u et i dans le montage a . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire l’inductance équivalente du montage a . . . . . . . . . . . . . . . . . . . . . . .

c) Donner la relation entre u et i dans le montage b . . . . . . . . . . . . . . . . . . . . . . . .

d) En déduire l’inductance équivalente du montage b . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.3 — Simplifions !
On souhaite remplacer les bobines par un dipôle équivalent.

E

R L/2

L L ⇐⇒ E

R

Leq

Déterminer Leq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Condensateurs

En convention récepteur, la capacité C d’un condensateur vérifie l’équation différentielle :

i(t) = dq(t)
dt = C

du(t)
dt .

C

u

+q −q

i

Entraînement 4.4 — Condensateurs équivalents.
On considère deux condensateurs, de capacités C et C ′, regroupés dans les montages suivants :

C
i

C ′

u

montage a

C

C ′

u

i

montage b

a) Donner la relation entre u et i dans le montage a . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la capacité équivalente du montage a . . . . . . . . . . . . . . . . . . . . . . . . .

c) Donner la relation entre u et i dans le montage b . . . . . . . . . . . . . . . . . . . . . . . .

d) En déduire la capacité équivalente du montage b . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.5 — Condensateur ou pas ?
On donne l’évolution de l’intensité i(t) et de la tension u(t) aux bornes d’un dipôle inconnu.

t

i(t)

t

u(t)

Ce dipôle inconnu se comporte-t-il comme un condensateur ?

a oui b non
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.6 — Simplifions !
On considère le montage suivant, constitué de plusieurs condensateurs, d’un générateur et d’un conducteur
ohmique. On souhaite remplacer les condensateurs par un dipôle équivalent.

E

R
C

C

2
C

2 ⇐⇒ E

R

Ceq

Déterminer Ceq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conditions initiales et régime stationnaire

On utilisera dans cette partie les notations suivantes pour une grandeur donnée x :
• x(0−) = lim

t→0
t<0

x(t) • x(0+) = lim
t→0
t>0

x(t) • x(+∞) = lim
t→+∞

x(t).

Entraînement 4.7 — Condensateurs et bobines en régime stationnaire.
En régime stationnaire, toutes les grandeurs électriques sont indépendantes du temps.
a) Dans ce cas, un condensateur se comporte comme :

a un interrupteur fermé b une source de tension c un interrupteur ouvert

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quant à la bobine, elle se comporte comme :

a un interrupteur fermé b une source de courant c un interrupteur ouvert

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.8 — Éclairage en régime permanent.
On considère le circuit suivant, constitué de lampes (symbolisées par ) que l’on peut assimiler à des
résistances qui brillent quand elles sont parcourues par un courant électrique :

E

L

A2

A1

A3

C

Le régime permanent étant établi, la ou les ampoules qui brillent sont :

a l’ampoule A1 b l’ampoule A2 c l’ampoule A3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.9 — Relations de continuité.

Dans ce QCM, plusieurs réponses sont possibles pour chaque question.

a) Aux bornes de quel(s) dipôle(s) la tension est-elle toujours continue ?

a une résistance
b une bobine

c un condensateur
d un interrupteur fermé

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On considère les deux circuits (1) et (2) pour lesquels l’opérateur ferme l’interrupteur à l’instant t = 0.
On suppose de plus que le condensateur est initialement déchargé.

E

R

uR

i

L uL

(1)

E

R

uR

i

C uC

(2)

b) Quelles sont les grandeurs continues à t = 0 pour le circuit (1) ?

a i b uL c uR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quelles sont les grandeurs continues à t = 0 pour le circuit (2) ?

a i b uC c uR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 Fiche no 4. Étude des circuits électriques II



On considère à présent les deux circuits (3) et (4) pour lesquels l’opérateur ferme l’interrupteur à l’instant
t = 0. On suppose de plus que les condensateurs sont initialement déchargés.

E

L

uL

i

R

uR

C uC

(3)

E

L

uL

i

C

i1

L′u

i2

(4)

d) Quelles sont les grandeurs continues à t = 0 pour le circuit (3) ?

a i b uL c uR d uC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Quelles sont les grandeurs continues à t = 0 pour le circuit (4) ?

a i b i1 c u d uL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.10 — Conditions initiales pour circuits du premier ordre.
On considère trois circuits constitués de générateurs de tension de f.é.m. constante E, de conducteurs de
résistance R ainsi que de condensateurs de capacité C et d’une bobine d’inductance L.
L’interrupteur K est ouvert pour t < 0 et fermé pour t > 0.
Tous les condensateurs sont initialement déchargés.

E

R
i

L uL

K

(1)

E

R
i

C uC

K

(2)

E

R

uR

i

C

i1

Ru

i2
K

(3)

On considère dans un premier temps le circuit (1).

a) Exprimer i(0+) . . . . . . . . . . . . . . . . . b) Exprimer uL(0+) . . . . . . . . . . . . . . .

On considère à présent le circuit (2).

c) Exprimer i(0+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On considère finalement le circuit (3).

d) Exprimer uR(0+) . . . . . . . . . . . . . . . e) En déduire i1(0+) . . . . . . . . . . . . . .
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Entraînement 4.11 — Circuit à deux mailles.
Le circuit suivant, constitué de deux mailles indépendantes, est alimenté par un générateur de tension de
f.é.m. E constante :

E

R

L

uL

i

C u

i1

R

2
i2

K

Pour ce circuit, on considère de plus que :
• l’interrupteur K est ouvert pour t < 0 et fermé pour t > 0 ;
• le condensateur est initialement déchargé.

Exprimer :

a) u(0+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) du
dt (0+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) i(+∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) u(+∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Circuits du premier ordre

On dit qu’un circuit est du premier ordre quand il est régi par une équation différentielle qui se met sous
la forme canonique suivante :

dx(t)
dt + 1

τ
x(t) = f(t), (∗)

où τ est la constante de temps représentative de la durée du régime transitoire.
Quand l’équation différentielle est écrite comme dans (∗), on dit qu’elle est sous forme canonique.

Entraînement 4.12 — Constantes de temps.
On donne des exemples d’équations différentielles régissant des grandeurs électriques d’un circuit.
Dans chaque cas, déterminer l’expression de la constante de temps τ .

a) L
di(t)

dt = E −Ri(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) RC
duC(t)

dt = E − 2uC(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.13 — Des mises en équations.
On cherche à obtenir l’équation différentielle qui régit le comportement d’une grandeur électrique dans
chacun des circuits suivants.
Cette équation devra être donnée sous forme canonique.

E

R
i

L

(1)

E

R
i

C uC

(2)

E

R

i

N

C

i1

Ru

i2

(3)

On considère le circuit (1).
a) À partir de la loi des mailles, déterminer l’équation différentielle vérifiée par i(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On considère maintenant le circuit (2). Déterminer :

b) l’équation différentielle vérifiée par uC(t) . . . . . . . . . . . . . . . . .

c) l’équation différentielle pour le courant i(t) . . . . . . . . . . . . . . .

On considère enfin le circuit (3), qui comporte deux mailles. En appliquant la loi des nœuds au point N,
déterminer :

d) la relation entre le courant i(t), la tension u(t) et du(t)
dt . .

e) En déduire l’équation différentielle pour la tension u(t) . . .

Entraînement 4.14 — Allez, on s’entraîne !
N’oubliez pas d’exprimer une solution particulière avant d’appliquer les conditions initiales !

a) Résoudre duC(t)
dt + 1

τ
uC(t) = E

τ
avec uC(0) = 0 . . . . . . . . . . .

b) Résoudre di(t)
dt + 1

τ
i(t) = 0 avec i(0) = E

R
. . . . . . . . . . . . . . . . .

c) Résoudre du(t)
dt + 1

τ
u(t) = E

2τ avec u(0) = E

2 . . . . . . . . . . . . .
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Entraînement 4.15 — Analyse de courbes.
Les graphes ci-dessous représentent l’évolution de trois grandeurs au cours du temps :

• deux tensions u1(t) et u2(t) ;
• une intensité i(t).

10 20 30 40 50 60 70 80

1

2

3

4

t (en ms)

gr
an

de
ur

(e
n

m
A

ou
en

V
) courbe 1

10 20 30 40 50 60 70 80

1

2

3

4

t (en ms)

courbe 2

10 20 30 40 50 60 70 80

1

2

3

4

t (en ms)

courbe 3

a) On a :
u1(t) = E1

(
1 − e−t/τ

)
.

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On a :

u2(t) = E2

(
1 − e−t/τ

2

)
.

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) On a :
i(t) = E1

R
e−t/τ .

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Déterminer les valeurs numériques de :

d) E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Circuits du second ordre

Entraînement 4.16 — Équation canonique.
De nombreux circuits du second ordre sont en fait des oscillateurs dont l’équation canonique est de la
forme :

d2x(t)
dt2 + ω0

Q

dx(t)
dt + ω2

0 x(t) = f(t),

où ω0 est appelée pulsation propre et Q facteur de qualité.
Donner la dimension de :

a) ω0 . . . . . . . . . . . . . . . . . . . . . . . b) Q . . . . . . . . . . . . . . . . . . . . . . . .

On considère l’équation RC
d2i(t)

dt2 + di(t)
dt + R

L
i(t) = 0. Exprimer :

c) ω0 . . . . . . . . . . . . . . . . . . . . . . . d) Q . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.17 — Mise en équation.
On considère les deux circuits suivants, pour lesquels les f.é.m. des générateurs de tension E sont constantes.

E

R
i

C u

L

montage 1

E

R
i

C

i1

Lu

i2

montage 2

À l’aide de la loi des mailles et des nœuds, établir l’équation différentielle vérifiée par la tension u :

a) Dans le montage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Dans le montage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.18 — Équations du type « oscillateur harmonique ».

a) Résoudre d2uC(t)
dt2 + ω2

0 (uC(t) − E) = 0 avec

uC(0) = 0
duC

dt (0) = 0
.

b) Résoudre d2i(t)
dt2 + ω2

0 i(t) = 0 avec

i(0) = 0
di
dt (0) = E

L

. . . . . . . . . . . .
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Entraînement 4.19 — Réponses d’un circuit du second ordre.
Les graphes ci-dessous représentent l’évolution de trois tensions u1(t), u2(t) et u3(t) au cours du temps.
Toutes ces grandeurs évoluent suivant une équation différentielle du type :

d2x(t)
dt2 + ω0

Q

dx(t)
dt + ω2

0 x(t) = Cte.

10 20 30 40 50 60 70 80
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−4
−2

0
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courbe 3

a) Quelle courbe est associée au plus grand facteur de qualité Q ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On a :
u1(t) = ae−t/τ1 − be−t/τ2 .

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) On a :
u2(t) = E sin(Ωt) e−t/τ .

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) On a :
u3(t) = E

[
1 − (cos(Ω′t) + a sin(Ω′t))e−t/τ ′

]
.

Quelle est la courbe correspondante ?

a courbe 1 b courbe 2 c courbe 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Déterminer la valeur numérique de la pseudo-pulsation Ω qui intervient dans u2(t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

1
3E a , b et c Q est sans dimension i = (C + C ′)du

dt
RC

2 a , c et d
di(t)

dt + 1
RC

i(t) = 0 4 V b E

R
uC(t) = E

(
1 − e−t/τ

)
uC(t) = 1

2E

a E × (1 − cos(ω0t)) 1,2 × 103 rad · s−1 d2u

dt2 + 1
RC

du
dt + 1

LC
u = 0

c LL′

L+ L′ c d2u

dt2 + R

L

du
dt + 1

LC
u = E

LC
C + C ′ 0 b

du
dt =

(
1
C

+ 1
C ′

)
i c L+ L′ c et d b C

2
E

R

u = L
di
dt + L′ di

dt 4 V duC

dt + 1
RC

uC = 1
RC

E b i(t) = E

R
e−t/τ

CC ′

C + C ′ 0 L
du
dt + 2

RC
u = E

RC

1√
LC

1,3 kΩ a E

[ω0] = T−1 R

√
C

L
a a et c b di

dt = u

L
+ u

L′
2E
3R

di
dt + R

L
i = E

L
0 E i = u

R
+ C

du
dt

E

Lω0
sin(ω0t) a L

R
b

▶ Réponses et corrigés page 213
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ELC03 ÉlectricitéFiche d’entraînement no 5

Étude des filtres

Prérequis
Trigonométrie. Nombres complexes. Association de dipôles. Signaux pério-
diques. Spectres de Fourier.

Nombres complexes et association de dipôles

Entraînement 5.1 — Un entraînement fondamental.
Un nombre complexe peut se mettre sous les formes suivantes :

• Z = a+ jb avec a sa partie réelle et b sa partie imaginaire ;
• Z = Z0 exp (jφ) = Z0

(
cos(φ) + j sin(φ)

)
avec Z0 ⩾ 0 son module et φ ∈ R un argument.

a) Exprimer Z0 en fonction de a et b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On suppose a ̸= 0. Exprimer tan(φ) en fonction de a et b . . . . . . . . . . .

On suppose que φ ∈ ] − π, π].
c) Si a ⩾ 0, que peut-on dire de φ ?

a φ ∈ [0, π]
b φ ∈ [0, π/2]

c φ ∈ [π/2, π]
d φ ∈ ] − π, 0]

e φ ∈ [−π/2, π/2]
f φ ∈ ] − π/2, 0]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Si a > 0 et b ⩽ 0, que peut-on dire de φ ?

a φ ∈ [0, π]
b φ ∈ [0, π/2]

c φ ∈ [π/2, π]
d φ ∈ ] − π, 0]

e φ ∈ [−π/2, π/2]
f φ ∈ ] − π/2, 0]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 5.2 — Impédances complexes des composants de base.
Les impédances complexes d’un résistor de résistance R, d’une bobine d’inductance L et d’un condensateur
de capacité C auxquels on impose une pulsation ω sont respectivement :

ZR = R, ZL = jLω et ZC = 1
jCω .

Calculer le module Z0 et l’argument φ ∈ ] − π, π] de chacune de ces impédances :

a) Z0 de ZR . . .

b) φ de ZR . . . . .

c) Z0 de ZL . . . .

d) φ de ZL . . . . .

e) Z0 de ZC . . .

f) φ de ZC . . . . .
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Entraînement 5.3 — Associations de dipôles.
On rappelle la règle pour déterminer l’impédance complexe équivalente à celle de dipôles associés :

� si les dipôles sont en série : Zeq =
∑

i

Zi ;

� si les dipôles sont en parallèle : Zeq = 1∑
i 1/Zi

.

À l’aide de ces règles, déterminer l’impédance complexe ZAB des associations de dipôles suivantes :

a)

•A

R
C

•B

b)

•A

R

L

•B

c)

•A

R

•B

L

C d)

•A

C
L

•B

R

a) ZAB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) ZAB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ZAB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) ZAB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.4 — À la recherche de la bonne impédance.
Un groupe d’étudiants doit trouver l’impédance ZAB du dipôle AB ci-dessous :

•A

R L

C

•B

Quelle proposition correspond à l’impédance du dipôle AB ?

a ZAB = R+ jLω
1 − LCω2 + jRCω b ZAB = R+ jLω

1 + LCω2 + jRCω c ZAB = R+ jLω
1 + LCω2 − jRCω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signaux périodiques

Entraînement 5.5 — Analyse du signal provenant d’un GBF.

En TP, un élève observe à l’oscilloscope la tension dé-
livrée par un générateur de basses fréquences (GBF).
Aider cet élève à analyser le signal de tension me-
suré ci-contre en déterminant sa fréquence f0 et son
amplitude U0.

a) f0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . base de temps : 20 µs/division
calibre vertical : 1 V/division

0V

Entraînement 5.6 — Expression d’une tension.
Nous disposons d’une tension sinusoïdale u(t) de période T0 = 1 ms, d’amplitude U0 = 2 V et de phase à
l’origine φ = 0 rad.
Parmi les propositions ci-dessous, laquelle correspond à l’expression littérale de cette tension u(t) ?

a u(t) = U0 cos
(
t

T0

)
b u(t) = U0

2 cos
(

2π
T0
t

) c u(t) = U0
2 cos

(
t

T0

)
d u(t) = U0 cos

(
2π
T0
t

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.7 — Modulation d’amplitude.
On considère un signal modulé, de la forme :

s(t) = S0 cos
(
2πfpt

)
×
(

1 +m cos(2πf0t)
)

avec
{

0 < m < 1
fp > f0.

a) On rappelle que : {
cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b).

En calculant cos(a+ b) + cos(a− b), trouver une formule pour cos(a) cos(b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Développer s(t) et faire apparaître des sommes de cosinus.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On constate que le signal s(t) peut s’écrire comme la somme de trois signaux sinusoïdaux d’amplitudes et
de fréquences spécifiques. On représente les différentes amplitudes des composantes de s(t) en fonction de
leur fréquence. Cette représentation est appelée spectre en amplitude de s(t).
Le but de cet entraînement est de déterminer lequel des spectres ci-dessous ( a , b ou c ) est celui du
signal s(t) :

a

f

Amplitude

fp

•

fp −f0

•

fp +f0

•

S0

mS0

2

b

f

Amplitude

fp

•

fp −f0

•

fp +f0

•S0

c

f

Amplitude

fp

•

fp −f0

•

fp +f0

•S0

mS0

2

c) Donner l’amplitude de la composante de fréquence fp de s(t) . . . . . . .

d) Donner l’amplitude de la composante de fréquence fp + f0 de s(t) . .

e) Donner l’amplitude de la composante de fréquence fp − f0 de s(t) . .

f) Déterminer le spectre ( a , b ou c ) correspondant à s(t) . . . . . . . .
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Entraînement 5.8 — Pêle-mêle.
Un étudiant dispose de quatre spectres en amplitude et de quatre signaux. Malheureusement, l’ensemble
est mélangé. Pouvez-vous l’aider à associer le bon signal au bon spectre ( a , b , c ou d ) ?

Spectre a Spectre b

f (en kHz)

Amplitude (en V)

10

0,2
0

• •

•
•

f (en kHz)

Amplitude (en V)

10

0,2
0

• •

•
•

Spectre c Spectre d

f (en kHz)

Amplitude (en V)

0 1

0,2
0

•

•
•

f (en kHz)

Amplitude (en V)

0 1

0,2
0

•

•
•

Signal no 1 Signal no 2

A1

(
cos(ω0t) + 1

2 cos(3ω0t) + 1
3 cos(5ω0t)

)
A2

(
1 + sin(ω0t) + 1

2 sin(2ω0t) + 1
3 sin(3ω0t)

)
avec A1 = 1 V et f0 = 1 kHz avec A2 = 1 V et f0 = 2 kHz

Signal no 3 Signal no 4

A3

(
cos((ω0 − ω1)t) + 1

2 cos((ω0 + ω1)t) A4

(
1 + sin(ω0t) + 1

2 sin(3ω0t) + 1
3 sin(5ω0t)

)

+ 1
3 cos((ω0 + 3ω1)t)

)
avec A3 = 1 V, f0 = 3 kHz et f1 = 1 kHz avec A4 = 1 V et f0 = 1 kHz

a) Spectre du signal no 1 . . . . . . .

b) Spectre du signal no 2 . . . . . . .

c) Spectre du signal no 3 . . . . . . .

d) Spectre du signal no 4 . . . . . . .
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Fonctions de transfert

Entraînement 5.9 — Filtre passe-bande.

Nous disposons du filtre ci-contre, constitué de deux dipôles dont les
impédances complexes sont :

Z1 = R+ 1
jCω et Z2 = R

1 + jRCω avec C = 47 nF et R = 1 kΩ.

Z1

Z2 usue

Nous souhaitons écrire la fonction de transfert du filtre H(jω) = us

ue

sous sa forme canonique :

H(jx) = H0

1 + jQ
(
x− 1

x

) avec x = ω

ω0
.

a) À l’aide d’un pont diviseur de tension,

exprimer H(jω) . . . . . . . . . . . .

b) Identifier H0 . . . . . . . . . . .

c) Identifier Q . . . . . . . . . . . .

d) Identifier et calculer ω0 .

Entraînement 5.10 — Filtre du second ordre.

Nous disposons d’un filtre passe-bas de fonction de
transfert :

H(jx) = us

ue

= H0

1 + jx
Q − x2

avec x = ω

ω0
. On a C = 10 µF et R = 220 Ω.

•
M

C

R
i

Ri1

C

i2

usuue

Un étudiant obtient les trois égalités suivantes :

Ri = ue − u, Ri1 = u− us et Ri2 = jRCωu.

a) À l’aide de la loi des nœuds, exprimer i en fonction de i1 et i2 . . . . . . . . . . . . . . . . . .

b) Utiliser la réponse précédente et les trois égalités fournies pour exprimer ue en fonction de u et us.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’étudiant montre, grâce à un pont diviseur de tension, que u = (1 + jRCω)us.

c) En déduire la fonction de transfert simplifiée H(jω) . . . . . . . . . .

En comparant la réponse précédente à la forme canonique de H(jω) donnée, identifier :

d) H0 . . . . . . . . . . e) ω0 . . . . . . . . . . . f) Q . . . . . . . . . . . .
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De la fonction de transfert au diagramme de Bode

Entraînement 5.11 — Calcul de gain en décibels.

On considère les fonctions de transfert suivantes : H1 = 3,0 ; H2 = j ω
ω0

et H3 = 1 + j ω
ω1

.

Le gain en décibels GdB d’un filtre se détermine à partir de la relation :

GdB = 20 log
(

|H|
)
.

Déterminer le gain en décibels associé aux différentes fonctions de transfert ou combinaisons de fonctions
de transfert ci-dessous :

a) H1 . . . . . . . . . .

b) H2 . . . . . . . . . .

c) H3 . . . . . . . . . .

d) H1 −H2 . . . .

e) H2
H3

. . . . . . . . .

f) H2 ×H3 . . . .

Entraînement 5.12 — Calcul de phase.

On reprend les mêmes fonctions de transfert que précédemment : H1 = 3,0 ; H2 = j ω
ω0

et H3 = 1 + j ω
ω1

.

Le déphasage φ introduit par un filtre entre les signaux d’entrée et de sortie se détermine à partir de la
relation :

φ = arg(H) = arctan
(

Im(H)
Re(H)

)
.

Déterminer le déphasage associé aux différentes fonctions de transfert ou combinaisons de fonctions de
transfert ci-dessous :

a) H1 . . . . . . . . . .

b) H2 . . . . . . . . . .

c) H3 . . . . . . . . . .

d) H1 −H2 . . . .

e) H2
H3

. . . . . . . . .

f) H2 ×H3 . . . .

Entraînement 5.13 — Diagramme de Bode en phase.

On utilise un filtre passe-haut de fonction de transfert H(jx) = jx
1 + jx avec x = ω

ω0
.

Déterminer la valeur du déphasage φ(x) = arg
(
H(jx)

)
du filtre pour des signaux tels que :

a) ω = ω0 (la pulsation propre du filtre) . . . . . . . . . . . . . . . . . . . . . . . .

b) ω ≫ ω0 (en hautes fréquences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ω ≪ ω0 (en basses fréquences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.14 — Calcul de gain.
Pour les fonctions de transfert suivantes, évaluer le gain G(x) =

∣∣H(jx)
∣∣ pour x = 1.

a) H(jx) = 1 − jx
1 + jx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) H(jx) = − jx
1 + jx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) H(jx) = 1
1 + 2jmx+ (jx)2 avec m = 2 . . . . . . . . . .

Entraînement 5.15 — Tracé sur papier semi-logarithmique.
Un élève souhaite étudier le comportement d’un filtre passe-haut en basses fréquences. Pour cela, il relève
les amplitudes des tensions d’entrée et de sortie pour différentes fréquences bien inférieures à la fréquence
de coupure du filtre.

Fréquence (en Hz) 200 700 2 000
Amplitude du signal d’entrée (Uentrée en V) 1 1 1
Amplitude du signal de sortie (Usortie en V) 0,04 0,14 0,40

101 102 103 104
−40

−30

−20

−10

0 f

GdB

1

Le gain en décibels est donné par la relation GdB = 20 log
(
Usortie
Uentrée

)
.

Calculer le gain en décibels pour chacune des fréquences et placer le point correspondant sur le graphe
ci-dessus.

a) Point A : f = 200 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Point B : f = 700 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Point C : f = 2 000 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Déterminer la pente de la droite passant les points A, B et C . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.16 — Bande passante et facteur de qualité d’un filtre.
On dispose d’un filtre passe-bande de fréquence propre f0 = 15 kHz, dont les deux fréquences de coupure
à −3 dB sont fc1 et fc2 (avec fc1 < fc2), et dont la fréquence de résonance est fr.
Le diagramme de Bode en gain du filtre en fonction de x = f/f0 et un agrandissement sont fournis.

10−1 100 101 102

−40

−30

−20

−10

0 x = ω

ω0

GdB
100 101

−8

−6

−4

−2

0 x = ω

ω0

GdB

À partir des graphiques donnés ci-dessus, déterminer les différentes grandeurs caractéristiques du filtre :

a) fr . . . . . . . . . . . . b) fc1 . . . . . . . . . . . c) fc2 . . . . . . . . . . .

Réponses mélangées

0 1
2 cos(a+ b) + 1

2 cos(a− b) RjLω
R+ jLω −RLCω2 e

20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)

u(2 + jRCω) − us

π

2 1/3 π

2 + arctan
(
ω

ω1

)
1
3

1 + 1
3jRCω + jRCω

3
10 kHz

√
a2 + b2 R

(
1 − LCω2)

1 − LCω2 + jRCω f − arctan
(

ω

3ω0

)
19,2 kHz −8,0 dB 1/

√
2 i1 + i2 10 log

(
1 +

(
ω

ω1

)2
)

d

a R+ 1
jCω 1 1

Cω
−π/2 20 log

(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)

1/3 d a 1/3 b/a +20 dB/décade 2,1 × 104 rad/s 1

π/2 π/2

S0 cos(2πfpt)

+mS0
2

(
cos(2π(fp + f0)t)

+ cos(2π(fp − f0)t)
) 0 1

1 + 3jRCω − (RCω)2

π

2 − arctan
(
ω

ω1

)
c arctan

(
ω

ω1

)
9,5 dB 15,0 kHz −28,0 dB

mS0/2 11,7 kHz RjLω
R+ jLω 20 log

(
ω

ω0

)
mS0/2 π/4 b R

0 Lω 2,5 V −17,1 dB 1
RC

1/4 S0 a 10 log
(

9 +
(
ω

ω0

)2
)

▶ Réponses et corrigés page 220
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ELC04 ÉlectricitéFiche d’entraînement no 6

Énergie et puissance électriques

Prérequis
Puissance électrique. Relation puissance-énergie. Expression des énergies
stockées dans une bobine et dans un condensateur. Effet Joule.

Pour commencer

Entraînement 6.1 — Puissance et énergie.
Le chargeur d’un téléphone portable consomme une puissance de 5 W. La charge complète de la batterie
(à partir d’une batterie vide) prend 55 min.

Calculer l’énergie E contenue dans la batterie :

a) en joules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) en watts-heures (Wh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.2 — Voiture de série contre Formule 1.
Les voitures de course « Formule 1 » sont des véhicules hybrides : elles possèdent à la fois un moteur
thermique et un moteur électrique. On souhaite comparer le moteur électrique d’une Formule 1 à celui
d’une simple voiture électrique de série.
On donne les informations suivantes :

Hyundai Ioniq 6 Formule 1
Capacité batterie 77,4 kWh 4 MJ
Puissance moteur 239 kW 160 cv

Consommation moyenne 15,1 kWh/100km

On indique que 1 cv = 0,735 kW.

a) Calculer l’autonomie en km de la batterie de la Hyundai Ioniq 6 . . . . . . . . . .

b) Quel véhicule possède la batterie de plus grande capacité ? . . . . . . . . . . . . . . . .

c) Quel véhicule possède le moteur électrique le plus puissant ? . . . . . . . . . . . . . .
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Entraînement 6.3 — Identification de courbes.
Une tension u(t) est appliquée aux bornes d’un conducteur ohmique de résistance R = 10 Ω.
Identifier parmi les courbes proposées celle correspondant à la puissance

P(t) = u2(t)
R

dissipée par effet Joule dans la résistance.
a) Pour u(t) = 3 sin(ωt) avec ω = 2π rad · s−1.

a

0 0,5 1 1,5 2
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

b

0 0,5 1 1,5 2
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

c

0 0,5 1 1,5 2
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

d

0 0,5 1 1,5 2
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour u(t) = 1 + 2 cos(ωt) avec ω = π rad · s−1.

a

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

b

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

c

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

d

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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c) Pour u(t) = 3 exp
(

− t

τ

)
avec τ = 2 s.

a

0 1 2 3 4 5 6
0

0,5

1
P

(t
)

(e
n

W
)

t (en s)

b

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

c

0 1 2 3 4 5 6
0

0,5

1

P
(t

)
(e

n
W

)

t (en s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.4 — Un calcul graphique.
Pour un dipôle soumis à un signal alternatif harmonique, la puissance moyenne vaut :

Pmoy = U0I0
2 cos(φ),

où U0 et I0 sont respectivement l’amplitude de la tension et du courant et où φ représente la valeur du
déphasage angulaire entre la tension et l’intensité du courant.
Les figures ci-dessous donnent les représentations graphiques de la tension u(t) et de l’intensité i(t) en
convention récepteur.

0 1 2 3 4 5 6 7 8
−4
−2

0
2
4

temps (en ms)

u
(t

)
(e

n
V

)

0 1 2 3 4 5 6 7 8
−10
−5

0
5

10

temps (en ms)

i(
t)

(e
n

A
)

Déterminer la puissance moyenne reçue par ce dipôle . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 6.5 — Des calculs de puissance.
On souhaite calculer la puissance reçue par un dipôle. Quand celui-ci est alimenté par une tension u(t) et
parcouru par un courant i(t), la puissance moyenne reçue est donnée par la formule :

Pmoy = 1
T

ˆ T

0
u(t) × i(t) dt,

où T est la période du signal.

Dans un premier temps, on considère les signaux u(t) = u0 cos(ωt+ ψ) et i(t) = i0 cos(ωt+ ψ).

a) Combien vaut la période T pour ces signaux ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer Pmoy pour ces signaux.

On pourra utiliser la formule cos2(x) = 1 + cos(2x)
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maintenant, on considère les signaux u(t) = u0 cos(ωt) et i(t) = i0 cos(ωt+ φ).
c) Calculer Pmoy pour ces signaux.

On pourra utiliser la formule cos(a) cos(b) = 1
2
(

cos(a+ b) + cos(a− b)
)

. . . . . . . . . .

Enfin, on considère les signaux u(t) = u0 ×
(
1 + cos(ωt)

)
et i(t) = i0 ×

(
2 + sin(ωt+ ψ)

)
.

d) Calculer Pmoy pour ces signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.6 — Calcul de puissance en RSF.
En régime sinusoïdal forcé, un générateur idéal de tension u alimente un dipôle inconnu en délivrant un
courant i. Dans ce cas, la puissance moyenne peut être calculée à l’aide de la formule :

Pmoy = 1
2 Re(u · i⋆) = 1

2 Re(u⋆ · i),

où x⋆ est le complexe conjugué de x.

Exprimer la puissance moyenne reçue par le dipôle quand :

a) u = Uejωt et i = jCωu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) i = Iejωt+φ et u = jLωi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) u =
√

2(1 − j)ejωt et i = 3
(

1
2 + j

√
3

2

)
ejωt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) u = 4
√

2ej(ωt+π/4) et i = (3 + 5j)ejωt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Régime permanent

Entraînement 6.7 — Puissance consommée.

Soit un générateur réel de f.é.m. E constante et de résis-
tance interne r.
On branche à ses bornes un conducteur ohmique de résis-
tance variable R.

E

r
I

R

a) Déterminer l’intensité du courant qui circule dans le circuit . . . . . . . . . . . . . . .

b) Déterminer la puissance P dissipée dans le conducteur ohmique en fonction de E, r et R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.8 — Optimisation de puissance échangée.
Dans un certain circuit, la puissance dissipée dans un conducteur ohmique de résistance R vaut :

P = E2 R

(r +R)2 ,

où r est un paramètre.
On souhaite déterminer quelle valeur de R permet d’optimiser la puissance reçue par la résistance R, étant
donné les caractéristiques de la source.

a) Calculer dP
dR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Trouver la valeur Rmax pour laquelle P(R) est maximale :

a Rmax = R

b Rmax = r

c Rmax = R+ r

d Rmax = R2

r +R

e Rmax = 1
1
r + 1

R

f Rmax = R × er/R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.9 — Un peu de calcul algébrique.
On considère une résistance R définie par :

R = R0 × er/R0 .

Déterminer, en fonction de R0, la valeur du paramètre r pour que R = 2R0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 6.10 — Charge d’une batterie.
Une batterie de voiture est déchargée. Pour recharger cette batterie, de f.é.m. e = 12 V et de résistance
interne r = 0,2 Ω, on la branche sur un chargeur de f.é.m. E = 13 V et de résistance interne R = 0,3 Ω.
On a alors le circuit suivant :

E

R

I

r

e

Chargeur Batterie

U

On lit sur la batterie qu’elle a une capacité de 50 A · h (ampères-heures).

a) Exprimer le courant I circulant dans la batterie en fonction de E, e, R et r.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer la tension U aux bornes de la batterie lors de la charge en fonction de E, e, R et r.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer la puissance délivrée par la source de f.é.m. E en fonction de E, e, R et r.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer la puissance dissipée par effet Joule dans le circuit en fonction de E, e, R et r.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Exprimer la puissance reçue par la batterie en fonction de E, e, R et r.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Le rendement η de la charge est égal au rapport de la puissance reçue par la batterie par la puissance
fournie par la source E.
f) Déterminer l’expression du rendement η en fonction de E et e.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Calculer la valeur numérique du rendement η . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 6.11 — Énergie d’un condensateur en régime permanent.

En régime permanent, l’énergie stockée dans un condensateur de capacité C est E = 1
2Cu

2, où u est la
tension à ses bornes.

6 V 3C

2C
R

12 V C

Circuit no 2

E C

R

2R 2C
3C

R

Circuit no 1

a) On considère que le régime permanent est établi dans le circuit no 1.
Dans quel condensateur l’énergie stockée est-elle la plus importante ?

a C b 2C c 3C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Même question pour le circuit no 2.

a C b 2C c 3C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 6.12 — Énergie d’une bobine en régime permanent.

En régime permanent, l’énergie stockée dans une bobine d’inductance L est E = 1
2Li

2 où i est le courant
qui la traverse.

3 A

2L L

4 A

3L

Circuit no 3

E

L

R

R

R

2L

3L

2R

Circuit no 4

a) On considère que le régime permanent est établi dans le circuit no 3.
Dans quelle bobine l’énergie stockée est-elle la plus importante ?

a L b 2L c 3L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Même question pour le circuit no 4.

a L b 2L c 3L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Bilans d’énergie pour des circuits soumis à des échelons de tension

Prérequis
L’énergie E fournie à un dipôle entre les temps t0 et t1 est égale à

E =
ˆ t1

t0

P(t) dt,

où P(t) est la puissance instantanée fournie à ce dipôle.

Entraînement 6.13 — Charge d’un condensateur.
Soit le circuit ci-contre dans lequel le condensateur C est
initialement déchargé.
À t = 0, on ferme l’interrupteur K.
Dans ces conditions, la tension aux bornes du condensateur
vaut :

uC(t) = E(1 − exp(−t/τ)),

avec τ = RC. L’intensité dans le circuit vaut :

i(t) = CE

τ
exp(−t/τ).

E

K Ri

CuC(t)

Exprimer, en fonction des grandeurs introduites :

a) la puissance instantanée PE(t) délivrée par la source de f.é.m. E . . . . . . . . . .

b) la puissance instantanée PJ(t) dissipée par effet Joule dans le circuit . . . . . .

c) la puissance instantanée PC(t) reçue par le condensateur . . . . . . . . . . . . . . . . .

d) l’énergie totale EE fournie par la source de tension que l’on calculera grâce à la formule :

EE =
ˆ ∞

0
PE(t) dt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) l’énergie totale EJ dissipée par effet Joule que l’on calculera grâce à la formule :

EJ =
ˆ ∞

0
PJ(t) dt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) l’énergie totale EC fournie au condensateur que l’on calculera grâce à la formule :

EC =
ˆ ∞

0
PC(t) dt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 6.14 — Aspects énergétiques du circuit RLC.
On considère le montage ci-dessous dans lequel le condensateur est initialement déchargé.

E

K R

uR(t)

i

LuL(t)

C

uC(t)

À t = 0, on ferme l’interrupteur K.
À t = 0+, on a uC(t = 0+) = 0 et i(t = 0+) = 0.
En régime permanent, on a uC(t → +∞) = E et i(t → +∞) = 0.

a) Exprimer la puissance instantanée PE(t) fournie par la source en fonction de E et uC(t).

On pourra s’aider de la relation i(t) = C
duC

dt .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer la puissance instantanée PC(t) reçue par le condensateur en fonction de uC(t) et C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer la puissance instantanée PL(t) reçue par la bobine en fonction de i(t) et L.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

En intégrant les expressions des puissances instantanées aux bornes de chaque dipôle, exprimer en fonction
des grandeurs introduites :

d) l’énergie totale fournie par la source de tension . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) l’énergie totale fournie au condensateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) l’énergie totale fournie à la bobine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) En exploitant les résultats précédents, exprimer l’énergie totale dissipée par effet Joule.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Bilan d’énergie en régime sinusoïdal forcé

Entraînement 6.15 — Adaptation d’impédance.
On considère un dipôle d’impédance Zu branché aux bornes
d’un générateur de f.é.m. eG(t) et d’impédance interne ZG.
On notera : Zu = Ru + jXu et ZG = RG + jXG.
Le dipôle Zu est traversé par le courant d’intensité i(t).
On écrit, en notation complexe :

eG = E
√

2ejωt et i = I
√

2ej(ωt+φ).

eG

i ZG

Zu

La puissance moyenne reçue par l’impédance Zu vaut :

Pm = 1
2 Re

(
Zu × i× i⋆

)
.

a) Exprimer la puissance Pm en fonction de I et Ru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Grâce à une loi des mailles, exprimer I en fonction de E, RG, Ru, XG et Xu.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Des résultats précédents, on déduit l’expression de Pm en fonction de E :

Pm = RuE
2

(RG +Ru)2 + (XG +Xu)2 .

On cherche à déterminer les conditions sur Ru et Xu pour que Pm soit maximale. On dit alors qu’il y a
adaptation d’impédance.

c) Calculer la dérivée de Pm par rapport à Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Calculer la dérivée de Pm par rapport à Ru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Choisir parmi les quatre propositions suivantes quelle est la condition pour que Pm soit maximale :

a Xu = −XG et Ru = −RG

b Xu = XG et Ru = −RG

c Xu = −XG et Ru = RG

d Xu = XG et Ru = RG

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 Fiche no 6. Énergie et puissance électriques



Réponses mélangées

0 1
2CE

2 3,75 W 16,5 kJ u0i0
2 cos(φ) E√

(RG +Ru)2 + (XG +Xu)2

E
E − e

R+ r

u0i0
2 EC

duC

dt 513 km 1
2CE

2 eR+ Er

R+ r

E

r +R

16 W 0 c b 4,6 Wh E2 R

(r +R)2 3 cos
(

7π
12

)
W E − e

R+ r
CE2

τ
exp(−t/τ) a CE2

τ

(
exp(−t/τ) − exp(−2t/τ)

)
ln(2)R0

2π
ω

a CE2

τ
exp(−2t/τ) u0i0

(
2 + 1

2 sin(ψ)
)

e

E

(E − e)2

R+ r
RuI

2

−RuE
2 2(XG +Xu)(

(RG +Ru)2 + (XG +Xu)2
)2 b 1

2CE
2 92 % c Hyundai Ioniq 6

E2 r −R

(r +R)3 c
d
( 1

2Cu
2
C(t)

)
dt E2 (R2

G −R2
u) + (XG +Xu)2(

(RG +Ru)2 + (XG +Xu)2
)2 CE2

Hyundai Ioniq 6
d
( 1

2Li
2(t)

)
dt a c e

E − e

R+ r

1
2CE

2 0 CE2

▶ Réponses et corrigés page 228
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ELC05 ÉlectricitéFiche d’entraînement no 7

Amplificateurs linéaires intégrés

Prérequis
Loi des nœuds. Loi des mailles. Loi d’Ohm. Impédance complexe. Diviseur
de tension.

Les fondamentaux

Entraînement 7.1 — Régime linéaire ?
Parmi les circuits suivants, lesquels peuvent fonctionner en régime linéaire ?

a

−

+

▷ ∞

ve
vs

b

−

+

▷ ∞

R2
R1

ve vs

c

+

−

▷ ∞

ve
vs

d

+

−

▷ ∞

R2
R1

ve vs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 7.2 — Modèle de l’ALI idéal de gain infini.

−

+

▷ ∞

i+

i−

is

Pour chaque affirmation, répondre par vrai ou faux.

a) L’impédance d’entrée de l’ALI idéal est infinie . . . . . . . . . . . . . . .

b) Les courants d’entrée i+ et i− de l’ALI idéal sont nuls . . . . . . .

c) Le courant de sortie is de l’ALI est toujours nul . . . . . . . . . . . . .

d) Les potentiels V + et V − des entrées sont nuls en régime linéaire.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.3
On considère le montage suivant :

−

+

▷ ∞
A

R1

R2

ve vs

a) L’ALI peut-il fonctionner en régime linéaire ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Dans le cas du régime linéaire, quelle est la relation entre les potentiels V + et V − des entrées inverseuse
et non inverseuse ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Donner, en régime linéaire, le potentiel VA du point A . . . . . . . . . . . . . . . . . . . .

Entraînement 7.4 — Détermination de potentiels électriques.
Tous les ALI de cet exercice sont supposés fonctionner en régime linéaire.
Donner, pour chaque montage, le potentiel VA du point A en fonction de ve ou de vs. Le potentiel peut
également être nul.

a)

−

+

▷ ∞

R

A
R

R

v1

v2 vs

. . . . . . . . . . . . . . . . . . . . . . . . .

b)

+

−

▷ ∞
C

A

Rve vs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c)

−

+

▷ ∞
A

C

R

ve vs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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d)

+

−

▷ ∞

A
R2

R1

ve vs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e)

−

+

▷ ∞

R1R2

C1

A

C2
ve

vs

. . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 7.5 — Vrai ou faux ?
On considère le montage ci-dessous dans lequel l’ALI est idéal et fonctionne en régime linéaire.

−

+

▷ ∞
i−

R1

U1

i1

R3U3

i3

R4U4

i4 i+

is

R2

U2

i2

ve

vs

Pour chaque affirmation, répondre par vrai ou faux.

a) Toutes les résistances sont orientées en convention récepteur . . . . . . . . . . . . . . . . . . . . . . . .

b) La loi des nœuds assure i1 = i2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) La loi des nœuds assure i3 = i4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Les tensions U1 et U3 sont égales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Les tensions U2 et U4 sont égales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Circuits usuels

Entraînement 7.6 — Autour de l’amplificateur inverseur.
On considère le montage amplificateur inverseur ci-dessous.
L’ALI est idéal et on suppose qu’il fonctionne en régime linéaire.

−

+

▷ ∞
R1

U1

i1

R2

U2

i2

ve vs

a) Quelle est la relation entre i1 et i2 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer U1 en fonction de ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer U2 en fonction de vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer l’intensité i1 en fonction de ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Exprimer l’intensité i2 en fonction de vs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) Déterminer l’amplification G = vs

ve
de ce montage . . . . . . . . . . . . . . . . . . . . . . . . .

g) Parmi les couples de résistances suivants, lequel permet d’obtenir l’amplification la plus importante ?

a le couple (R1 = 3,3 kΩ, R2 = 8,2 kΩ)
b le couple (R1 = 1 kΩ, R2 = 3,3 kΩ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.7 — Amplificateur inverseur.
Un montage amplificateur inverseur produit un gain :

G = −R2
R1

,

avec R1 = 1,2 kΩ et R2 = 200 Ω.
Les courbes ci-dessous représentent des allures temporelles de ve (en pointillés) et vs (en trait plein) en
fonction du temps.
Le calibre est de 1 V/division pour ve et 0,5 V/division pour vs.

a

t

ve vs

b

t

ve vs

c

t

ve vs

d

t

ve vs

Quelles sont les courbes pouvant correspondre au montage amplificateur inverseur étudié ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.8 — Un petit intermède.
On considère une résistance R et une capacité C.

Quelle est la dimension de la grandeur RC ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 7.9 — Montage intégrateur inverseur (I).
On considère le montage ci-dessous.
L’ALI est idéal.

−

+

▷ ∞
R

UR

iR

C

UC

iC

ve vs

a) En régime stationnaire, l’ALI peut-il fonctionner en régime linéaire ? . . . . . . . . .

Dans toutes les questions suivantes, on suppose que l’ALI fonctionne en régime linéaire et on se place en
régime sinusoïdal.

b) Exprimer la tension UR en fonction de ve et/ou vS . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer la tension UC en fonction de ve et/ou vS . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Donner la relation entre iR et iC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Quelle est la relation entre les grandeurs complexes iC et UC ? . . . . . . . . . . . . . . .

f) Donner la fonction de transfert H du montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Donner la relation entre ve(t) et vs(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.10 — Montage intégrateur inverseur en régime sinusoïdal.
Un montage intégrateur inverseur a pour fonction de transfert :

H = − 1
jRCω ,

avec R = 11 kΩ et C = 4,7 nF.
Les courbes suivantes représentent des allures temporelles de ve (en pointillés) et vs (en trait plein) en
fonction du temps. Les réglages de l’oscilloscope sont les suivants :

• calibre vertical : 1 V/division pour les deux voies,
• calibre horizontal : 250 µs/division.

a

t

ve vs

b

t

ve vs

c

t

ve vs

d

t

ve vs

a) Quel est le gain du montage intégrateur inverseur ? . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quel est le déphasage de la tension de sortie vs par rapport à ve ? . . . . . . . . . . . . .

c) Pour ve = E cos(ωt), donner l’expression de vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Quelle est la fréquence de fonctionnement ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Quelle est la valeur numérique du gain à cette fréquence ? . . . . . . . . . . . . . . . . . . . . .

f) Quelle courbe est compatible avec les valeurs numériques données ci-dessus ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.11 — Montage intégrateur inverseur (II).
Un montage intégrateur inverseur a pour fonction de transfert :

H = − 1
jRCω ,

avec R = 15 kΩ et C = 25 nF.
Les courbes suivantes représentent des allures temporelles de ve (en pointillés) et vs (en trait plein) en
fonction du temps.
Les réglages de l’oscilloscope sont les suivants :

• calibre vertical : 1 V/division pour les deux voies,
• calibre horizontal : 250 µs/division.

a

t

ve vs

b

t

ve vs

c

t

ve vs

d

t

ve vs

a) Donner l’équation différentielle reliant vs et ve . . . . . . . . . . . . . . . . . .

b) Pour une tension constante ve = E, donner l’expression temporelle de vs.
On ne se préoccupera pas de déterminer les éventuelles constantes d’intégration.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quelle est la courbe compatible avec les valeurs numériques ci-dessus ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.12 — Un petit intermède.
On considère deux montages dont les gains valent respectivement :

G1 = 1 + R2
R1

et G2 = R1R2

R1
2 +R2

2 ,

où R1 et R2 sont des résistances.

a) On suppose que R1
R2

= α. Exprimer 1
G2

en fonction de α . . . . . . . . . . . . . . . . . . . . .

b) On suppose encore que R1
R2

= α. Exprimer G2 en fonction de α . . . . . . . . . . . . . .

c) À quelle condition a-t-on G1 = 1
G2

? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Pour quelle valeur de α > 0 la quantité α+ 1
α

est-elle minimale ?

On pourra introduire une fonction et la dériver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 7.13 — Montage non inverseur.
On considère le montage ci-dessous.
L’ALI est idéal et on suppose qu’il fonctionne en régime linéaire.

+

−

▷ ∞

R2

U2

i2

i1

R1U1

ve vs

a) Quelle est la relation entre les intensités i1 et i2 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer la tension U1 en fonction de vs, R1 et R2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer U1 en fonction de ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer le gain G du montage non inverseur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Donner la valeur de G pour R1 = 2,2 kΩ et R2 = 33 kΩ . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 7.14 — Montage amplificateur non inverseur.
Un montage amplificateur non inverseur possède un gain :

G = 1 + R2
R1

,

avec R1 = 1,5 kΩ et R2 = 7,5 kΩ.
Les courbes suivantes représentent des allures temporelles de ve (en pointillés) et vs (en trait plein) en
fonction du temps.
Le calibre utilisé pour ve est de 1 V/division alors que le calibre pour vs est de 2 V/division.

a

t

ve vs

b

t

ve vs

c

t

ve vs

d

t

ve vs

Quelles sont les courbes qui peuvent correspondre au montage non inverseur ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Impédances d’entrée

Entraînement 7.15 — Montage suiveur.

On considère le montage suiveur représenté ci-contre.
Le suiveur est alimenté par une source idéale de tension ve

de fréquence variable, la charge est une résistance Rc.
L’ALI est idéal et fonctionne en régime linéaire.

+

−

▷ ∞
is

ve

ie

Rc vs

a) Quelle est la relation entre ve et vs ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle est l’impédance d’entrée d’un ALI idéal ? . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer l’intensité ie traversant la source de tension . . . . . . . . . . . . . . . . . . . . .

d) Quelle est l’impédance d’entrée du montage suiveur ? . . . . . . . . . . . . . . . . . . . . .

Entraînement 7.16 — Circuits inverseurs.

On considère le montage représenté ci-contre.
Les impédances Z1 et Z2 sont quelconques et la tension
d’entrée ve est sinusoïdale, de pulsation ω.
L’ALI est idéal et fonctionne en régime linéaire.

−

+

▷ ∞
A

Z1

i1

Z2 i2

is

ve vs

a) Exprimer l’intensité i1 en fonction de ve et de Z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner l’impédance d’entrée du circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

La tension d’entrée est constante, égale à 10 V.

c) Donner l’impédance d’entrée si Z1 est un condensateur . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Donner l’impédance d’entrée si Z1 est une bobine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

La tension d’entrée est maintenant sinusoïdale, de pulsation ω = 6,0 · 103 rad · s−1.
e) Pour quel dipôle Z1 l’impédance d’entrée a-t-elle le plus grand module :

un condensateur C = 10 nF ou une résistance R = 15 kΩ ? . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

Faux 0 V 0 Faux C = 10 nF α+ 1
α

i1 = i2 0 V

U2 = −vs 0 A ve b RC
dvs

dt
= −ve(t) Vrai G = −R2

R1

i1 = ve

R1
vs = ve Vrai R1 = R2 iR = iC V + = V − iC = −jCωUC

vs Vrai α = 1 Oui c α

1 + α2 ∞ Z1 3,1

RC
dvs

dt = −ve ve U1 = ve vs − 1
jRCω d i2 = − vs

R2

C’est un temps vs b R1
R1 +R2

vs Non ve b ∞

Vrai i1 = i2
1

RCω
0 V π

2
ve

Z1
∞ − E

RCω
sin(ωt)

1 kHz a d − E

RC
t+K Faux 16 Faux Faux 1 + R2

R1

▶ Réponses et corrigés page 237
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OPT01 OptiqueFiche d’entraînement no 8

Sources lumineuses et lois de Snell-Descartes

Prérequis
Lois de Snell-Descartes. Notions de base sur les ondes lumineuses et leur
propagation dans un milieu. Notions de base de géométrie concernant les
angles.
Constantes utiles
→ célérité de la lumière dans le vide : c = 3,00× 108 m · s−1

→ constante de Planck : h = 6,63× 10−34 J · s

Lois de Snell-Descartes

Entraînement 8.1 — Conversions d’angles (I).
Soit αrad la mesure d’un angle en radians, αdeg sa mesure en degrés et αmin sa mesure en minutes d’angle.

a) Exprimer αrad en fonction de αdeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer αmin en fonction de αdeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 8.2 — Conversions d’angles (II).

a) α = 35,65°. Exprimer α en degrés et en minutes d’angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) β = 98°15′. Exprimer β en radians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) γ = 1,053 rad. Exprimer γ en degrés et en minutes d’angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 8.3 — Un rayon incident sur un dioptre.

On considère un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs n1 et n2.
Ce rayon fait un angle i avec la normale au dioptre.
Tous les angles figurant sur le schéma sont non orientés.

δ

i

α

γβ

n1 n2

Exprimer chacun des angles suivants en fonction de i et/ou de n1 et n2 (en radians) :

a) α . . . . . . . . . . .

b) β . . . . . . . . . . .

c) δ . . . . . . . . . . . .

d) γ . . . . . . . . . . .
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Entraînement 8.4 — Un autre rayon incident sur un dioptre.

On considère un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs n1 et n2. Ce rayon fait un angle i avec la
normale au dioptre alors que le rayon réfracté fait un angle r.
On donne n1 = 1,00 et n2 = 1,45.

r

i

n1 n2

a) Pour i = 24,0°, que vaut r en degrés ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour i = 6,74 × 10−1 rad, que vaut r en degrés ? . . . . . . . . . . . . . . . . . . . .

c) Pour r = 15,0°, que vaut i en degrés ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 8.5 — Déviation introduite par un dioptre.

On considère un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs n1 et n2.
Les angles définis sur le schéma ci-contre sont tous orientés.
On définit Dr la déviation entre le rayon incident et le rayon réfléchi,
et Dt la déviation entre le rayon incident et le rayon réfracté.

r

i

−i

DtDr

n1 n2

a) Exprimer Dt en fonction de i et r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer Dr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 8.6 — Un peu de géométrie dans un prisme.

On considère un prisme d’angle au sommet A, repré-
senté ci-contre suivant une de ses faces triangulaires.
Un rayon incident en I sur une face du prisme émerge
en J.
On définit les angles α1, α2, r et r′ sur le schéma.

Dans cet entraînement, les angles ne sont pas orientés.

I

•O

r

J
r′

A

α1α2

On rappelle que la somme des angles dans un quadrilatère est égale à 2π.

a) Exprimer l’angle A en fonction de α1 et α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer l’angle A en fonction de r et de r′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Autour des réflexions totales

Entraînement 8.7
On considère un dioptre séparant deux milieux d’indices respectifs n1 = 1,5 et n2 = 1,3. Un rayon lumineux
arrive sur ce dioptre en formant un angle i par rapport à sa normale.

On rappelle qu’il y a réflexion totale si n1
n2

sin(i) > 1.

a) Pour i = 44°, y a-t-il réflexion totale ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner, en degrés, l’angle iℓ tel qu’il y a réflexion totale si i > iℓ . . . . . . . . . . . . . . . .

Entraînement 8.8

On considère un rayon lumineux incident sur le dioptre n1/n2, faisant un
angle i avec la normale à ce dioptre, et le rayon réfracté, faisant un angle
r avec cette normale.

On donne n1 = 1,37 et on rappelle qu’il y a réflexion totale si n1
n2

sin(i) > 1.

r

i

n1 n2

a) Pour i = 20,0° et r = 22,0°, que vaut n2 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour i = 60,0°, quelle est la valeur maximale de n2 donnant lieu à une réflexion totale ? . . .

c) On suppose que i = 40,0°. Peut-on observer un phénomène de réflexion totale ? . . . . . . . . . . .

Entraînement 8.9 — Condition de propagation dans une fibre optique.
Un rayon lumineux arrive sur un dioptre séparant l’air d’un
milieu d’indice n1 au point A (voir schéma ci-contre). On
a donc :

sin(θi) = n1 sin(θr). (1)

Le rayon se propagera dans la fibre à condition qu’il y ait
réflexion totale au point I situé à l’intersection du rayon
lumineux et du dioptre n1/n2 (avec n1 > n2).
On donne la relation correspondante :

n1 sin(i)
n2

> 1 (2)

A

I

θi

θr
i

n = 1
n2

n1

a) À l’aide de (1), exprimer cos(θr) en fonction de n1 et de sin(θi) . . . .

b) À quelle condition portant sur cos(θr) équivaut (2) ? . . . . . . . . . . . . . . .

c) En déduire à quelle condition sur sin(θi) équivaut (2) . . . . . . . . . . . . . .
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Sources lumineuses

Entraînement 8.10 — Propagation de la lumière.
Un laser vert émet une radiation lumineuse de longueur d’onde dans le vide λ0 = 532 nm. Calculer :

a) la fréquence de l’onde . . . . . . . . . . b) l’énergie d’un photon . . . . . . . . . . .

Entraînement 8.11
Une radiation lumineuse de longueur d’onde λ0 passe du vide vers un milieu transparent d’indice n.
Quelles quantités sont inchangées ?

a La longueur d’onde
b L’énergie d’un photon

c La vitesse de propagation
d La fréquence de l’onde

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 8.12 — Propagation dans un milieu.
Un laser de longueur d’onde dans le vide λ0 = 532 nm se propage dans de l’eau, assimilée à un milieu
transparent d’indice optique n = 1,33.
Donner la valeur numérique dans l’eau de :

a) la vitesse de la lumière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) la longueur d’onde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées
π

2 − arcsin
(
n1

n2
sin(i)

)
1,715 rad i 60°20′ 22,0° π

2 − i

Non 1,18

√
1 − sin2(θi)

n2
1

arcsin
(
n1
n2

sin(i)
)

2,26 × 108 m · s−1

π

180 × αdeg sin(θi) <
√
n2

1 − n2
2 60 × αdeg (α1 + α2) − π π − 2i

Non cos(θr) > n2
n1

35°39′ b et d 564 THz 60°

16,3° r − i 1,25 25,5° 3,74 × 10−19 J r + r′ 400 nm

▶ Réponses et corrigés page 242
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OPT02 OptiqueFiche d’entraînement no 9

Lentilles

Prérequis
Propriétés des lentilles minces dans les conditions de Gauss. Vergence.
Relations de conjugaison des lentilles minces.

Grandeurs algébriques

Entraînement 9.1 — Diamètre apparent.

On considère le schéma suivant, montrant l’angle α, appelé
diamètre apparent, sous lequel est vu un objet AB depuis
un point O. O A

B

α

a) Exprimer le diamètre apparent α, en radians, en fonction de OA et AB . . . . . . . . . . . . . . . .

b) Exprimer le diamètre apparent α, en degrés, en fonction de OA et AB . . . . . . . . . . . . . . . . .

Un observateur situé à la surface de la Terre observe des astres, caractérisés par les données suivantes :

Soleil Lune

Diamètre 1,4 · 106 km 3,5 · 103 km
Distance à la Terre 150 600 · 103 km 384 400 km

Pour simplifier les calculs, on pourra utiliser que, quand α est un angle petit et exprimé en radians, on
dispose de l’approximation des petits angles : α ≈ tan(α).

c) Calculer le diamètre apparent de la Lune αL en degrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Calculer le diamètre apparent du Soleil αS en degrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Que vérifient les valeurs numériques αS et αL ?

a αS > αL b αS ≈ αL c αS < αL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) Quel phénomène astronomique la comparaison de αL et αS permet-elle d’expliquer ?

a Les éclipses
b Les saisons
c Les marées

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 9.2 — Configuration de Thalès et grandissement.
On considère la situation représentée sur le schéma ci-dessous.

O
A

B
A′

B′

On note x la valeur algébrique de la longueur x et on définit le grandissement γ par la relation :

γ = A′B′

AB
.

a) Donner la relation reliant OA, OA′, AB et A′B′ . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer la valeur numérique de γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.3 — Schéma optique d’une lunette astronomique afocale.

O1

F′
1

O2
F2 F′

2A1

B1

L1 L2

α α′

B∞
B′

∞

A∞ A′
∞

Le schéma ci-dessus modélise une lunette astronomique afocale, où un carreau correspond à une longueur
réelle de 2,5 cm.
Calculer les distances algébriques suivantes :

a) O1F′
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) O2F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) O2O1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) A1F′
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fiche no 9. Lentilles 69



Entraînement 9.4 — Grossissement d’une lunette astronomique afocale.
On considère la lunette astronomique afocale schématisée dans l’entraînement précédent.
Elle est constituée d’un objectif (lentille convergente L1) et d’un oculaire (lentille convergente L2) alignés
sur le même axe optique.

O1

F′
1

O2

F2
F′

2A1

B1

L1 L2

α α′α′

B∞
B′

∞

A∞ A′
∞

On introduit les grandeurs suivantes :

• la distance focale image de l’objectif, notée f ′
1

• la distance focale image de l’oculaire, notée f ′
2

• l’objet lointain observé par la lunette, noté A∞B∞

• l’image intermédiaire de l’objet par l’objectif, notée A1B1

• l’image à l’infini de l’image intermédiaire par l’oculaire, notée A′
∞B′

∞
• le diamètre apparent α de l’objet
• le diamètre apparent α′ de l’image

On définit le grossissement de la lunette, noté G, comme le rapport du diamètre apparent de l’objet observé
à la lunette sur le diamètre apparent réel de l’objet.
Autrement dit, on pose :

G = α′

α
.

Dans cet entraînement, les angles ne seront pas orientés et on travaillera avec des longueurs plutôt que des
valeurs algébriques.

a) Exprimer α en fonction de A1B1 et d’une distance focale.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer α′ en fonction de A1B1 et d’une distance focale.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer G en fonction de f ′
1 et de f ′

2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Déterminer la valeur de G.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Modèle de la lentille mince

Entraînement 9.5 — Conditions de Gauss.
Parmi les situations suivantes concernant les rayons lumineux issus d’un objet et traversant une lentille
mince, indiquer celle qui ne permet pas de se placer dans les conditions de Gauss :

a peu inclinés par rapport à
l’axe optique

b passant par les bords de la
lentille

c passant près du centre
optique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.6 — Déviation de rayons lumineux.
On rappelle les propriétés suivantes :

• Un rayon passant par le centre optique de la lentille n’est pas dévié.
• Un rayon incident dont la direction passe par le foyer objet émerge parallèle à l’axe optique principal.
• Un rayon parallèle à l’axe optique principal émerge avec une direction passant par le foyer image.

Pour chacun des schémas suivants, préciser s’ils sont corrects ou incorrects.

a)

O F′F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b)

O F′F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c)

O FF′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d)

O FF′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 9.7 — Construction de rayons lumineux.

On considère le schéma suivant montrant un objet AB et son image A′B′ par une lentille convergente.

O
A

B

A′

B′

On donne l’échelle du schéma : 8 carreaux sur le schéma correspondent à 10 cm en réalité.

a) Déterminer graphiquement la distance focale de la lentille . . . . . . . . . . . . . . . .

b) Calculer la vergence de la lentille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.8 — Batailles de convergence.
Quelle est la lentille la plus convergente ?

a une lentille de vergence +8,0 δ
b une lentille de focale image +8,0 cm

c une lentille de focale objet −10,0 cm
d une lentille de focale image −8,0 cm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.9 — Focale d’une lentille biconvexe.

La distance focale d’une lentille biconvexe symétrique de
rayon de courbure R, taillée dans un matériau d’indice n
et utilisée dans l’air est donnée par la relation suivante :

f ′ = R

2(n− nair)
,

où nair est l’indice optique de l’air.

OC1 C2
R

R

On souhaite fabriquer une lentille biconvexe de vergence 6,0 δ afin de corriger une hypermétropie forte à
partir d’un plastique organique d’indice n = 1,67. On donne nair = 1,00.

a) Calculer le rayon de courbure à réaliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour quelle valeur de l’indice n la lentille ne dévie pas les rayons lumineux ?

a n ≈ nair b n = 3
2nair c n = R

nair

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72 Fiche no 9. Lentilles



Conjugaison par une lentille mince

Entraînement 9.10 — Relation de conjugaison au centre optique.
Un objet lumineux est placé au point A, à 15,0 cm devant une lentille mince convergente de centre optique
O et de distance focale f ′ = 4,0 cm.
On rappelle la relation de conjugaison aux sommets de Descartes qui permet de faire le lien entre la position
OA de l’objet et la position OA′ de l’image :

1
OA′

− 1
OA

= 1
OF′

.

a) Exprimer OA′ en fonction de OA et f ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer OA en fonction de OA′ et f ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer f ′ en fonction de OA et OA′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) L’image est-elle située avant ou après le centre optique O ? . . . . . . . . .

Entraînement 9.11 — Relation de conjugaison aux foyers.
Dans un dispositif optique convergent de distance focale f ′ = 12,0 cm, on souhaite qu’une image réelle se
trouve exactement à 5,0 mm après le foyer image. On cherche la position où l’on doit placer l’objet, dans
un premier temps par rapport au foyer objet F, puis par rapport au centre optique O.
On rappelle la relation de conjugaison aux foyers de Newton :

F′A′ × FA = −f ′2.

a) Exprimer FA en fonction de f ′ et F′A′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer OA en fonction de FA et f ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Cet objet est-il réel ou virtuel ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.12 — Grandissement.
Un système optique donne d’un objet une image dont le grandissement est le suivant : γ = −2,0.

a) Par rapport à l’objet, cette image est :

a rétrécie b agrandie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Par rapport à l’objet, cette image est :

a droite b renversée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 9.13 — Projecteur de cinéma.
Un projecteur de cinéma contient une lentille convergente de distance focale f ′ = 50,0 mm.
L’écran se situe à 15,0 m de la lentille et on dispose d’une pellicule dont les vignettes sont de dimensions
36,0 mm × 24,0 mm.

a) À quelle distance algébrique de la lentille doit-on placer la pellicule ? . . . . . . . . . . . .

b) Quelles sont les dimensions de l’image d’une vignette sur l’écran ? . . . . . . . . . . . . . . .

Entraînement 9.14 — Objets et images à l’infini.
a) Un objet lumineux très éloigné, comme une étoile, peut être considéré comme étant situé à l’infini.
Où se situe l’image d’un tel objet par une lentille ?

a dans son plan focal image
b dans son plan focal objet
c à l’infini

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Un œil « normal » (emmétrope) n’accomode pas lorsqu’il observe une image à l’infini. Dans ce but, on
souhaite projeter à l’infini, l’image d’un objet en utilisant une lentille.
Où doit-on placer l’objet ?

a dans son plan focal image
b dans son plan focal objet
c à l’infini

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 9.15 — Loupe.
Une loupe est une lentille convergente utilisée dans des conditions particulières. Dans cet exercice, la lentille
utilisée a une distance focale de 10,0 cm. On place un objet AB = 2,0 cm à une distance de 6,0 cm en avant
de la loupe.

a) Calculer la position de l’image formée par la loupe . . . . . . . . . . . . . . . . .

b) Donner la nature de l’image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Calculer la taille de l’image formée par la loupe . . . . . . . . . . . . . . . . . . . .

d) Cette image est-elle droite ou renversée ? . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 9.16 — Méthode de Bessel.
Pour mesurer la distance focale d’une lentille, on peut utiliser la méthode de Bessel.
On considère un objet donné, et on fixe la distance D entre l’objet et l’écran. On s’assure que D soit
suffisamment grande pour qu’il existe deux positions où intercaler la lentille entre l’objet et l’écran, pour
lesquelles l’image sur l’écran est nette. On note d la distance entre ces deux positions.

A A′

D

d

Position 1 Position 2 Écran

On peut alors montrer la relation suivante :

1
f ′ = 1

D+d
2

− 1
−(D−d)

2

.

a) Exprimer f ′ en fonction de D et d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer f ′ lorsque d = D

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer d lorsque f ′ = D

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

réel virtuelle −50 cm droite b OA × OA′

OA − OA′
b OA × OF′

OA + OF′

−10 cm incorrect 0,22 m b b OA = −5,02 cm b
OA′

OA
= A′B′

AB
+20 δ arctan

(
AB
OA

)
correct 10,8 m × 7,2 m a FA − f ′

−f ′2

F′A′
f ′

1
f ′

2
5,0 cm b 5,0 cm a A1B1

f ′
2

0,52° 40 cm

après D2 − d2

4D incorrect 20 cm OA′ = −15 cm OA′ × f ′

f ′ − OA′
a

arctan
(

AB
OA

)
× 180

π
correct 4 15D

64
A1B1
f ′

1
−2 0,53° 0

▶ Réponses et corrigés page 245
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MCA01 MécaniqueFiche d’entraînement no 10

Cinématique

Prérequis
Produit scalaire. Équations différentielles d’ordre 1. Projections de vecteurs.

Déplacements rectilignes

Entraînement 10.1 — Distance et temps de parcours.
Une voiture se déplace en ligne droite à 90 km · h−1.
Toutes les réponses seront exprimées en « heures-minutes-secondes », par exemple « 2 h 32 min 12 s ».

a) Combien de temps faut-il à cette voiture pour parcourir 100 km ? . . . . . . . . . . . .

b) Quel serait l’allongement du temps de trajet si elle roulait à 80 km · h−1 ? . . . .

Entraînement 10.2 — Distance parcourue.
Une voiture se déplace en ligne droite. Initialement à l’arrêt, elle subit une accélération constante valant
a0 pendant une durée τ1, puis continue à vitesse constante pendant une durée τ2.

a) Quelle est la vitesse v1 du véhicule à la date t = τ1 ? . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle est la distance parcourue durant τ1 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quelle est la distance totale parcourue en fonction de a0, τ1 et τ2 ? . . . . . . . . . . .

Entraînement 10.3 — Longueur d’une piste de décollage.
Pour décoller, un avion doit atteindre la vitesse vd = 180 km · h−1 en bout de piste.
Quelle est la longueur minimale L de la piste de décollage si l’avion accélère uniformément à la valeur
a = 2,5 m · s−2 ?

a 300 m b 450 m c 500 m d 650 m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.4 — Distance de freinage.
Une voiture roule à 110 km · h−1 en ligne droite. En supposant que les freins imposent une décélération
constante de norme a = 10 m · s−2, déterminer la distance d’arrêt de la voiture.

a 37,8 m b 46,7 m c 55,9 m d 63,5 m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Coordonnées et projections de vecteurs

Entraînement 10.5 — Composantes de vecteurs.

On considère deux points A et B tels que la droite (AB) est parallèle à la
droite (Oy). Le vecteur #    »OA fait un angle θ avec l’axe (Ox).
Exprimer les composantes des vecteurs suivants dans le repère (O, #»ex,

#»ey)
en fonction de a =

∥∥ #    »OA
∥∥, b =

∥∥ #   »AB
∥∥ et de l’angle θ.

O −→ex

−→ey

B•

A•

θ

a) #    »OA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) #   »OB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) #    »OA + #   »OB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) #    »OA − #   »OB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.6 — Les coordonnées cylindriques.

On considère le schéma ci-contre, dans lequel
• la base cartésienne ( #»ex,

#»ey,
#»ez)

• et la base cylindrique ( #»er,
#»eθ,

#»ez)
sont définies.
Le point M est repéré par la donnée de r, θ et z.

y

z

x

r#»ex

#»ey

#»ez

θ

#»er

#»eθ

#»ez

M′

z

O

•

•M

a) Écrire le vecteur
#      »

OM′ dans la base cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Écrire le vecteur
#      »

OM′ dans la base cylindrique . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Écrire le vecteur #     »OM dans la base cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Écrire le vecteur #     »OM dans la base cylindrique . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 10.7 — Les coordonnées sphériques.
On considère le schéma ci-dessous, dans lequel la base cartésienne ( #»ex,

#»ey,
#»ez) et la base sphérique ( #»er,

#»eθ,
# »eφ)

sont définies.

y

z

x

r

#»ex

#»ey

#»ez

•

#»er

#»eθ

# »eφ

M′•φ

θ

M

Le point M est repéré par la donnée de r, θ et φ.

a) Écrire la norme de
#      »

OM′ en fonction de r et θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Écrire le vecteur
#      »

OM′ dans la base cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Écrire le vecteur #     »OM dans la base cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Écrire le vecteur #     »OM dans la base sphérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Écrire le vecteur #»ez dans la base sphérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.8 — Jouons au tennis.
Un élève regarde un match de tennis. Il filme un des échanges et décide d’étudier le mouvement de la balle
pour en déduire sa vitesse et son accélération.
Pour cela, il utilise un logiciel d’exploitation de vidéo et remplit le tableau suivant :

t (en s) 0 0,05 0,10 0,15 0,20
x (en m) 0 0,35 0,70 1,05 1,40
y (en m) 1,5 2,09 2,66 3,21 3,74

a) Déterminer la vitesse v0 (en km · h−1) de la balle à l’instant initial . . . . . . . .

b) Déterminer l’accélération (en m · s−2) de la balle à l’instant initial . . . . . . . .
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Dérivée de vecteurs

Entraînement 10.9 — Étude d’un mouvement hélicoïdal.

Le point matériel M de coordonnées cartésiennes
(x, y, z) décrit une trajectoire hélicoïdale, définie
par les équations :

x(t) = a× cos(ωt)
y(t) = a× sin(ωt)
z(t) = b× t.

y

z

x

•
M(t)

z

•
M′

a
θ

a) Déterminer la vitesse #»v (M) dans la base cartésienne . . . . . . . . . . . . . . .

b) Déterminer la norme de la vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Déterminer l’accélération #»a (M) dans la base cartésienne . . . . . . . . . . .

d) Déterminer la norme de l’accélération . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.10 — Dérivation des vecteurs unitaires de la base polaire.

On considère un point M(t) en mouvement dans le plan (xOy).
On note r(t) et θ(t) les coordonnées de M(t) dans le repère po-
laire (O, #»er,

#»eθ).

y

x

θ(t)
r(t)

#»ex

#»ey#»eθ

#»er

•M(t)

a) Exprimer le vecteur #»er dans la base cartésienne (O, #»ex,
#»ey) . . . . . . . . . .

b) En déduire la dérivée d #»er

dt dans la base cartésienne (O, #»ex,
#»ey) . . . . . .

c) Exprimer le vecteur #»ex dans la base polaire (O, #»er,
#»eθ) . . . . . . . . . . . . . .

d) Exprimer le vecteur #»ey dans la base polaire (O, #»er,
#»eθ) . . . . . . . . . . . . . .

e) En déduire l’expression de la dérivée d #»er

dt dans la base polaire . . . . . .
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Entraînement 10.11 — Calcul d’une vitesse en coordonnées polaires.

On considère un point M dont les coordonnées polaires sont
{
r(t) = a× t

θ(t) = b× t2.

La vitesse en coordonnées polaires s’écrit :

#»v (M) = ṙ #»er + rθ̇ #»eθ,

où ṙ #»er est appelée vitesse radiale et rθ̇ #»eθ vitesse orthoradiale.

a) Déterminer la dimension de a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer la dimension de b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Déterminer la vitesse radiale en fonction de a . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Déterminer la vitesse orthoradiale en fonction de a, b et t . . . . . . . . . . . . . . . . .

e) En déduire l’expression de #»v (M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.12 — Mouvement en spirale.
Un point M(t) décrit une trajectoire en forme de spirale. Dans le repère polaire (O, #»er,

#»eθ), les coordonnées
de M(t) sont : {

r(t) = r0 e−t/τ

θ(t) = ωt,

où r0, τ et ω sont des constantes positives.
a) Déterminer la vitesse #»v (M) en coordonnées polaires.

On pourra utiliser la formule donnée dans l’entraînement précédent . . . . . . . . . . .

L’accélération en coordonnées polaires s’écrit :

#»a (M) =
(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ.

b) Déterminer l’accélération #»a (M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On donne les valeurs suivantes : ω = 4,78 tours · min−1, τ = 2,0 s et r0 = 4,0 cm.

c) Dans ces conditions, l’accélération est-elle radiale ou orthoradiale ? . . . . . . . .

d) Le mouvement de M est-il accéléré ou décéléré ? . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Déterminer l’équation polaire de la trajectoire de M . . . . . . . . .
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Étude de quelques mouvements

Entraînement 10.13 — Collision sur plan incliné.
Deux billes évoluent sur un plan incliné faisant un angle α = 20° par
rapport à l’horizontale.
À t = 0, elles sont distantes d’une longueur L.

• La bille A possède une vitesse initiale v0
#  »ex′ .

Son accélération #»a (A) = −a #  »ex′ est constante au cours du temps.
Nous noterons vA(t) #  »ex′ sa vitesse à l’instant t.

• La bille B, quant à elle, n’a pas de vitesse initiale mais possède
une accélération constante #»a (B) = a #  »ex′ .
Nous noterons vB(t) #  »ex′ sa vitesse à l’instant t.

y

x

x′

α
#  »ex′

#  »vB

−→vA

On donne a = 3,35 m · s−2 et v0 = 3 m · s−1.

a) Exprimer vA(t) en fonction a, t et v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer vB(t) en fonction a et t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Déterminer la position x′
A de A en fonction du temps . . . . . . . . . . . . . . . . . . . . .

d) Déterminer la position x′
B de B en fonction du temps . . . . . . . . . . . . . . . . . . . . .

e) Déterminer la distance L maximale (en cm) pour qu’une collision puisse avoir lieu.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 10.14 — Chute libre.
On considère le point M de masse m et de coordonnées (x, y, z) dans la base cartésienne (O, #»ex,

#»ey,
#»ez).

Il est lancé avec la vitesse #»v0 = v0x
#»ex + v0z

#»ez à partir de l’origine O du repère dans le champ de pesanteur
uniforme #»g = −g #»ez.
Tout frottement étant négligé, l’accélération de M est égale à #»g à tout instant.

a) Exprimer x(t) en fonction de v0x et t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer z(t) en fonction de v0z, g et t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire l’équation cartésienne de la trajectoire z en fonction de x,
c’est-à-dire une relation entre x(t) et z(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 10.15 — Pauvre gazelle.
Un lion chasse une gazelle. Il court à la vitesse constante de 5,0 m · s−1. La gazelle aperçoit le lion quand
il est à 10 m de distance. Elle se met alors en fuite en accélérant à 2,0 m · s−2. Pour rattraper la gazelle, le
lion se met aussi à accélérer au même instant à 3,0 m · s−2.

a) Combien de temps mettra le lion à rattraper la gazelle ? . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle distance aura parcourue la gazelle avant de se faire dévorer ? . . . . . . . . . . . . .

Réponses mélangées

aω(− sin(ωt) #»ex + cos(ωt) #»ey) + b #»ez b a #»er + 2abt2 #»eθ at 1 h 6 min 40 s√
(aω)2 + b2 orthoradiale a0 × τ1

2

2 a0 × τ1 ×
(τ1

2 + τ2

)
a(cos(θ) #»ex + sin(θ) #»ey)

d #»er

dt = θ̇(− sin θ #»ex + cos θ #»ey) r = r0e−θ 1
T 2 cos(θ) #»er − sin(θ) #»eθ

r(cos(θ) #»ex + sin(θ) #»ey) d #»er

dt = θ̇ #»eθ r #»er r sin(θ)(cos(φ) #»ex + sin(φ) #»ey)

8,0 m · s−2 r #»er + z #»ez 2,9 m 1
2at

2 + L r0e−t/τ

(
− 1
τ

#»er + ω #»eθ

)
−at+ v0

#»ex = cos θ #»er − sin θ #»eθ r0e−t/τ

((
1
τ2 − ω2

)
#»er −

(
2ω
τ

)
#»eθ

)
cos θ #»ex + sin θ #»ey −1

2at
2 + v0t v0xt a #»er aω2 67 cm 49,4 km · h−1

r sin(θ)(cos(φ) #»ex + sin(φ) #»ey) + r cos(θ) #»ez
#»ey = sin θ #»er + cos θ #»eθ 1,7 s z = − g

2v2
0x

x2 + v0z

v0x
x

décéléré |r sin(θ)| r #»er −b #»ey −aω2(cos(ωt) #»ex + sin(ωt) #»ey)

2abt2 #»eθ a

(
cos(θ) #»ex +

(
sin(θ) + b

a

)
#»ey

)
a

(
2 cos(θ) #»ex +

(
2 sin(θ) + b

a

)
#»ey

)
r(cos(θ) #»ex + sin(θ) #»ey) + z #»ez −1

2gt
2 + v0zt

L

T
a0 × τ1 c 8 min 20 s

▶ Réponses et corrigés page 250
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MCA02 MécaniqueFiche d’entraînement no 11

Principe fondamental de la dynamique

Prérequis
Projections. Coordonnées polaires. Équations différentielles simples.

Pour commencer

Entraînement 11.1 — Une relation algébrique.
La vitesse v (en régime permanent) d’un mobile vérifie l’équation :

m1(v − v1) +m2(v − v2) = p.

Donner l’expression de v (en fonction de m1, m2, v1, v2 et p) . . . . . . . . . . . . . . .

Entraînement 11.2 — Un système de deux équations.

Un problème de mécanique fait intervenir une force d’intensité F et un angle α ∈
[
0, π2

]
. En projetant la

deuxième loi de Newton sur deux axes, on aboutit au système d’équations suivant :{
T + F sinα = mRω2

F cosα = mg.

a) Déterminer F en fonction des données T , m, R, ω et g . . . . . . . . . . . . . . . . .

b) Déterminer α en fonction des données T , m, R, ω et g . . . . . . . . . . . . . . . . .

Entraînement 11.3 — Quelques équations différentielles.
Résoudre les équations différentielles suivantes, sachant que v = 0 à t = t0 et que les paramètres a0 et k
sont des constantes.

a) dv
dt = a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) dv
dt = −kv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) dv
dt = −kv + a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Décomposition de vecteurs

Entraînement 11.4 — Des projections.
On considère les vecteurs unitaires suivants :

#»ex

#»ey

#»a

α
#»ex

#»ey #»

b
α

#»ex

#»ey

#»c

α

#»ex

#»ey#»

d
α

Décomposer dans la base ( #»ex,
#»ey) les vecteurs :

a) #»a . . . . . . . . . . .

b) #»

b . . . . . . . . . . .

c) #»c . . . . . . . . . . .

d) #»

d . . . . . . . . . . .

Entraînement 11.5 — Sur un plan incliné.

On considère la situation représentée ci-contre.
Décomposer dans la base ( #»ex,

#»ey) les vecteurs suivants en
fonction de α et des normes respectives de #»

P et #»

N : P et N .

#»

N

α #»

P

#»ex

#»ey

a) #»

P . . . . . . . . . . . b) #»

N . . . . . . . . . . .

Entraînement 11.6 — Avec un pendule simple (I).
On considère la situation ci-dessous :

x

#»er

#»eθ
ℓ

θ

#»

P

#»

T
•

M

#»ey

#»ex

Décomposer dans la base ( #»er,
#»eθ) les vecteurs suivants en fonction de θ et des normes respectives de #»

P et
#»

T : P et T .

a) #»

P . . . . . . . . . . .

b) #»

T . . . . . . . . . . .

c) #»

P + #»

T . . . . . .
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Entraînement 11.7 — Avec un pendule simple (II).
On se place dans la même situation que ci-dessus. Décomposer dans la base ( #»ex,

#»ey) :

a) #»

P . . . . . . . . . . . .

b) #»

T . . . . . . . . . . . .

c) #»

P + #»

T . . . . . . . .

Entre accélération et position

Entraînement 11.8 — Du vecteur position au vecteur accélération.
On considère un point M en mouvement dont les coordonnées cartésiennes dans la base ( #»ex,

#»ey,
#»ez) sont, à

chaque instant, x(t) = 1
2a0t

2 + x0, y(t) = −v0t et z(t) = z0.

Donner l’expression des vecteurs :

a) position . . . . . . b) vitesse . . . . . . . c) accélération . .

Entraînement 11.9 — Du vecteur accélération au vecteur position.
On considère un point M de masse m en chute libre soumis à son poids #»

P = mg #»ez. Ce point M a été lancé

avec une vitesse initiale #»v0 = v0
#»ex et une position initiale M0

x0
y0
0

.

Donner l’expression des vecteurs :

a) accélération . . . . . . . . . . . . . .

b) vitesse . . . . . . . . . . . . . . . . . . .

c) position . . . . . . . . . . . . . . . . . .
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Autour des coordonnées polaires

Dans ce paragraphe, on considère un point M repéré par la dis-
tance r et l’angle θ en coordonnées polaires. La distance r et l’angle
θ dépendent du temps t : le point M est mobile.

On représente la situation par le schéma ci-contre.

•
M

#»er

#»eθ

r

θ•
O #»ex

#»ey

Entraînement 11.10 — Trois calculs fondamentaux.
Décomposer dans la base ( #»ex,

#»ey) les vecteurs :

a) #»er . . . . . . . . . . . . . . b) #»eθ . . . . . . . . . . . . . .

En déduire (en dérivant) l’expression dans la base ( #»ex,
#»ey) des vecteurs :

c) d #»er

dt . . . . . . . . . . . . d) d #»eθ

dt . . . . . . . . . . . .

En déduire l’expression, dans la base ( #»er,
#»eθ), des vecteurs :

e) d #»er

dt . . . . . . . . . . . . f) d #»eθ

dt . . . . . . . . . . . .

Entraînement 11.11 — Vecteur position en coordonnées polaires.
Comment s’exprime le vecteur position #     »OM en coordonnées polaires ?

a #     »OM = r #»er + θ #»eθ b #     »OM = r #»er + θ̇ #»eθ c #     »OM = r #»er d #     »OM = θ #»eθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 11.12 — Accélération en coordonnées polaires.
Déduire de ce qui précède l’expression, en fonction de #»er et de #»eθ :

a) du vecteur vitesse #»v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) du vecteur accélération #»a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Étude de systèmes en équilibre

Entraînement 11.13 — Tension d’un fil.

Une bille d’acier de poids P = ∥ #»

P ∥ = 2,0 N, fixée à l’extrémité
d’un fil de longueur ℓ = 50 cm, est attirée par un aimant exerçant
une force F = ∥ #»

F ∥ = 1,0 N. À l’équilibre, le fil s’incline d’un
angle α et l’on a :

#»

T + #»

F + #»

P = #»0 ,

où #»

T est la tension exercée par le fil.

•

S N
aimant

•

#»

P

#»

F

#»

T
α

Calculer les valeurs numériques de :

a) la tension T = ∥ #»

T ∥ du fil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) l’angle α (en radians) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 11.14 — Masse suspendue.
Un objet qui pèse 800 N est suspendu en équilibre à
l’aide de deux cordes symétriques qui font un angle
θ = 20° avec la direction horizontale.
Le point A est soumis à trois forces :

#»

T ,
# »

T ′ et #»

F ,

de normes respectives T , T ′ et F .
On note #»

R = Rx
#»ex +Ry

#»ey la résultante des forces.

• •
θ θ

#»

F

#»

T
# »

T ′ #»g•
A

#»ex

#»ey

a) Exprimer la composante horizontale Rx en fonction de T , T ′ et θ . . . . . . . . . . . . . . .

b) Exprimer la composante verticale Ry en fonction de T , T ′, F et θ . . . . . . . . . . . . . . .

c) Déterminer la tension T en résolvant l’équation #»

R = #»0 . . . . . . . . . . . . . . . . . . . . . . . . . .

Mouvements rectilignes

Entraînement 11.15 — Chute avec frottement.
Un corps de masse m = 2 kg tombe verticalement avec une accélération de a = 9 m · s−2. Lors de sa chute,
il subit la force de pesanteur ainsi qu’une force de frottement due à l’air.
On prendra g = 9,8 m · s−2 pour l’intensité du champ de pesanteur.

Combien vaut l’intensité de la force de frottement ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 11.16 — Contact dans un ascenseur.
Un homme de masse m = 80 kg est dans un ascenseur qui monte avec une accélération a = 1 m · s−2. On
note #»

F la force exercée par l’homme sur le plancher de l’ascenseur.
On prendra g = 9,8 m · s−2 pour l’intensité du champ de pesanteur.

Combien vaut l’intensité de #»

F ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 11.17 — Calcul d’une action de contact.
Un bloc de masse m et de poids #»

P glisse à une vitesse v(t), variable au cours du temps, sur un support
plan qui exerce une action de contact.
Celle-ci se décompose en deux actions :

• une action normale à la surface #»

fn ;
• une action de frottement #»

ft opposée à la vitesse de glissement.
Le plan est incliné d’un angle α, comme figuré ci-dessous :

α

#»v (t)

#»

ft

#»

fn

•

#»

P

Déterminer (en fonction d’au moins une des données P = ∥ #»

P ∥, v(t), m ou α) :

a) l’intensité de l’action normale fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) l’intensité du frottement ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 11.18 — Calcul d’une accélération.

Deux blocs B1 et B2 de masses respectives 2m et m
sont reliés par un fil. On passe le fil dans la gorge
d’une poulie, puis on maintient le bloc B1 sur la table
alors que l’autre est suspendu dans l’air. On libère le
bloc B1 qui glisse alors sur la table. On note T1 et T2
les normes des tensions exercées par le fil sur les blocs,
a1 et a2 les normes des accélérations respectives des
blocs B1 et B2, et g la valeur du champ de pesanteur.
Les frottements sont négligeables.

B1(2m)

B2(m)

# »

T1

# »

T2

•

# »

P2

•

# »

P1

•

#»

R
#»g

#»ex

#»ey

a) Exprimer a1 en fonction de m et T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer l’accélération a2 de B2 en fonction de m, g et T2 . . . . . . . . . . . . . . . . . . . . . .

Le fil étant inextensible et sans masse, on a a1 = a2 et T1 = T2.

c) En déduire l’accélération en fonction uniquement de g . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées√
(mRω2 − T )2 + (mg)2 arctan

(
mRω2 − T

mg

)
c ṙ #»er + rθ̇ #»eθ

−P sin(α) #»ex − P cos(α) #»ey (P cos(θ) − T ) #»er − P sin(θ) #»eθ 0 −θ̇ cos(θ) #»ex − θ̇ sin(θ) #»ey

a0
k

[
1 − e−k(t−t0)

]
cos(α) #»ex + sin(α) #»ey −T #»er − sin(θ) #»ex + cos(θ) #»ey

cos(α) #»ex + sin(α) #»ey − sin(α) #»ex + cos(α) #»ey (v0t+ x0) #»ex + y0
#»ey + 1

2gt
2 #»ez

P #»ex (T ′ − T ) cos θ −mdv
dt + P sinα θ̇ #»eθ g − T2

m
g #»ez

P cos(θ) #»er − P sin(θ) #»eθ v0
#»ex + gt #»ez 1,17 kN 1,6 N g

3 N #»ey 0,46 rad

(P − T cos(θ)) #»ex − T sin(θ) #»ey a0t
#»ex − v0

#»ey a0
#»ex

(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ

T1
2m −T cos(θ) #»ex − T sin(θ) #»ey

(
1
2a0t

2 + x0

)
#»ex − v0t

#»ey + z0
#»ez (T ′ + T ) sin θ − F

P cosα 2,2 N p+m1v1 +m2v2
m1 +m2

− sin(α) #»ex + cos(α) #»ey 864 N

cos(θ) #»ex + sin(θ) #»ey a0(t− t0) −θ̇ #»er −θ̇ sin(θ) #»ex + θ̇ cos(θ) #»ey

▶ Réponses et corrigés page 256
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MCA03 MécaniqueFiche d’entraînement no 12

Approche énergétique en mécanique

Prérequis
Systèmes de coordonnées. Expression de forces (poids, force de rappel).
Travail d’une force. Théorèmes généraux (dynamique et énergétiques).

Énergies potentielles

Entraînement 12.1 — La juste formule.
On considère un point matériel de masse m plongé dans le champ de pesanteur #»g . On se place dans
un repère cartésien (O, #»ex,

#»ey,
#»ez) tel que #»g = −g #»ey, le point O étant pris comme origine de l’énergie

potentielle. Quelle est l’expression de l’énergie potentielle de pesanteur ?

a mgx b −mgy c mgy d mgz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 12.2 — Plusieurs expressions de l’énergie potentielle de pesanteur.
Déterminer la fonction énergie potentielle de pesanteur d’un point matériel de masse m associée aux
situations suivantes :

a) Epp(ℓ) = 0

y

−→g
ℓ

0
b) Epp(S) = 0

H

α

x

−→g

S

y

c) Epp(θ = π/2) = 0

R

θ

−→g

d) Epp(ψ = 0) = E0

ψ

r

−→g

a) Epp(y) = . . . . . . . . . .

b) Epp(x) = . . . . . . . . . .

c) Epp(θ) = . . . . . . . . . .

d) Epp(ψ) = . . . . . . . . . .
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Entraînement 12.3 — La juste formule... le retour.
On considère un point matériel M de masse m astreint à se déplacer selon un axe (Oy) horizontal. Il est
attaché à un ressort de raideur k et de longueur à vide ℓ0. L’autre extrémité du ressort est fixée en O.
Quelle est l’expression de l’énergie potentielle élastique du point M pour que celle-ci soit nulle lorsque
l’allongement du ressort est nul ?

a 1
2ky

2 b 1
2k(y − ℓ0)2 c 1

2k(y2 − ℓ0
2) d −1

2k(ℓ0 − y)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 12.4 — Expression de l’énergie potentielle élastique.
Déterminer la fonction énergie potentielle élastique associée aux situations suivantes, où tous les ressorts
sont de longueur à vide ℓ0 et de raideur k :

a) Epe(y = 0) = 0

y

O

M

b) Epe(A) = 0

x

y

L

A

β

M

O

c) Epe(x = ℓ0) = E0

2ℓ0

x

a) Epe(y) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Epe(x) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Epe(x) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Travail d’une force

Entraînement 12.5 — Une force de frottement.

On considère le travail WAB =
ˆ B

A

#»

F · #»dℓ d’une force de frottement #»

F = −h
#»v

∥ #»v ∥
, où #»v est le vecteur

vitesse du point matériel subissant la force et h est une constante.

Déterminer W pour les chemins suivants :

a) Un segment reliant A(0, 0) et B(ℓ, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Un arc de cercle d’angle α et de rayon R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Un rectangle ABCD de côtés a et b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Un triangle ABC de côtés a, b, c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) En comparant les résultats obtenus, peut-on dire que la force est conservative ?

a Oui b Non
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Théorèmes énergétiques

Entraînement 12.6 — Freinage et variation d’énergie cinétique.
On considère une voiture (assimilée à un point matériel de masse m) se déplaçant le long d’une route
rectiligne horizontale et dont la vitesse initiale au début de la phase de freinage vaut #»v = v0

#»ex.
En freinant, le véhicule est soumis à une force de frottement #»

F = −h #»ex.
Quelle est l’expression de la distance d’arrêt d de la voiture ?

a 2mv0
2

h
b mv0

2

h
c mv0

2

2h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 12.7 — Pendule simple.
Un pendule simple est constitué d’un fil de longueur ℓ = 1,0 m auquel est accrochée une masse m = 100 g.
À t = 0, on donne à cette masse une vitesse horizontale #»v0 = v0

#»ex, où v0 = 2,0 m · s−1.
On note θ0 l’angle pour lequel la masse rebrousse chemin.

a) Exprimer cos(θ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer θ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 12.8 — Trampoline simplifié.
Un ressort de longueur à vide ℓ0 = 30 cm, de raideur k = 1,0 · 103 N · m−1, sans masse, est posé sur le sol
à la verticale. On lâche d’une hauteur H = 2,0 m et sans vitesse initiale une masse ponctuelle m = 1,0 kg.
Après une durée de chute libre sans frottement, la masse atteint le ressort, le comprime jusqu’à ce que
celui-ci la propulse vers le haut comme le ferait un trampoline.
En admettant que la masse quitte le ressort quand z = ℓ0, calculer :

a) La vitesse de la masse lors du contact avec le ressort . . . . . . . . . . . . . . .

b) L’altitude minimale atteinte par la masse . . . . . . . . . . . . . . . . . . . . . . . . . .

c) L’altitude maximale de la masse (en fin de remontée) . . . . . . . . . . . . . .

Entraînement 12.9 — Oscillateur vertical.
Un point M de masse m est accroché à une paroi horizontale fixe par l’intermédiaire d’un ressort de
raideur k et de longueur à vide ℓ0. Son mouvement s’effectue dans un liquide qui produit une force de
frottements fluides linéaire #»

F = −α #»v , où α > 0. On néglige la poussée d’Archimède, on ne considère que
des mouvements verticaux dans le champ de pesanteur #»g .

M

−→gO

a) On note z la position de M par rapport à O.
Déterminer, par une méthode énergétique, l’équation différentielle vérifiée par z.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On note à présent ζ la position de M par rapport à sa position à l’équilibre.
Déterminer l’équation différentielle vérifiée par ζ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Mouvements conservatifs et positions d’équilibre

Entraînement 12.10 — Profils d’énergies potentielles.
Les quatre profils ci-après représentent la fonction énergie potentielle suivante :

Ep(x) = α

x
+ β

x2 ,

avec α, β des réels non nuls.

x

Ep

Énergie potentielle no 1

x

Ep

Énergie potentielle no 3

x

Ep

Énergie potentielle no 2

x

Ep

Énergie potentielle no 4

Attribuer à chacune des figures ci-dessus les bons signes pour α et β, en indiquant laquelle des réponses
suivantes est la bonne :

a α > 0 et β > 0
b α > 0 et β < 0

c α < 0 et β > 0
d α < 0 et β < 0

a) Énergie potentielle no 1 . . . . . . . . . . . .

b) Énergie potentielle no 2 . . . . . . . . . . . .

c) Énergie potentielle no 3 . . . . . . . . . . . .

d) Énergie potentielle no 4 . . . . . . . . . . . .
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Entraînement 12.11 — Autour d’une position d’équilibre.
On donne l’expression de potentiels Ep, dans chacun desquels évolue un point matériel de masse m.

Déterminer dans chaque cas la position d’équilibre stable.

a) Pour Ep(θ) = mgℓ(1 − cos(θ)) :

θeq = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pour Ep(z) = 1
2κz

2 + 1
4λz

4 avec κ > 0 et λ < 0 :
zeq = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Pour Ep(x) = U0 eβx2
avec U0, β > 0 :

xeq = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Pour Ep(ϕ) = E0 sin2(ϕ− a) avec E0 > 0, ϕ ∈ [0, π[ et a ∈
[
0, π2

]
:

ϕeq = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 12.12 — État lié ou état de diffusion ?
On considère le profil suivant d’énergie potentielle (les abscisses étoilées et l’abscisse x3 serviront dans
l’entraînement suivant).
Pour chaque état suivant, étant donné les valeurs de l’énergie mécanique et de la position initiale d’un
point matériel, dire si ce dernier se trouve :

a dans un état lié b dans un état de diffusion

x

Ep(x)

0

E1

E2

E3

x2x1

x∗
1 x∗

2 x∗
3

x3

a) Em = E1 et x(0) = x1 . . . . . . . .

b) Em = E1 et x(0) = x2 . . . . . . . .

c) Em = E2 et x(0) = x1 . . . . . . . .

d) Em = E2 et x(0) = x2 . . . . . . . .

e) Em = E3 et x(0) = x1 . . . . . . . .

f) Em = E3 et x(0) = x2 . . . . . . . .
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Entraînement 12.13 — Analyse d’un profil d’énergie potentielle.
On reprend le profil d’énergie potentielle de l’entraînement précédent.
Pour chacune des positions suivantes, déterminer si elle est stable ou instable, et si le mouvement au
voisinage de ces positions est périodique et/ou harmonique, en indiquant laquelle des réponses suivantes
est la bonne :

a équilibre stable
b équilibre instable

c mouvement périodique
d mouvement harmonique

Plusieurs bonnes réponses sont possibles.

a) Voisinage de x∗
1 . . . . . . . . . . . . . . . . .

b) Voisinage de x∗
2 . . . . . . . . . . . . . . . . .

c) Voisinage de x∗
3 . . . . . . . . . . . . . . . . .

d) Région entre x2 et x3 . . . . . . . . . . .

Entraînement 12.14 — Vitesse à l’infini.
On considère le profil d’énergie potentielle des deux entraînements précédents.

Un point matériel de masse m = 2,30 kg est abandonné avec l’énergie E3 = 1,30 kJ.

Calculer la vitesse du point matériel à l’infini . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

b c c d mg(ℓ− y) 0,11 m a
1
2k(y − ℓ0)2 − kℓ0

2

2
a , c et d 0 1

2k
(

x

cos(β) − ℓ0

)2

− 1
2k
(

L

sin(β) − ℓ0

)2

a et c 0,65 rad = 37°

5,8 m · s−1 a , c et d −(a+ b+ c)h 33,6 m/s mgr
(

cos(ψ) − 1
)

+ E0

b a −hRα a mg(x sin(α) −H) b 1 − v0
2

2gℓ −hℓ 2,0 m

−(2a+ 2b)h z̈ + α

m
ż + k

m
z = g + kℓ0

m
0 −mgR cos(θ) E0 + k(x− ℓ0)2

ζ + α

m
ζ̇ + k

m
ζ = 0 0 b a b b b c a

▶ Réponses et corrigés page 262
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MCA04 MécaniqueFiche d’entraînement no 13

Moment cinétique

Prérequis
Coordonnées polaires. Projections. Produit vectoriel. Moment cinétique.
Moment d’inertie. Moment d’une force.

Projections préparatoires

Entraînement 13.1 — Calcul de produits scalaires.
On considère les vecteurs suivants, où #»

P et #»

T sont verticaux :

#»ey

#»ex

#»eθ
#»

R

α #»er

#»

P

θ

#»ey

#»ex
#»eθ

β

#»er

#»

N

#»

T

γ

Calculer les produits scalaires suivants en fonction des normes (∥ #»

P ∥, ∥ #»

T ∥, etc.) ainsi que des différents
angles apparaissant sur les schémas.

a) #»

P · #»eθ . .

b) #»

N · #»ey .

c) #»

R · #»ey . .

d) #»

T · #»er . .

e) #»

N · #»er . .

f) #»

N · #»eθ . .

Entraînement 13.2 — Projections dans une base.
En utilisant la formule donnant la décomposition d’un vecteur #»v dans une base orthonormée ( #»e1,

#»e2)

#»v = ( #»v · #»e1) #»e1 + ( #»v · #»e2) #»e2,

décomposer les vecteurs de l’exercice précédent dans chaque base ( #»ex,
#»ey) et ( #»er,

#»eθ).

a) #»

P dans ( #»ex,
#»ey) .

b) #»

P dans ( #»er,
#»eθ) .

c) #»

T dans ( #»ex,
#»ey) .

d) #»

T dans ( #»er,
#»eθ) .

e) #»

R dans ( #»ex,
#»ey) .

f) #»

R dans ( #»er,
#»eθ) .

g) #»

N dans ( #»ex,
#»ey) .

h) #»

N dans ( #»er,
#»eθ) .
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Produit vectoriel

Entraînement 13.3 — Produits vectoriels à partir de décompositions.
En utilisant le schéma du premier exercice et les décompositions du deuxième, donner l’expression des
produits vectoriels suivants. Comme d’habitude, on complète la base ( #»ex,

#»ey) par le vecteur #»ez suivant la
« règle de la main droite ».

a) #»

P ∧ #»

R . . . b) #»

T ∧ #»er . . . c) #»ex ∧ #»

N . .

Entraînement 13.4 — Produits vectoriels à partir des coordonnées.
On donne les quatre vecteurs suivants de R3 définis de manière numérique :

#»

A =

1
2
3

, #»

B =

6
5
4

, #»

C =

 0
1
−1

 et #»ex =

1
0
0

.
Calculer les produits vectoriels et produits scalaires suivants :

a) #»

A ∧ #»

B . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) ( #»

B + #»

A) ∧ #»

A . . . . . . . . . . . . . . . . . . . . .

c) #»ex · ( #»

A ∧ #»

B) . . . . . . . . . . . . . . . . . . . . .

d) #»

A · ( #»

B ∧ #»ex) . . . . . . . . . . . . . . . . . . . . .

e) #»

A ∧ ( #»

B ∧ #»

C) . . . . . . . . . . . . . . . . . . . . .

f) ( #»

A · #»

C) #»

B − ( #»

A · #»

B) #»

C . . . . . . . . . . . .

Moment cinétique

Entraînement 13.5 — Bataille de moments cinétiques.
Parmi les quatre planètes décrites dans le tableau ci-dessous, laquelle présente le moment cinétique autour
du Soleil le plus important ?

Masse Distance au Soleil Vitesse sur l’orbite
Mercure 3 × 1026 g 58 × 109 m 170 × 103 km · h−1

Vénus 5 × 1027 g 1,1 × 1013 cm 35 × 103 m · s−1

Terre 6 × 1021 t 150 × 106 km 30 km · s−1

Mars 6 × 1023 kg 230 × 106 km 87 × 105 cm · h−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 13.6 — Un moustique allumé.

On considère un moustique M de masse m dont le vecteur vitesse de norme v fait un angle α ∈
[π

2 ;π
]

avec
le vecteur #     »OM comme représenté dans le schéma ci-dessous.

#»ey

#»ex

#»ez

#»eθ

α #»er

#»v

r
M

O
θ

Exprimer le moment cinétique du moustique M par rapport à O en fonction de m, r, v et α.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Moments d’inertie

Entraînement 13.7 — Une porte d’entrée.

On considère une porte de masse M , de longueur L, de
hauteur h et d’épaisseur e négligeable dont on veut calculer
le moment d’inertie par rapport à l’axe vertical passant par
O situé dans le coin inférieur gauche de la porte.
La masse est répartie de manière homogène sur toute la
porte, de sorte que chaque petit volume dV = dx dy dz
ait pour masse :

dm = ρ dV,

avec ρ = M

Lhe
.

Dans cette configuration, le moment d’inertie s’écrit :

I∆ =
˚

porte
x2 dm = ρ

ˆ L

0
x2 dx×

ˆ e

0
dy ×

ˆ h

0
dz.

x

z

dx
L

h

O

Exprimer I∆ en fonction de M et L . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 13.8 — Un bâton de majorette.
On considère un bâton de masse M , de longueur
L et de section négligeable dont on veut calculer
le moment d’inertie par rapport à son centre O.
La masse est régulièrement répartie uniquement
selon une variable x, de sorte que le bout de
bâton de longueur dx situé à une distance x du
centre ait pour masse dm = M

L
dx.

Pour une rotation par rapport à un axe (Oz)
orthogonal à l’axe (Ox) du bâton, et passant
par son centre, calculer en fonction de M et L
l’expression du moment d’inertie. C’est-à-dire,
calculer :

dx
L

z

x

I∆ =
ˆ

bâton
x2 dm =

ˆ L/2

−L/2

M

L
x2 dx = . . . . . . . . . . . . . . . . . . . .

Entraînement 13.9 — Une boule de bowling.

x

y

z

r cos θ

r sin θ

H

P

r

#»er

#»eθ

# »eφ

θ

φ

On considère une boule homogène de masse M et de rayon R.
Un élément de volume dV (valant dr×r dθ×r sin θ dφ en coordonnées sphériques) correspond à une masse
dm = ρ dV , avec ρ = M

4
3π R

3 .

Ces éléments de masse sont situés à une distance r sin θ de l’axe (Oz) de sorte que le moment d’inertie par
rapport à cet axe peut s’écrire :

I∆ =
˚

sphère
(r sin θ)2 dm = ρ

ˆ R

0
r4 dr ×

ˆ π

0
sin3 θ dθ ×

ˆ 2π

0
dφ.

Exprimer I∆ en fonction de M et R . . . . . . . . . . . . . . . . . . . . . . .
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Moment d’une force

Entraînement 13.10 — Fil accroché au mur.

On considère un mur auquel est accroché un filin
qu’on tire depuis un point A. Il s’agit de trouver
le moment de la force #»

F par rapport aux axes
(Oz) et (Az) en fonction de F , ℓ et α.
Calculer :

#»ex

#»ey

#»ez O A

ℓ

M
#»

F

α

a) MOz( #»

F ) . . . . . . . . . . . . . . . . . . . . . . . b) MAz( #»

F ) . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 13.11 — Une planche de cirque.

On considère une planche homogène de masse m
appuyée sur un cylindre.
Calculer le moment du poids de cette planche
par rapport aux divers points intéressants du
système. #»ex

#»ey

#»ez

G
#»

P

I A

+O

L

ℓ

R
α

a) #      »MA( #»

P ) . . . . . . b) #      »MO( #»

P ) . . . . . . c) #    »MI(
#»

P ) . . . . . . .

Exercice récapitulatif

Entraînement 13.12 — Basculement d’une barre en T.
On considère trois masses m réparties aux trois sommets
d’un triangle OAB isocèle en B et reliées par des tiges sans
masse vérifiant :

OA = IB = a.

On note I le milieu du segment [OA].
On note G le centre de gravité des trois masses, qui est
situé sur le segment [IB] de sorte que GB = 2

3 a.

On notera P et F les normes des deux forces représentées
sur le schéma.

#»ex

#»ey

#»ez

#  »eX
# »eY

Om

m
A

m

B
G

I

#»

F

#»

P

α

a) Écrire le vecteur #   »OB dans la base ( #  »eX ,
# »eY ) . . . . . . . . . . . . . . . . . . . . . . . . .

b) Écrire le vecteur #    »OG dans la base ( #  »eX ,
# »eY ) . . . . . . . . . . . . . . . . . . . . . . . . .

c) Écrire le vecteur #»

P dans la base ( #  »eX ,
# »eY ) . . . . . . . . . . . . . . . . . . . . . . . . . . .
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d) Écrire le vecteur #»

F dans la base ( #  »eX ,
# »eY ) . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Calculer #      »MO( #»

F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) Calculer #      »MO( #»

P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) En supposant qu’il y ait équilibre entre les deux moments, déterminer l’expression tan(α) dans ce cas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

a

2
#  »eX + a

3
# »eY aF

( sinα
2 + cosα

)
#»ez


−7

14

−7

 ∥ #»

N∥(− sin(β + γ) #»ex + cos(β + γ) #»ey)

la Terre a

2
#  »eX + a # »eY −∥ #»

P ∥ cos θ ∥ #»

N∥(cos(β) #»er + sin(β) #»eθ)
#»

T = ∥ #»

T ∥(− cos(γ) #»er + sin(γ) #»eθ) ∥ #»

N∥ cos(γ + β) −7 aP
(
−cosα

2 + sinα
3

)
#»ez

1
12 M L2 P (− sinα #  »eX − cosα # »eY ) 1

3 M L2 −∥ #»

T ∥ #»ey −mg
(
ℓ− L

2 cosα
)

#»ez

mgL

2 cosα #»ez ∥ #»

N∥ cos(β) F (− cosα #  »eX + sinα # »eY ) #»

P = −∥ #»

P ∥ #»ey
3P − 6F
3F + 2P

−6

−33

24

 ∥ #»

N∥ sin(β) mr v sin(α) #»ez


−6

−33

24

 −∥ #»

T ∥ sin(γ) #»ez


7

−14

7


−ℓF sinα cosα ∥ #»

R∥(cos(θ + α) #»ex + sin(θ + α) #»ey) −7 ∥ #»

R∥ sin(θ + α)

−mg
(
ℓ− L

2 cosα
)

#»ez

2
5 M R2 0 ∥ #»

P ∥ ∥ #»

R∥ cos(θ + α) #»ez −∥ #»

T ∥ cos(γ)

∥ #»

N∥ cos(γ + β) #»ez ∥ #»

R∥(cos(α) #»er + sin(α) #»eθ) ∥ #»

P ∥(− sin(θ) #»er − cos(θ) #»eθ)

▶ Réponses et corrigés page 268

102 Fiche no 13. Moment cinétique



MAG01 ÉlectromagnétismeFiche d’entraînement no 14

Champ électrique

Prérequis
Projections. Coordonnées polaires. Développement limité.
Dérivation et intégration.

Pour commencer

Entraînement 14.1 — Projection d’une force.
Une charge électrique q située en un point B(a, 0) exerce une force #»

F sur une autre charge q0 située au
point A(0, y).

x

y

a

y

−a

α

#»ex

#»ey

#»

F

O

• q0, A

•
q, B

a) Exprimer la distance BA en fonction de a et de y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer cos(α) en fonction de a et y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer sin(α) en fonction de a et y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Décomposer le vecteur #»

F dans la base ( #»ex,
#»ey) en fonction de sa norme ∥ #»

F ∥, a et y.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 14.2 — Un combat d’interaction électrique.
On étudie une charge électrique q0 positive. La valeur de la force F qu’exerce une autre charge q sur q0 est
telle que F = C

q

d2 où d est la distance entre les deux charges et où C est une constante.

Laquelle de ces quatre charges attire le plus fortement la charge q0 ?

a q = 2,00 C et d = 4,00 mm
b q = −5,0 kC et d = 0,4 m

c q = −3,0 mC et d = 200 µm
d q = 100 C et d = 20 cm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Étude de charges ponctuelles

Entraînement 14.3 — Force due à deux charges.
La loi de Coulomb permet d’exprimer la force #»

F 1/0 exercée par une
charge q1 située en un point B sur une charge q0 située en un point A :

#»

F 1/0 = 1
4πε0

q0q1

BA2
#»e BA,

avec ε0 la permittivité du vide et #»e BA le vecteur unitaire munissant
le segment BA.
On étudie les forces #»

F 1/0 et #»

F 2/0 exercées respectivement par les
charges q1 et q2 sur la charge q0.

x

y

a

y

−a
#»ex

#»ey

O

• q0, A

•
q1, B

•
q2, C

Selon les différentes valeurs des charges q0, q1 et q2, déterminer si la résultante des forces #»

F = #»

F 1/0 + #»

F 2/0
est orientée selon #»ex, − #»ex, #»ey ou − #»ey.

a) q0 = q1 = q2 . . . . . . . . . . . . .

b) −q0 = −q1 = q2 . . . . . . . . . .

c) q0 = −q1 = q2 . . . . . . . . . . . .

d) −1
2q0 = q1 = q2 . . . . . . . . . .

Entraînement 14.4 — Charge accélérée.
On considère une particule de charge q et de masse m se déplaçant le long d’un axe (Ox) sous l’action d’un
champ de potentiel électrique V (x).
On dispose de trois expressions de V (x) dont une seule est homogène :

a V (x) = V0

(
1
x

− 1
a

)
b V (x) = V0

(
1 −

(x
a

)2
)

c V (x) = V0
(
a2 − x2).

La vitesse v(x) de la particule et le potentiel V (x) en un point x sont liés par la relation :

1
2mv(x)2 + qV (x) = Cte. (3)

En x = 0, la vitesse de la particule est nulle.

a) Déterminer la seule expression de V (x) homogène à un potentiel électrique . . . . . . . . .

b) En utilisant la relation (3) en x = 0, exprimer la constante en fonction de q et V0 . . .

c) Exprimer v(a) en fonction de q, m et V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer v
(a

2

)
en fonction de q, m et V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Exprimer v
(a

2

)
en fonction de v(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Du potentiel au champ électrique

Entraînement 14.5 — Potentiel électrique dû à deux charges.
Le potentiel électrique produit en un point M par une charge q1 située en
un point B est :

V1(M) = 1
4πε0

q1
BM .

Afin d’obtenir les potentiels V1(M) et V2(M) créés par les charges q1 et q2
telles que q = q1 = −q2, ainsi que le potentiel total

V (M) = V1(M) + V2(M),

on cherche à exprimer les distances BM et CM en fonction des coordonnées
r et θ du point M et de la distance a illustrées ci-contre.

x

y

a

y

x−a

#»eθ

#»er

r

O

M•

θ •
q1, B

•
q2, C

Exprimer les grandeurs suivantes en fonction des paramètres indiqués.
a) BM en fonction de x, y, a.

On pourra utiliser les coordonnées des points B et M . . . . . . . . . . . . .

b) r2 en fonction de x, y.

On pourra chercher un triangle rectangle adéquat . . . . . . . . . . . . . . . .

c) BM en fonction de r, x, a.

On pourra utiliser les réponses des questions a) et b) . . . . . . . . . . . . .

d) x en fontion de r, θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) BM en fonction de r, a, θ.

On pourra utiliser les réponses des questions c) et d) . . . . . . . . . . . . .

f) V1 en fonction de q, r, a, θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) CM en fonction de x, y, a.

On pourra utiliser les coordonnées des points C et M . . . . . . . . . . . . .

h) CM en fonction de r, x, a.

On pourra utiliser les réponses des questions b) et g) . . . . . . . . . . . . .

i) CM en fonction de r, a, θ.

On pourra utiliser les réponses des questions d) et h) . . . . . . . . . . . .

j) V2 en fonction de q, r, a, θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k) V en fonction de q, r, a, θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 14.6 — Approximation de potentiels électriques.
Développer les expressions de potentiels électriques suivantes en calculant leur développement limité au
voisinage de 0 à l’ordre indiqué et selon la variable spécifiée.

a) À l’ordre 1 : V
(a
r

)
= 1

4πε0

q

r

(
1 − a

2r

)4
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) À l’ordre 1 : V
(a
r

)
= 1

4πε0

q

r

(
1√

1 − a
r cos(θ)

− 1√
1 + a

r cos(θ)

)
. . .

c) À l’ordre 2 : V (θ) = 1
4πε0

qa cos(θ)
r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) À l’ordre 1 : V
(a
r

)
= 1

4πε0

q

r
ln
(

1 + a

r

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) À l’ordre 1 : V
(a
r

)
= 1

4πε0

q

r
ln


√

1 + 4a2

r2 + 1√
1 + 4a2

r2 − 1

 . . . . . . . . . . . . . . . . . .

Entraînement 14.7 — Calcul d’un champ électrique.
En coordonnées polaires, le champ #»

E(M) au point M s’exprime en fonction du potentiel V (M) par la
formule :

#»

E(M) = −∂V (M)
∂r

#»er − 1
r

∂V (M)
∂θ

#»eθ.

On donne :
ε0 = 8,85 · 10−12 C.V−1.m−1, q = 6,0 · 10−11 C et a = 4,0 mm.

Dans cet entraînement, on suppose que V (M) = 1
4πε0

q sin(2θ)
r

.

a) Exprimer #»

E(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer #»

E(M) pour M
(
r = a

2 , θ = π
)

. . . . . . . . . . . . . . .

c) À l’aide des données, calculer ∥ #»

E(M)∥ en V.m−1 . . . . . .

Entraînement 14.8 — Bis repetita.
On reprend l’entraînement précédent avec les mêmes données, mais un potentiel électrique différent.

Dans cet entraînement, on suppose que V (M) = 1
4πε0

qa cos(θ)
r2 .

a) Exprimer #»

E(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer #»

E(M) pour M
(
r = a, θ = π

2

)
. . . . . . . . . . . . . . .

c) À l’aide des données, calculer ∥ #»

E(M)∥ en V.m−1 . . . . . .
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Du champ au potentiel électrique

Entraînement 14.9 — Champ électrique produit par un condensateur.
Un condensateur produit un champ #»

E = E(x) #»ex entre ses deux armatures positionnées en x = 0 et x = d.
La différence de potentiel entre les armatures est liée au champ de telle manière que :

V (0) − V (d) =
ˆ d

0
E(x) dx.

On considère que l’armature en x = d est la masse du circuit, son potentiel est donc considéré comme nul.

Exprimer le potentiel V (0) pour les différentes formes de champ E(x).

a) E(x) = E0

(
1 − x

d

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) E(x) = E0

(
1 − x

d

)2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) E(x) = E0 sin
(

3π
2
x

d

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) E(x) = E0

(
1 − e−x/d

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distributions continues de charges

Entraînement 14.10 — Charge d’une sphère.
On souhaite déterminer la charge électrique totale Q contenue dans une sphère de rayon R et de densité
de charges ρ(r, θ, φ). Pour ce faire, on doit intégrer la densité de charges sur toute la sphère S en utilisant
la formule :

Q =
˚

S
ρ(r, θ, φ) dτ.

On peut démontrer que le volume d’intégration élémentaire est dτ = r2 sin(θ) dr dθ dφ avec, pour une
sphère, r ∈ [0, R], θ ∈ [0, π] et φ ∈ [0, 2π]. Ainsi, on a :

Q =
ˆ 2π

0

ˆ π

0

ˆ R

0
ρ(r, θ, φ)r2 sin(θ) dr dθ dφ.

Exprimer la charge électrique totale Q contenue dans la sphère en fonction de son rayon R pour les
différentes densités de charges suivantes.

a) ρ(r, θ, φ) = 2ρ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) ρ(r, θ, φ) = 2
( r
R

)2
ρ0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ρ(r, θ, φ) = 2
( r
R

)2
sin
(φ

2

)
ρ0 . . . . . . . . . . . . . . . . . . .

Fiche no 14. Champ électrique 107



Entraînement 14.11 — Charge d’un cylindre.
On souhaite déterminer la charge électrique totale Q conte-
nue dans un cylindre de rayon R, de hauteur h et de densité
de charges ρ(r, θ, z). Pour ce faire, on doit intégrer la den-
sité de charges sur tout le cylindre C.
Comme on peut le voir sur la figure ci-contre, le volume
d’intégration élémentaire est :

dτ = r dr dθ dz,

avec, pour un cylindre, r ∈ [0, R], θ ∈ [0, 2π] et z ∈ [0, h].
Ainsi, on a :

Q =
ˆ h

0

ˆ 2π

0

ˆ R

0
ρ(r, θ, z)r dr dθ dz.

R

h

O

y

z

x

r

dz

rdθ
dr

dθ

dτ = r dr dθ dz

•M

Exprimer la charge électrique totale Q contenue dans le cylindre en fonction de son rayon R et de sa
hauteur h pour les différentes densités de charges suivantes.

a) ρ(r, θ, z) = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) ρ(r, θ, z) = 2
( r
R

)3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ρ(r, θ, z) = 2
( r
R

)3( z
h

)2
sin
(
θ

2

)
. . . . . . . . . . . . . . . .

Réponses mélangées

#»ex c
√
qV0
2m 3,4 · 104 V.m−1

√
(x− a)2 + y2 2

3πE0d

√
a2 + y2

1
4πε0

q
( 1√

r2 − 2ar cos(θ) + a2

− 1√
r2 + 2ar cos(θ) + a2

) √
(x+ a)2 + y2

1
4πε0

qa

r3 (2 cos(θ) #»er + sin(θ) #»eθ)
√
r2 + 2ax+ a2 x2 + y2 v(a)

2
1

4πε0

qa cos(θ)
r2 − 8

4πε0

q

a2
#»eθ

#»ey
8
15R

2h qV0 b
√

2qV0
m

− #»ex

1
4πε0

q

r2 (sin(2θ) #»er − 2 cos(2θ) #»eθ)
√
r2 − 2ax+ a2

√
r2 + 2ar cos(θ) + a2 8

5πR
3ρ0

1
2E0d − 1

4πε0

q√
r2 + 2ar cos(θ) + a2

√
r2 − 2ar cos(θ) + a2 16

5 R
3ρ0

1
4πε0

q

a2
#»eθ

8
3πR

3ρ0
1

4πε0

qa

r2
1

4πε0

qa

r2

(
1 − 1

2θ
2
)

4
5πR

2h
1

4πε0

q√
r2 − 2ar cos(θ) + a2

∥ #»

F ∥√
a2 + y2

(−a #»ex + y #»ey) 3πR2h
y√

a2 + y2
a√

a2 + y2
E0de

−1

1
4πε0

q

r
ln
(

1 + r2

a2

)
− #»ey

1
4πε0

q

r

(
1 − 2a

r

)
r cos(θ) 2,7 · 105 V.m−1 1

3E0d

▶ Réponses et corrigés page 272
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MAG02 ÉlectromagnétismeFiche d’entraînement no 15

Particule dans un champ électromagnétique

Prérequis
Principe fondamental de la dynamique. Théorème de l’énergie cinétique, de
l’énergie mécanique. Puissance, travail. Énergie potentielle.
Force de Lorentz.
Constantes utiles
→ charge élémentaire : e = 1,60× 10−19 C
→ célérité de la lumière dans le vide : c = 3,00× 108 m · s−1

Préliminaires

Entraînement 15.1 — Électron-volt.
Le produit d’une charge électrique par une tension est une énergie.
En multipliant la charge élémentaire e = 1,6 × 10−19 C par une tension de 1 V, on obtient une unité adaptée
à la physique des particules, l’électron-volt, noté eV. On a 1 eV = 1,6 × 10−19 J.

a) Que vaut 1 J en eV ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) L’énergie d’un photon rouge est de 2,48 × 10−19 J.
Convertir en eV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) L’énergie d’un photon violet est de 3,1 eV.
Convertir en J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Quel photon a la plus grande énergie ?
Le rouge ou le violet ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 15.2 — Qui est le plus massique ?
On considère les trois particules suivantes :

• le proton, dont la masse vaut mproton = 1,67 × 10−27 kg ;
• le kaon, qui est une particule dont l’énergie de masse vaut mkaon × c2 = 7,90 × 10−4 erg ;
• le tau, qui est une particule de masse mtau = 1 777 MeV/c2.

On donne 1 erg = 1 g · cm2 · s−2 et 1 eV = 1,6 × 10−19 J.

Laquelle de ces particules est la plus massique ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Champ électrique et potentiel scalaire

Entraînement 15.3 — Carte d’équipotentielles.
On représente ci-dessous la carte des équipotentielles créées par trois charges électriques.
Une équipotentielle correspond à l’ensemble des lieux où le potentiel électrostatique scalaire V prend une
même valeur numérique.

−20V

−
10

V

0V

1
0
V

20
V

20
V

A

B

C

M

#»ex

#»ey

#»ez

a) En norme, le champ électrique est le plus intense :

a en A b en B c en C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En M, le champ électrique est orienté :

a vers en haut à droite
b vers en haut à gauche

c vers en bas à droite
d vers en bas à gauche

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 15.4 — Potentiel scalaire.
Le potentiel électrostatique scalaire V vérifie :

dV (M) = − #»

E(M) · #»dℓ,

où #»dℓ est le vecteur déplacement élémentaire.
On rappelle les expressions du vecteur #»dℓ en coordonnées cartésiennes et en coordonnées cylindriques :

#»dℓ = dx #»ex + dy #»ey + dz #»ez

= dr #»er + r dθ #»eθ + dz #»ez.

En déterminant dV , puis en intégrant, exprimer le potentiel V (M) pour les champs #»

E suivants :

a) #»

E(M) = E #»ex . . . . . . . . . . . . . . . .

b) #»

E(M) = α

r2
#»er . . . . . . . . . . . . . . .

c) #»

E(M) = β

r
#»er . . . . . . . . . . . . . . . .

d) #»

E(M) = γ(y #»ex + x #»ey) . . . . . . .

Force de Lorentz

On rappelle l’expression de la force de Lorentz : #  »

FL = q( #»

E + #»v ∧ #»

B).

Entraînement 15.5 — Composante électrique de la force de Lorentz.
Dans la base ( #»ex,

#»ey,
#»ez), exprimer (en fonction de q, de E et éventuellement de α et β) la composante

électrique de la force de Lorentz, définie par #»

FL,électrique = q
#»

E.

#»v

#»

E

q > 0

a
#»v

#»

E

q < 0

b

#»

E
β

#»v

α

q > 0

c

#»ex

#»ey

#»ez

+

a) #»

FL,électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) #»

FL,électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) #»

FL,électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 15.6 — Composante magnétique de la force de Lorentz.

#»

B

#»v

q < 0

a

#»v

α
#»

B

q > 0

b

#»v

α

#»

B ×

q > 0

c

#»ex

#»ey

#»ez

+

Dans la base ( #»ex,
#»ey,

#»ez), exprimer (en fonction de q, de v, de B, et éventuellement de α) la composante
magnétique de la force de Lorentz, définie par #»

FL,magnétique = q #»v ∧ #»

B.

a) #»

FL,magnétique . . . . .

b) #»

FL,magnétique . . . . .

c) #»

F L,magnétique . . . . .

Entraînement 15.7 — Puissance de la force de Lorentz.
On se place dans une base ( #»ex,

#»ey,
#»ez), et on considère :

• un champ électrique constant dans tout l’espace : #»

E = E #»ex ;
• un champ magnétique constant dans tout l’espace : #»

B = B #»ez.

+2q
A

#»v

B−q

2 #»v π/6

+3q
C

#»v
π/4

−q
D

#»v
π/3

#»ex

#»ey

#»ez

#»

B
#»

E

On rappelle que la puissance d’une force #»

F appliquée à une particule de vitesse #»v est P = #»

F · #»v .
Donner l’expression de la puissance des forces subies par chacune des particules A, B, C et D.

a) PA . . . . . . . . . . . . . . .

b) PB . . . . . . . . . . . . . . .

c) PC . . . . . . . . . . . . . . .

d) PD . . . . . . . . . . . . . . .
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Mouvement dans un champ électrique

Entraînement 15.8 — Champ perpendiculaire à la vitesse initiale.
On étudie le mouvement d’une particule de charge q > 0 et de
masse m dans une zone où règne un champ électrique #»

E = E #»ey.
À l’instant initial, la vitesse est orthogonale au champ élec-
trique : #»v (t = 0) = v0

#»ex.
L’étude du mouvement permet d’établir l’expression de la vitesse
en fonction du temps :

#»v (t) = v0
#»ex + qE

m
t #»ey.

#»ex

#»ey

#»ez

#»

E

q, m
#»v0

À t = 0

#»v (t)

a) À quel instant t0 la particule double sa vitesse (par rapport à la vitesse initiale) ? . . . . . .

b) À quel instant t1 l’énergie cinétique de la particule a quadruplé ? . . . . . . . . . . . . . . . . . . . . . .

c) Quelle est la valeur de l’angle α = ( #»ex,
#»v ) à l’instant t1 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 15.9 — Champ colinéaire à la vitesse initiale.

Un proton de masse mp = 1,67 × 10−27 kg entre en O, avec
une vitesse initiale négligeable, dans un condensateur plan.
Une tension U est appliquée entre les deux armatures sé-
parées d’une distance d = 5,0 cm. Le champ électrique #»

E
entre les plaques est supposé uniforme et orienté dans le
sens des x croissants. Sa norme est E = U

d
.

x
O S

d

Entrée des
protons

Sortie des
protons

La variation d’énergie cinétique entre l’entrée O et la sortie S vérifie :

Ec(S) − Ec(O) = qU.

Le champ électrique de claquage de l’air vaut Emax = 3 × 107 V · m−1.

a) Quelle est la tension maximale Umax qui peut être appliquée aux bornes du condensateur sans qu’il n’y

ait de claquage ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) L’énergie cinétique du proton en sortie du condensateur est alors égale à :

a 6 keV b 1,5 MeV c 0,24 pJ d 9,6 mJ

(plusieurs réponses sont possibles)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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En associant l’un après l’autre de tels condensateurs plans, on peut augmenter l’énergie cinétique des
protons : l’énergie cinétique Ec,n à la sortie du condensateur n vérifie la relation :

Ec,n − Ec,n−1 = qU.

c) La suite (Ec,n)n est une suite :

a arithmétique b géométrique c arithmético-géométrique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) En déduire l’expression de Ec,n en fonction de n, q et U . . . . . . . . . . . . . . . . . . . . . . . . .

On souhaite atteindre une vitesse v = c

10 , où c est la célérité de la lumière dans le vide par une mise en
série de condensateurs.
e) Quel est le nombre de condensateurs plans nécessaires pour atteindre une telle vitesse avec une tension

U = 1 MV aux bornes de chaque condensateur ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Particule dans un champ magnétique

Entraînement 15.10 — Étude d’une trajectoire.
On considère une particule de masse m et de charge q < 0
placée dans un champ magnétique uniforme #»

B = B #»ez. On
note #»v (t) le vecteur vitesse et #»v0 sa valeur initiale.

On représente la situation par le schéma ci-contre : #»v 0

⊙ #»

B

a) Exprimer l’accélération #»a en fonction de q, m, #»v et #»

B.

On pourra négliger le poids de la particule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On admet que le mouvement est circulaire de rayon R et de centre C.

b) Exprimer la vitesse dans le repère de coordonnées polaires d’origine C . . . .

c) En déduire l’expression de la force de Lorentz en coordonnées polaires . . . .

d) Exprimer l’accélération en coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Reprendre le PFD pour exprimer le rayon R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) Calculer la période T du mouvement circulaire . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Particule dans un champ ( #»

E,
#»

B)

Entraînement 15.11 — Mouvement uniforme.

Un électron de masse m et de charge q < 0 adopte un
mouvement rectiligne uniforme de vitesse #»v0 = v0

#»ex dans
une zone où règnent un champ électrique #»

E = E #»ey et un
champ magnétique #»

B = B #»ez.

On représente la situation par le schéma ci-contre :
#»ex

#»ey

#»v 0

#»

E

⊙ #»

B

O

a) Exprimer la force de Lorentz #»

FL dans la base cartésienne . . . . . . . . . . . . . . . . . . . . . . .

b) À quelle condition l’électron adopte-il un mouvement rectiligne uniforme ? . . . . . . .

Réponses mélangées

qvB cos(α) #»ez 1,55 eV q

m
#»v ∧ #»

B v0 = E

B
−Ex+ C a

−qEv

2 q(E − v0B) #»ey |qE| #»ex

√
3mv0
qE

b Rθ̈ #»eθ −Rθ̇2 #»er

qE #»ey nqU 5 violet qEv 0 π

3 b et c Rθ̇ #»eθ

qRBθ̇ #»er −γxy + C 5,0 × 10−19 J
√

3mv0
qE

α

r
+ C 2π m

|q|B

−qvB
(

cos(α) #»ex

+ sin(α) #»ey

) mv0
|q|B

6,3 × 1018 eV 3
√

2
2 qEv a

|q|vB #»ey −β ln(r) + C 1,5 MV
qE
(

cos(β) #»ey

− sin(β) #»ex

) tau

▶ Réponses et corrigés page 278
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MAG03 ÉlectromagnétismeFiche d’entraînement no 16

Champ magnétique

Prérequis
La force magnétique agissant sur une charge q, de vitesse #»v , placée dans
un champ magnétique #»

B vaut #       »
Fmag = q #»v ∧ #»

B, où #»
B est un vecteur (ou

pseudo-vecteur) axial dont l’unité est le tesla (noté T).
Constantes utiles
→ perméabilité magnétique du vide : µ0 = 4π × 10−7 T ·m ·A−1

Pour commencer

Entraînement 16.1 — À propos de la force magnétique.
La force magnétique agissant sur une charge q animée d’une vitesse #»v est #       »

Fmag = q #»v ∧ #»

B.

a) A-t-on toujours #       »

Fmag ⊥ #»v ? . . . . . . b) A-t-on toujours #       »

Fmag ⊥ #»

B ? . . . . . .

Entraînement 16.2 — Force magnétique connaissant le champ magnétique.

Un électron de charge −e possède un vecteur vitesse #»v = v0
#»ex lorsqu’il

est en O. Il subit alors l’action d’un champ magnétique uniforme
#»

B = B0( #»ey + #»ez). O
x

z

y

#»

B

#»v

La force exercée sur l’électron en O vaut :

a #»

F = ev0B0(− #»ey − #»ez)
b #»

F = ev0B0( #»ey + #»ez)
c #»

F = ev0B0(− #»ey + #»ez)
d #»

F = ev0B0( #»ey − #»ez)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.3 — Équilibre d’une boussole.
Une aiguille aimantée de centre O est libre de tourner sans frot-
tements autour d’un axe vertical (Oz). Elle s’oriente à l’équilibre
suivant #    »

BH = BH
#»ex.

Un fil conducteur de grande longueur devant la taille de l’aiguille
est placé à la distance d = 2 cm au-dessus de O, parallèlement à
l’axe (Ox). Le champ magnétique créé en O par le fil vaut :

#   »

Bfil(O) = µ0I

2πd
#»ey.

O

x y

z

#    »

BH

α N

S
fil

Lorsqu’un courant d’intensité I = 1,2 A circule dans ce fil dans le sens des x croissants, la boussole retrouve
une position d’équilibre en tournant d’un angle α = 30° comme indiqué sur la figure.

a) Exprimer BH en fonction de µ0, I, d et α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner la valeur numérique de BH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Calculs de flux magnétiques

Le flux Φ du champ magnétique à travers une surface S reposant sur un contour orienté et fermé s’écrit :

Φ =
¨

S

#»

B · #  »dS,

où le vecteur #  »dS est orienté par la règle de Maxwell.
On sait par ailleurs que #»

B est un champ vectoriel à flux conservatif : le flux de #»

B sortant de toute surface
fermée est nul.

Entraînement 16.4 — Flux d’un champ uniforme à travers une demi-sphère.
On considère la surface suivante, une demi-sphère de rayon R et d’axe (Ox) :

#»

B

S

#»ex

R

x

Combien vaut le flux du champ magnétique uniforme #»

B = B #»ex à travers cette surface ?

a ϕ = 0 b ϕ = 2BπR2 c ϕ = BπR2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.5 — Flux d’un champ non uniforme à travers un disque.
On considère un champ magnétique #»

B défini par :

#»

B(M) = B0

(
1 − r2

R2

)
#»ex,

où M est repéré à l’aide des coordonnées cylindriques r, θ et x.
Ainsi, r est la distance du point à l’axe (Ox).

#»

B
S

x
#»ex

r
R

On souhaite calculer le flux ϕ de ce champ à travers le disque de rayon R et d’axe (Ox) orienté comme
indiqué sur la figure. Il est défini par :

ϕ =
¨

S

#»

B · #  »dS,

où #  »dS = dS #»ex avec dS élément de surface du disque en un point M quelconque du disque.

On rappelle que l’expression de dS en coordonnées cylindriques est :

dS = r · dθ · dr.

Exprimer ϕ en fonction de R et B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 16.6 — Flux à travers un cadre du champ créé par un fil.

Considérons un fil rectiligne infiniment long suivant l’axe (Oz),
parcouru par un courant d’intensité I circulant dans le sens des
z croissants. Le champ magnétique créé par ce fil, en un point
M à la distance r de l’axe (Oz), est :

#»

B(M) = µ0I

2πr
#»eθ.

z

I

O •a

a

D
⊗

#»eθ

#»ez

#»er

Nous souhaitons calculer le flux ϕ de ce champ à travers le cadre carré de côté a orienté comme indiqué
sur la figure. Il est défini par :

ϕ =
¨

S

#»

B · #  »dS,

où #  »dS = dS #»eθ avec dS = dr · dz élément de surface du cadre en un point M quelconque du cadre.

a) Exprimer ϕ en fonction de a, D, µ0 et I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner un équivalent de ϕ si a ≪ D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Que vaut ϕ si le cadre est situé dans un plan perpendiculaire à (Oz) ? . . . .

Superposition de champs

Entraînement 16.7 — Champ de deux aimants droits.

On approche le pôle Nord d’un aimant droit d’axe ∆
du pôle Nord d’un aimant droit identique d’axe (x′x).
On donne les champs créés par les aimants en O :
#  »

B1 = B0
#»ex et #  »

B2 = B0
#  »e∆ avec B0 = 20 mT. x′ x

y ∆

#»ex

#  »e∆

•Oα
S N

S

N

Le champ magnétique résultant de la superposition de #  »

B1 et #  »

B2 en O sera noté #»

B(O).

a) Exprimer #»

B(O) dans la base ( #»ex,
#»ey), en fonction de B0 et α . . . . . . . . . . . . . .

b) Exprimer la norme B(O) de #»

B(O), en fonction de B0 et cos(α) . . . . . . . . . . .

c) Calculer B(O) pour α = 60° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 16.8 — Champ magnétique créé par deux fils.
Deux fils colinéaires à l’axe (Oz) et parcourus par un courant d’intensité I coupent le plan (xOy) respec-
tivement en O1 et O2, comme représenté ci-dessous :

x

y

•OO1 O2

•
D

a a

d d

#  »

B1

#  »

B2

θ

#»e1

#»e2

⊙⊙

Ces fils passant par O1 et par O2 créent, au point D(0, y), respectivement, les champs #  »

B1 et #  »

B2 vérfiant
#  »

B1 = B0
#»e1 et #  »

B2 = B0
#»e2.

On donne B0 = µ0I

2πd , où d est la distance commune de D aux points O1 et O2.

Le vecteur #»e1 est un vecteur unitaire orthogonal à la droite (O1D) ; de même pour #»e2.

Le champ magnétique résultant de la superposition de #  »

B1 et #  »

B2 en D sera noté #     »

Btot.

a) Exprimer d en fonction de a et θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer #»e1 dans la base ( #»ex,
#»ey) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer #»e2 dans la base ( #»ex,
#»ey) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer #     »

Btot dans la base ( #»ex,
#»ey) en fonction de B0 et θ . . . . . . . . . .

Le champ #     »

Btot peut se mettre sous la forme suivante :

#     »

Btot = µ0I

π
f(y) #»ex.

e) Expliciter la fonction f(y) en fonction de a et y . . . . . . . . . . . . . . . . . . . .

f) Donner les valeurs de y pour lesquelles
∣∣f(y)

∣∣ est maximale . . . . . . . . .
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Champs magnétiques créés par des courants

Entraînement 16.9 — N fils sur un cylindre.

On considère N fils rectilignes (N ≫ 1) infiniment longs,
uniformément répartis sur un cylindre de centre O, de
rayon a et d’axe (Oz). Ces fils sont parcourus par le même
courant circulant dans le même sens.
Soit un point M à la distance r de O.

⊙
O
z •

M
#»er

#»eθ

⊙
⊙

⊙⊙⊙⊙⊙⊙⊙⊙⊙
⊙
⊙
⊙
⊙⊙⊙⊙⊙⊙⊙⊙⊙

⊙

a) Pour la distribution des courants, le plan (M, #»er,
#»ez) est un plan :

a de symétrie
b d’antisymétrie

c ni de symétrie, ni d’antisymétrie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Le champ magnétique en M est alors :

a dirigé selon #»er

b dirigé selon #»eθ

c dirigé selon #»ez

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.10 — Champ créé par deux fils parallèles.

On considère deux fils conducteurs infinis parallèles
à l’axe (Oz), à égale distance a de (Oz) et parcourus
par des courants de même intensité I circulant en sens
inverse.

z

x
⊗
y

I

I

O

fil 1

I

fil 2
I

a a

a) Lequel de ces trois plans est plan de symétrie pour la distribution des courants ?

a le plan (xOy) b le plan (yOz) c le plan (xOz)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) L’analyse des symétries permet de dire que, en un point A de l’axe (Ox), le champ #»

B(A) est :

a parallèle à (Ox) b parallèle à (Oy) c parallèle à (Oz)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) L’analyse des symétries permet de dire que, en un point D de l’axe (Oy), le champ #»

B(D) est :

a parallèle à (Ox) b parallèle à (Oy) c parallèle à (Oz)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 16.11 — Champ créé par une spire circulaire.

On considère une spire circulaire de centre O, d’axe (Oz)
et de rayon R, parcourue par un courant d’intensité I > 0
constante circulant dans le sens indiqué sur la figure.
On cherche la direction du champ #»

B créé par la spire en
un point M de l’axe (Oz), puis en N à la distance r de M.

•
O

z
I •

M #»ez

R

N
#»er

⊙#»eθ

rα

a) En un point M de l’axe (Oz), le champ créé par la spire est :

a colinéaire à #»er b colinéaire à #»eθ c colinéaire à #»ez

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) L’analyse des symétries permet de dire que, en N, le champ #»

B(N) est contenu dans le plan :

a (M, #»er,
#»eθ) b (M, #»eθ,

#»ez) c (M, #»er,
#»ez)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.12 — Champ créé sur l’axe par une spire circulaire.
On reprend la spire circulaire de l’entraînement précédent.
Le champ magnétique créé par cette spire en M(0, 0, z) s’écrit :

#      »

Baxe(M) = µ0I

2R sin3(α) #»ez,

où α est l’angle orienté dans le sens horaire sous lequel M voit le rayon de la spire.
Le vecteur #      »

Baxe(M) peut également s’écrire en fonction de z. Il prendra alors la forme suivante :

#      »

Baxe(M) = µ0I

2R f(z) #»ez.

a) Exprimer sin(α) en fonction de z et de R . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer f(z) en fonction de z et de R . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On note B1 l’intensité du champ #      »

Baxe(M) quand z = R.

c) Exprimer B1 en fonction de µ0, I et R . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Pour quelle valeur de z > 0 a-t-on
∥∥∥ #      »

Baxe(M)
∥∥∥ = B1

2 ? . . . . . . . . . . . . . .
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Entraînement 16.13 — Champ créé par un solénoïde.

On considère un solénoïde de longueur ℓ comportant n
spires par unité de longueur. Les spires sont traversées
par un courant d’intensité I.

Les extrémités du solénoïde sont en z = ± ℓ

2 et on
note O son centre.

ℓ

z′ zO

I I

a) Tout plan qui contient l’axe (Oz) est un plan d’antisymétrie (pour la distribution des courants du
solénoïde) à condition de :

a négliger l’hélicité de l’enroulement
b supposer que R ≪ ℓ

c supposer que ℓ → ∞

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En supposant la condition précédente vérifiée, l’analyse des symétries permet de dire que, en tout point
M de son axe, le champ #»

B(M) créé par le solénoïde est :

a parallèle à #»er b parallèle à #»eθ c parallèle à #»ez

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.14 — Expression du champ sur l’axe créé par un solénoïde.
Le champ magnétique créé par un solénoïde de longueur ℓ
et de rayon R en un point M de son axe (Oz) s’écrit :

#»

B(M) = B(M) #»ez,

avec
B(M) = µ0nI

2

(
cos(αmin) − cos(αmax)

)
,

où αmin et αmax sont les angles sous lesquels les extrémités
du solénoïde sont vues depuis M de coordonnées (0, 0, z).

solénoïde

z

R

•
M

•
O− ℓ

2
ℓ

2

αmin αmax

On rappelle que I est l’intensité du courant qui traverse chaque spire et n le nombre de spires par unité
de longueur. L’origine O de l’axe (Oz) se trouve au milieu du solénoïde.

a) Exprimer B(M) en fonction de µ0, n, I, R, ℓ et z . . . . . . . . . . . . . . . . . .

b) Que vaut B(O) pour ℓ quelconque ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Que vaut le rapport
B

(
± ℓ

2

)
B(O) ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Vers quelle valeur tend B(O) si ℓ

R
→ +∞ ? . . . . . . . . . . . . . . . . . . . . . . . .
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Champs solutions d’une équation différentielle

Entraînement 16.15 — Champ magnétique d’une plaquette supraconductrice.

En tout point M d’une plaque supraconductrice d’épaisseur 2e,
le champ magnétique est de la forme :

#»

B(M) = B(z) #»ey.

B(z) est une fonction paire vérifiant l’équation différentielle :

d2B(z)
dz2 − B(z)

δ2 = 0,

y

z

⊙
x

e

−e

#  »
B0

#  »
B0

#  »
B0

#  »
B0

#»
B(z)

#»
B(z)

où δ est homogène à une longueur.
Le champ magnétique extérieur #  »

B0 permet d’écrire B(−e) = B(e) = B0 par continuité du champ.

La fonction cosinus hyperbolique (cosh(x) = ex + e−x

2 ) pourra être utilisée.

a) Déterminer B(z) en fonction de B0, δ, e et z . . . . . . . . . . . . . . . .

b) Calculer B(0)
B0

pour e = δ/10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Calculer B(0)
B0

pour e = 10δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 16.16 — Évolution temporelle d’un champ uniforme.
On considère un champ magnétique uniforme et dépendant du temps B(t) #»ez et on suppose que la fonction
B(t) vérifie l’équation différentielle :

d2B(t)
dt2 + ω0

Q

dB(t)
dt + ω2

0
(
B(t) −B0

)
= 0, (∗)

où ω0, Q et B0 sont des constantes. On suppose que Q > 1/2.

a) Quelle est l’équation caractéristique associée à (∗) ? . . .

b) Combien vaut son discrimimant ∆ ? . . . . . . . . . . . . . . . . . . .

c) Quel est le signe de ∆ ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Donner une solution particulière de (∗) . . . . . . . . . . . . . . . .

e) Résoudre l’équation différentielle (∗) . . . . . . . . . . . . . . . . . .

Les conditions initiales du problème sont : B(0) = 0 et B′(0) = 0.

f) Déterminer complètement B(t) . . . . . . . . . . . . . . . . . . . . . . . .
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Une analyse dimensionnelle

Entraînement 16.17 — Le magnéton de Bohr.
Le magnéton de Bohr µB , qui est homogène à un moment magnétique, s’exprime en fonction de e (charge
élémentaire), me (masse de l’électron) et h (constante de Planck) suivant la relation :

µB = 1
4π e

α ·mβ
e · hγ .

On cherche à évaluer α, β et γ par une analyse dimensionnelle. Pour cela, on utilise les deux données
suivantes :

• le système international d’unités impose que le moment magnétique s’exprime en A · m2 ;
• l’énergie d’un photon est proportionnelle à sa fréquence ν : E = hν.

Donner la valeur de (α, β, γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

b R√
R2 + z2

µ0I

4
√

2R
(1,−1, 1) c ∆ < 0 20,8 µT 1

2

√
4R2 + ℓ2

√
R2 + ℓ2

−2B0 sin(θ) #»ex − sin(θ) #»ex − cos(θ) #»ey b B0(1 + cos(α)) #»ex +B0 sin(α) #»ey

c a 34,6 mT µ0I

2πd tan(α) B0 c R
√

25/3 − 1

µ0nI

2

(
z + ℓ

2√
R2 +

(
z + ℓ

2

)2

−
z − ℓ

2√
R2 +

(
z − ℓ

2

)2

) µ0nIℓ√
4R2 + ℓ2

nul ϕ ≈ µIa2

2πD
B(0)
B0

≈ 1

− sin(θ) #»ex + cos(θ) #»ey oui
B0 + e− ω0

2Q
t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
)) − y

a2 + y2

B0
√

2(1 + cos(α)) c oui a π

2B0R
2 c µ0nI

B(0)
B0

≈ 9 × 10−5(
ω0
Q

)2
(1 − 4Q2) R3

(
√
R2 + z2)3

a

cos(θ) b d µ0Ia

2π ln
(
D + a/2
D − a/2

)

r2 + ω0r

Q
+ ω2

0 = 0 en y = ±a
B0

(
1− e− ω0

Q
t
(

cos
(ω0

Q

√
4Q2 − 1 · t

)
+ 1√

4Q2 − 1
sin
(ω0

Q

√
4Q2 − 1 · t

)) B0
cosh

(z
δ

)
cosh

(e
δ

)
▶ Réponses et corrigés page 281
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MAG04 ÉlectromagnétismeFiche d’entraînement no 17

Induction

Prérequis
Flux magnétique. Loi de Lenz. Force de Laplace.

Autour du flux d’un champ magnétique

Entraînement 17.1 — Flux propre d’un solénoïde.
On forme une bobine en enroulant du fil de cuivre d’épaisseur e sur un cylindre de rayon R et de longueur
ℓ en une seule couche de N spires jointives.
Le champ magnétique créé par un solénoïde infini est :

#»

B = µ0ni
#»ez,

où µ0 est la perméabilité du vide, i le courant parcourant et n = N

ℓ
le nombre de spires par unité de

longueur.

z

×××××××××××××××××

ℓ

i

#»

BR

e

Le flux propre dans cette bobine est ϕtot = NBS où S est la surface d’une spire.

Par combien est multiplié le flux propre à travers la bobine lorsque l’on double :

a) l’intensité du courant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) la longueur du solénoïde (fil de même épaisseur) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) l’épaisseur du fil (la longueur de fil restant la même) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) le rayon de la bobine (la longueur de fil restant la même) . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 17.2 — Flux dans des circuits orientés.
Des boucles de différentes formes mais toutes de même surface S = a2 sont placées proches d’un fil
infini parcouru par un courant I. On peut montrer que le champ produit par un fil infini est de la forme
#»

B(r) = µ0I

2πr
#»eθ dans le repère cylindrique (avec Oz confondu avec le fil).

I

a

Spire A

2a

Spire B Spire C 2aSpire D

a) Quels flux sont négatifs ?

a ϕA b ϕB c ϕC d ϕD e Aucun

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b) A-t-on |ϕA| > |ϕB| ?

a Oui
b Non

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) A-t-on |ϕC| > |ϕD| ?

a Oui
b Non

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 17.3 — Flux dans des polyèdres (I).

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme #»

B = B #»ey. Déterminer les expressions
des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

O
yA

z

x

C

B

B′

C′

A′

c

a

b

#»

B

AA′ = BB′ = CC′ = a

AB = A′B′ = b

AC = A′C′ = c

a) ϕ
( #»

B
)

pour ABC = . . . . . . . . . .

b) ϕ
( #»

B
)

pour A′C′B′ = . . . . . . . .

c) ϕ
( #»

B
)

pour AA′B′B = . . . . . . .

d) ϕ
( #»

B
)

pour A′ACC′ = . . . . . . .

e) ϕ
( #»

B
)

pour CBB′C′ = . . . . . . .
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Entraînement 17.4 — Flux dans des polyèdres (II).

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme #»

B = B #»ez. Déterminer les expressions
des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

O
y

z

x

A

E

B

D C

H

a

a

h
#»

B

EH = h

AB = BC = CD = DA = a

a) ϕ
( #»

B
)

pour ABCD = . . . . . . . . .

b) ϕ
( #»

B
)

tot = . . . . . . . . . . . . . . . . . . . .

c) ϕ
( #»

B
)

pour ADE = . . . . . . . . . . .

d) ϕ
( #»

B
)

pour DCE = . . . . . . . . . . .

e) ϕ
( #»

B
)

pour CBE = . . . . . . . . . . .

f) ϕ
( #»

B
)

pour BAE = . . . . . . . . . . .

Entraînement 17.5 — Flux dans des polyèdres (III).

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme #»

B = B #»ez. Déterminer les expressions
des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

O
y

z

x

A B

CD

A′ B′

C′

D′
b

aa

a

a

#»

B

A′B′ = B′C′ = C′D′ = D′A′ = a

AA′ = DD′ = AD = A′D′ = a

AB = DC = b

a) ϕ
( #»

B
)

pour ABCD = . . . . . . . . .

b) ϕ
( #»

B
)

pour BAA′B′ = . . . . . . . .

c) ϕ
( #»

B
)

pour CC′D′D = . . . . . . . .

d) ϕ
( #»

B
)

pour ADD′A′ = . . . . . . . .

e) ϕ
( #»

B
)

pour A′D′C′B′ = . . . . . . .

f) ϕ
( #»

B
)

pour CBB′C′ = . . . . . . . .
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Loi de Lenz-Faraday

Entraînement 17.6 — Boucles imbriquées.
Deux boucles circulaires se trouvent dans le même plan.
Si le courant i(t) dans la boucle externe est dans le sens trigonométrique et augmente avec le temps, que
vaut le courant induit dans la boucle interne ?

i(t)

a Il n’y a pas de courant induit.
b Le courant induit est dans le sens des aiguilles d’une montre.
c Le courant induit est antihoraire.
d La direction du courant induit dépend des dimensions des boucles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 17.7 — Signe du courant induit (I).
Dans chacun des circuits ci-dessous, la spire circulaire et/ou l’aimant sont déplacés dans le sens indiqué
par la double flèche. Le courant apparaissant dans la spire pendant le déplacement est noté i.

a)

i
N S

⇐=

b)

i
N S

⇐=

c)

i
S N

=⇒

d)

i
N S

=⇒

e)

i
S N

⇐=

f)

i
N S

=⇒

⇐=

Pour chacune des situations schématisées ci-dessus, dire si on a i > 0 ou si on a i < 0.

a) . . . . . . . . . . . . . . .

b) . . . . . . . . . . . . . . .

c) . . . . . . . . . . . . . . .

d) . . . . . . . . . . . . . . .

e) . . . . . . . . . . . . . . .

f) . . . . . . . . . . . . . . .
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Entraînement 17.8 — Signe du courant induit (II).
Des spires circulaires, orientées, perpendiculaires au plan de la figure, nommées (A), (B) et (C), sont placées
dans une zone de l’espace où règne un champ magnétique (voir figure ci-dessous). Pour chacune d’elles, on
veut prévoir par des considérations physiques le signe du courant i lorsque les spires sont déplacées (les
déplacements sont indiqués par les flèches pointillées).

×
•

×

•

×

•

×

•

•

×

•

×

Mouvement (A)

Mouvement (B)

Mouvement (C)

Pour chaque mouvement considéré, établir si « le flux diminue », si « le flux augmente » ou si « le flux ne
varie pas ».

a) mouvement (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) mouvement (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) mouvement (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pour chaque mouvement considéré, en déduire si i > 0, si i < 0 ou si i = 0.

d) (A) . . . . . . . . . . e) (B) . . . . . . . . . . f) (C) . . . . . . . . . .

Entraînement 17.9 — Calcul de f.é.m. avec champ magnétique variable.
On plonge une spire de surface S(t) dans une zone où règne un champ magnétique B(t). Déterminer la
force électromotrice e = −dΦ

dt induite pour les flux suivants :

a) Φ1 = B0S0 cos(ωt+ φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Φ2 = B0S0 ×
(

1 + t

τ

)
exp− t

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Φ3 = B0(1 − cos(2ωt))S0 sin2(ωt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Φ4 = B0 cos(ωt)S0 sin(3ωt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Force de Laplace

Entraînement 17.10 — Rails de Laplace.
Une tige métallique de longueur MN = d et de masse m est parcourue par un courant d’intensité constante I
et est lancée avec une vitesse initiale #»v0 = v0

#»ex. À la position x = 0, la tige entre dans une zone où règne
un champ magnétique uniforme #»

B = −B #»ey. On néglige les frottements et tout phénomène d’induction.

#»ex

#»ey

#»ez

I N

M

Exprimer :

a) La force de Laplace #»

F qui s’exerce sur la tige en fonction de B, d et I . . . . . . . . . . .

b) La norme v(t) de la vitesse en fonction du temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) La distance d’arrêt D depuis la position initiale en fonction de v0, B, I, m et d . .

Entraînement 17.11 — Résultante des forces de Laplace.
On considère un cadre triangulaire parcouru par un courant d’in-
tensité I. Les trois côtés du cadre ont la même longueur notée a.
On plonge ce cadre dans un champ magnétique extérieur orienté
suivant la direction #»ez : #»

B = B #»ez.
On rappelle qu’un élément de longueur dℓ, parcouru par un cou-
rant d’intensité I placé dans un champ magnétique extérieur #»

B,
est soumis à la force élémentaire, appelée force de Laplace :

d #»

f = I
#»dℓ ∧ #»

B.

#»ex

#»ey

#»ez

A BI

C

O

a

Exprimer les forces de Laplace sur chaque côté de ce cadre :

a) #»

FL,AB = . . . .

b) #»

FL,BC = . . . .

c) #»

F L,CA = . . . .

Que vaut la résultante de ces forces ?

d) #»

FL,tot = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 17.12 — Couple des forces de Laplace.
On considère un cadre carré parcouru par un courant d’intensité I. On plonge ce cadre dans un champ
magnétique extérieur orienté suivant la direction #»ey : #»

B = B #»ey.

#»ex

#»ey

#»ez
I

A B

CD

O

a

Exprimer les forces de Laplace sur chaque côté de ce cadre :

a) #»

FL,AB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) #»

FL,BC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) #»

FL,CD = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) #»

FL,DA = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Que vaut la résultante de ces forces ?

e) #»

FL,tot = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculer le moment des forces de Laplace par rapport au point O.

f) #  »MO
( #»

FL,tot
)

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On rappelle qu’un dipôle magnétique peut se caractériser par son moment magnétique #»m = I
#»

S . En présence
d’un champ magnétique extérieur, le dipôle magnétique subit un couple #»Γ = #»m ∧ #»

B.
Exprimer #»m et #»Γ.

g) #»m = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h) #»Γ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 17.13 — Équilibre d’un cadre.

Un cadre conducteur, de forme rec-
tangulaire, de longueur b et de lar-
geur a, peut tourner sans frottement
autour de l’axe ∆.
La masse totale du cadre est m.
Un dispositif, non représenté sur la fi-
gure, impose une intensité du courant
i constante dans le cadre. ∆ i

a
b

#»g
θ

#»

B
Vue de diagonale

#»

B

#  »e∆

θ
#»g

i

Vue de la tranche

Exprimer :

a) le moment magnétique #»m en fonction de a, b et i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) le couple magnétique Γ∆ projeté sur l’axe ∆ en fonction de a, b, i, B et θ . . . . . . .

c) le moment du poids par rapport à l’axe ∆ en fonction de a, m, g, et θ . . . . . . . . . . .

d) la position d’équilibre θeq en fonction de B, m, g, b et i . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

−Ia2B #»ex 0 −Bac B0S0ω sin(ωt+ φ) Le flux ne varie pas arctan
(

2ibB
mg

)
b IaB #»ez −IaB #»ez 0 IaB

(√
3

2
#»ex + 1

2
#»ey

)
−a

2mg sin θ i < 0

Ia2 #»ez iab #»eθ 0 ×2 i > 0 Oui i > 0 i = 0 Ba2

4 i > 0
Ba2

4 ×2 IaB

(
−

√
3

2
#»ex + 1

2
#»ey

)
#»0 0 #»0 −Ba2 Ba(b− a)

−IaB #»ey i < 0 Le flux diminue Non a et b 0 ×1/2 i < 0
Ba2

4 −IBd #»ex B0S0
t

τ2 e
−t/τ −Bab #»0 iabB cos θ i > 0 Ba2

4
−Ia2B #»ex Ba2 Bac 0 i < 0 Le flux diminue #»0 mv2

0
2IBd

−IBd

m
t+ v0 −B0S0ω[2 cos(4ωt) + cos(2ωt)] −8B0S0ω cos(ωt) sin3(ωt) 0 ×2

▶ Réponses et corrigés page 286
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THM01 ThermodynamiqueFiche d’entraînement no 18

Gaz parfaits

Prérequis
La loi des gaz parfaits s’écrit PV = nRT , avec P en pascals, V en mètres
cubes, n en moles et T en kelvins.
Constantes utiles
→ constante des gaz parfaits : R = 8,314 J ·K−1 ·mol−1

→ définition du bar : 1 bar = 1× 105 Pa
→ conversion entre kelvins et degrés Celsius : T (K) = θ (°C) + 273,15

Entraînement au calcul

Entraînement 18.1 — Quelques calculs de volume.
Calculer le volume (en L) occupé à T = 25 °C et sous une pression P = 1,0 bar pour les gaz suivants.

a) 100 g d’argon (MAr = 40 g · mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) 32 g de dioxygène O2 (MO = 16 g · mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) 1,2 kg de dioxyde de carbone CO2 (MC = 12 g · mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 18.2 — Bouteille de butane.
Une bouteille de 30,6 L, maintenue à 20 °C, contient du butane (C4H10) qui est sous la forme d’un mélange
liquide/gaz comprimé. Le contenu de la bouteille présente une masse m de 13 kg.
On donne MH = 1 g · mol−1 et MC = 12 g · mol−1.

a) Combien vaut la masse molaire (en g · mol−1) du butane ? . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle serait la pression à l’intérieur de la bouteille si tout le butane était à l’état gazeux ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quel volume occuperait le contenu de la bouteille, s’il était entièrement à l’état gazeux, sous une

pression de 1,0 bar et à la température de 20 °C ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 18.3 — Volume molaire.
Calculer le volume molaire (en L · mol−1) d’un gaz parfait :

a) sous 1,00 bar et à 25,0 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) sous 2,00 bar et à 50,0 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 18.4 — Surchauffe ?
Un pneu de voiture, de volume supposé constant, est gonflé à froid, à la température T1 = 20 °C, sous la
pression P1 = 2,0 bar. Après avoir roulé un certain temps, le pneu affiche une pression P2 = 2,3 bar.

Quelle est alors sa température (en °C) si l’on assimile l’air à un gaz parfait ? . . . . . . . . . . .

Entraînement 18.5
Un récipient de volume V1 enferme de l’air (assimilé à un gaz parfait) à la température T1 = 20 °C et sous
une pression P1 = 1,20 bar.
Que vaut la pression finale (en bar) si l’on augmente :

a) le volume de 20 % ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) la température de 10 °C ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Manipulations algébriques

Entraînement 18.6 — Faire le lien entre une formule et un graphe.
a) Lequel de ces graphes représente la relation entre pression et température lorsque n et V sont fixés ?

Température

P
re

ss
io

n

a

Température

P
re

ss
io

n

b

Température

P
re

ss
io

n

c

Température
P

re
ss

io
n

d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Lequel de ces graphes représente la relation entre pression et volume lorsque n et T sont fixés ?

Volume

P
re

ss
io

n

a

Volume

P
re

ss
io

n

b

Volume

P
re

ss
io

n

c

Volume

P
re

ss
io

n

d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134 Fiche no 18. Gaz parfaits



Entraînement 18.7 — Masse volumique de l’eau.
On considère un gaz parfait de masse molaire M , à la pression P et à la température T .

a) Exprimer sa masse volumique ρ en fonction de M , P et T . . . . . . . . . . . . . . . . . . . . . . .

b) La vapeur d’eau a pour masse volumique ρ = 0,595 kg · m−3 à 100 °C et 1 013 hPa. Sa masse molaire
est MH2O = 18 g · mol−1.

Est-ce compatible avec le modèle du gaz parfait ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 18.8 — Compression d’un gaz.
Un gaz, initialement à la pression P1 et à la température T1 = 25 °C, est comprimé jusqu’à une pression
valant P2 = 4P1. Sa masse volumique initiale est de ρ1.
Exprimer sa masse volumique finale ρ2 en fonction de ρ1 si sa température T2 vaut :

a) T2 = T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) T2 = 50 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 18.9 — Mouvement d’un piston.
Une enceinte maintenue à une température T est divisée en deux parties d’égal volume V , par un piston
mobile sans frottement.
Initialement, le piston est bloqué, et chaque compartiment contient un gaz parfait de pressions respectives
P1 et P2. On note n1 et n2 les quantités de matière dans chaque compartiment.
Une fois débloqué, le piston se déplace librement de façon à ce que les pressions dans chaque compartiment
deviennent égales.

Gaz parfait
P1, V , n1

Gaz parfait
P2, V , n2

État initial

transformation

Gaz parfait
P ′, V1, n1

Gaz parfait
P ′, V2, n2

État final

Déterminer :

a) la relation entre n1, n2, P1 et P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) le volume V1 en fonction de V , P1 et P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fiche no 18. Gaz parfaits 135



Entraînement 18.10 — Expression de la densité d’un gaz.
La densité d d’un gaz A est le rapport entre la masse volumique du gaz A et la masse volumique de l’air
sous les mêmes conditions de pression et de température. Autrement dit, c’est :

d = ρA
ρair

.

On note MA la masse molaire de A et Mair celle de l’air.

Exprimer la densité d en fonction de MA et Mair à l’aide de la loi des gaz parfaits . . .

Entraînement 18.11 — Bulle de savon.
Une bulle de savon sphérique de rayon r enferme n moles d’air à la température ambiante T0.
La pression qui règne à l’intérieur de la bulle de savon est donnée par :

P = P0 + 4γ
r
,

où γ est la tension superficielle de l’eau savonneuse et où P0 est la pression atmosphérique.

a) Donner l’expression du volume de la bulle en fonction r . . . . . . . . . . . . . . . . . . .

b) Exprimer n en fonction de P0, T0, γ et r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mélange de gaz parfaits

Tous les mélanges de gaz seront considérés parfaits.

Entraînement 18.12 — Un gaz sous pression.
Un gisement donné fournit du gaz naturel dont la composition (en fractions molaires) est :

• 81,3 % méthane (CH4)
• 2,9 % éthane (C2H6)
• 0,4 % propane (C3H8)

• 0,2 % butane (C4H10)
• 14,3 % diazote (N2)

On donne MH = 1 g · mol−1, MC = 12 g · mol−1 et MN = 14 g · mol−1.
Calculer :

a) la masse molaire du mélange . . . . b) la fraction massique de l’éthane .

Entraînement 18.13 — Composition d’un mélange.
Un mélange de diazote N2 (MN = 14 g · mol−1) et de dioxygène O2 (MO = 16 g · mol−1) présente une
masse volumique de 1,00 g · L−1 à 100 °C et sous une pression de 1 013 hPa.

a) Calculer la masse molaire du mélange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la fraction molaire en dioxygène . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 18.14 — Air humide.
L’humidité relative (ou l’hygrométrie) est le rapport :

H = pression partielle de vapeur d’eau
pression de vapeur saturante .

La pression de vapeur saturante de l’eau à 25 °C vaut 3 166 Pa.

Quelle est la masse de vapeur d’eau (on donne MH2O = 18 g · mol−1) présente dans une pièce de 400 m3

contenant de l’air à 25 °C un jour où l’humidité relative est de 60 % ? . . . . . . . . .

Entraînement 18.15 — Ajout d’un gaz.
Un récipient clos de volume V enferme un mélange gazeux contenant deux espèces A et B à une température
T fixée. La pression totale vaut P = 1 500 hPa et la pression partielle de A est de 1 100 hPa.

a) Quelle est la pression partielle de B ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On ajoute une espèce C au système de sorte que la pression totale augmente jusqu’à 1 800 hPa.

Quelle est la nouvelle pression partielle de B ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

64 °C 4πP0r
3 + 16πγr2

3RT0
62 L 5,5 m3 a 2P1

P1 + P2
V 65,6 %

6,8 × 102 L 18,2 g · mol−1 4ρ1 58 g · mol−1 n2
n1

= P2
P1

400 hPa 3,7ρ1

4
3πr

3 400 hPa non 1,00 bar 1,8 × 102 bar 25 L 4,79 % 1,24 bar

24,8 L · mol−1 MA
Mair

d 5,5 kg MP

RT
30,6 g · mol−1 13,4 L · mol−1

▶ Réponses et corrigés page 292
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THM02 ThermodynamiqueFiche d’entraînement no 19

Premier principe

Prérequis
Notions sur les gaz parfaits. Équation d’état des gaz parfaits PV = nRT .
Constantes utiles
→ constante des gaz parfaits : R = 8,314 J ·K−1 ·mol−1

Calcul du travail des forces de pression

Entraînement 19.1 — Les bonnes unités.
Un étudiant doit calculer le travail reçu par un système au cours d’une transformation. L’expression littérale
est la suivante :

W = −P0(Vf − Vi).

Il sait que, pour faire l’application numérique, la pression doit être exprimée en pascals et les volumes en
mètres cubes.
On rappelle que 1 bar = 1 × 105 Pa.

a) Calculer W pour P0 = 1,5 bar, Vi = 5 L et Vf = 3 L . . . . . . . . . . . . . . . . .

b) Calculer W pour P0 = 50 mbar, Vi = 2 cL et Vf = 120 mL . . . . . . . . . .

c) Calculer W pour P0 = 150 bar, Vi = 20 cm3 et Vf = 10 cm3 . . . . . . . . .

Entraînement 19.2 — Suite de transformations.
Un système composé de n = 2 moles de gaz en contact avec un milieu extérieur à la pression Pext = 1 bar
subit une suite de transformations.
Au cours de la première, son volume ne varie pas (transformation isochore).
Au cours de la seconde, la pression extérieure ne varie pas (transformation monobare) et son volume
initialement à Vi = 1 L augmente et se fixe à Vf = 2 L.
Les transformations étant quasi statiques, le travail des forces de pression se met sous la forme suivante :

W = −
ˆ Vfinal

Vinitial

Pext dV.

a) Calculer W au cours de la première transformation . . . . . . . . . . . . . . . . .

b) Calculer W au cours de la seconde transformation . . . . . . . . . . . . . . . . . .
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Entraînement 19.3 — Bataille de travaux sans calculatrice.
Considérons deux systèmes A et B recevant de l’énergie du milieu extérieur. La puissance reçue par le
premier durant 30 s s’élève à 50 W. Le second reçoit une puissance plus importante (400 W) mais durant
un temps plus court (5 s).

Quel système a reçu la plus grande quantité d’énergie (sous forme de travail) ? . . . . . . . . . . . . .

Entraînement 19.4 — Calcul d’aires.
Pour une transformation quasi statique, le travail des forces de pression s’écrit sous la forme :

W = −
ˆ Vfinal

Vinitial

P dV.

Ce travail W correspond alors à l’opposé de l’aire sous la courbe P = f(V ), pour Vfinal > Vinitial.

a) Exprimer le travail W en fonction des variables
P0, Vinitial et Vfinal.

Vinitial Vfinal
0

P0

V

P

. . . . . . . . . . . . . . . . .

b) Exprimer le travail W en fonction des variables
P1, P2, Vinitial et Vfinal.

Vinitial Vfinal
0

P1

P2

V

P

. . . . . . . . . . . . . . . . .

Entraînement 19.5 — Différents types de transformations.
Un système est composé de n moles de gaz parfait, de volume V , de pression P et de température T .
Nous souhaitons évaluer le travail reçu par ce système au cours de transformations quasi statiques :

W = −
ˆ Vf

Vi

P dV.

La loi des gaz parfaits assure que PV = nRT .

Transformation isotherme :
Au cours de cette transformation, la température du système ne varie pas et T = T0.

a) Écrire W en fonction de n, R, T0, Vi et Vf . . . . . . . . . . . . . . . . . . . . . . . . .

Transformation polytropique et quasi statique :
Au cours de cette transformation, on a PV k = constante (avec k > 1). Les pressions et volumes du système
à l’instant initial seront notés Pi et Vi, et à l’instant final Pf et Vf .

b) Écrire le travail W en fonction de Vi, Vf , Pi, Pf et k . . . . . . . . . . . . . . .
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Variation d’énergie interne et d’enthalpie

Entraînement 19.6 — Problème d’unités.
La capacité thermique massique de l’eau vaut c = 4,2 kJ · K−1 · kg−1.
La masse molaire de l’eau vaut MH2O = 18 g · mol−1.
Une énergie peut être exprimée en joules ou en kilocalories ; on donne la relation 1 kcal = 4 184 J.

a) Évaluer la capacité thermique molaire Cm de l’eau en J · K−1 · mol−1 . . . . . . . . . . . .

b) En déduire sa valeur en kcal · K−1 · mol−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 19.7 — Variation d’énergie interne d’une phase condensée.
Un opérateur chauffe une masse m d’eau liquide de capacité thermique massique c = 4,2 kJ · K−1 · kg−1.
La température initialement à Ti = 20 °C se stabilise en fin d’expérience à Tf = 30 °C.
Il souhaite calculer sa variation d’énergie interne par l’application de la relation suivante :

∆U =
ˆ Tf

Ti

C dT,

où C est la capacité thermique du système.

a) Donner ∆U pour le système, en fonction de c, m, Ti et Tf . . . . . . . . . . . . . . . .

b) Calculer ∆U en kJ pour m = 100 g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 19.8 — Étude d’un gaz parfait diatomique.
Soient n moles de gaz parfait diatomique évoluant d’un état initial caractérisé par Ti = 60 °C vers un état
final à la température Tf = 90 °C.
Pour un gaz parfait diatomique, la relation de Mayer impose CP − CV = nR.

Pour un gaz parfait diatomique, on a γ = CP

CV
= 1,4.

a) Exprimer CV (la capacité thermique à volume constant du gaz parfait) en fonction de n, R et γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Évaluer ∆U =
ˆ Tf

Ti

CV dT pour n = 1 mol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer CP (la capacité thermique à pression constante du gaz parfait) en fonction de n, R et γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Évaluer ∆H =
ˆ Tf

Ti

CP dT pour n = 1 mol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 19.9 — Des variations d’énergie interne.
Suivant la finesse des modèles utilisés, la capacité calorifique à volume constant CV peut être une fonction

de la température. Le calcul de la variation d’énergie interne ∆U =
ˆ Tf

Ti

CV (T ) dT se fera alors en tenant

compte de son expression.

Donner, dans chacun des cas suivants, l’expression de ∆U :

a) pour un gaz parfait (CV est une constante) . . . . . . . . . . . . . . . . . . . . . . . .

b) pour un gaz réel (CV = AT +B, où A et B sont des constantes) . . .

c) pour un solide (CV = DT 3, où D est une constante) . . . . . . . . . . . . . . .

Entraînement 19.10 — Variation d’enthalpie lors d’un changement d’état.
Dans cet entraînement, le système sera de l’eau : à l’état initial, 1 kg d’eau sous forme liquide, à la tempé-
rature de 0 °C ; à l’état final un mélange de 800 g d’eau sous forme solide, et 200 g d’eau sous forme liquide
à la température de 0 °C.
On rappelle la valeur de l’enthalpie massique de fusion de l’eau : Lfus = 335 kJ · kg−1.

Quelle est la variation d’enthalpie du système ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Applications du premier principe

Entraînement 19.11 — Détente de Joule-Gay Lussac d’un gaz réel.
La détente de Joule-Gay Lussac est une détente au cours de laquelle l’énergie interne du système est
constante : ∆U = 0. Pour n moles d’un gaz réel passant du volume Vi au volume Vf et de la température
Ti à la température Tf , on a alors :

∆U = CV (Tf − Ti) − n2a

(
1
Vf

− 1
Vi

)
= 0.

Exprimer Tf en fonction de Ti, CV , n, a, Vf , Vi . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 19.12 — Température finale.
On applique le premier principe à un système subissant une transformation isobare. On a :

∆H =
ˆ Tf

Ti

CP (T ) dT = Q.

Dans chacun des cas suivants, exprimer Tf (en fonction de Ti, Q et des paramètres liés à CP ) :

a) CP = C est une constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) CP = A

T
(où A est une constante) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) CP = BT 2 (où B est une constante) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 19.13 — Transformations du gaz parfait.
Dans cet entraînement, le système correspond à n moles de gaz parfait de coefficient adiabatique γ = 1,4.
Il subit différentes transformations suivant les questions, et nous noterons les variables dans l’état initial
Pi, Vi, Ti et les variables dans l’état final Pf , Vf , Tf .

On appliquera le premier principe ∆U = W +Q, avec ∆U = nR

γ − 1(Tf −Ti) et W = −
ˆ Vf

Vi

P dV pour une

transformation quasi statique.
Dans chacun des cas suivants, exprimer le transfert thermique Q reçu par le gaz :

a) pour une transformation isotherme (à température constante) . . . . . .

b) pour une transformation isochore (à volume constant) . . . . . . . . . . . . . .

c) pour une transformation adiabatique (sans transfert thermique) . . . .

Entraînement 19.14 — Étude d’une enceinte divisée en deux compartiments.
Une enceinte est divisée en deux compartiments.

• Le compartiment A reçoit un travail W1 de l’extérieur et
fournit un transfert thermique Q1 au compartiment B.

• Le compartiment B reçoit un transfert thermique Q1 du
compartiment A et fournit un transfert thermique Q2 à l’ex-
térieur.

On rappelle l’expression du premier principe pour un système :
∆U = W +Q, où ∆U est la variation d’énergie interne du sys-
tème, et où W et Q sont respectivement le travail et le transfert
thermique reçus par le système considéré.

W1 Q1 Q2

A B

a) Exprimer ∆UA la variation d’énergie interne du compartiment A . . . . . . . . .

b) Exprimer ∆UB la variation d’énergie interne du compartiment B . . . . . . . . .

c) Exprimer ∆Utot la variation d’énergie interne des compartiments A et B, qui correspond à la somme

des variations d’énergie interne des compartiments A et B . . . . . . . . . . . . . . . . . . . .

Calorimétrie

Entraînement 19.15 — Capacité thermique d’un calorimètre.
On considère un calorimètre de valeur en eau m = 10 g. La valeur en eau d’un calorimètre est la masse
d’eau ayant la même capacité thermique que le calorimètre vide.
On rappelle la capacité thermique massique de l’eau liquide : ceau = 4,2 kJ · K−1 · kg−1.

Que vaut la capacité thermique du calorimètre ? . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 19.16 — Évolution de la température d’un calorimètre.
Nous considérons ici un calorimètre initialement à la température T0 alors que l’air extérieur est à la
température Ta.
Le calorimètre étant de capacité thermique C, sa température T évolue au cours du temps et obéit à
l’équation différentielle suivante :

dT
dt + h

C
T = h

C
Ta.

a) Définir un temps caractéristique pour l’équation différentielle . . . . . . . . . . . . . . . . . . . .

b) Résoudre l’équation différentielle et exprimer T en fonction du temps . . . . . . . . . . .

Entraînement 19.17 — Évolution temporelle de la température.
En échangeant avec l’extérieur, la température d’un système varie et suit la loi d’évolution suivante :

T = Tb + (Ta − Tb)e− t
τ .

Quelle courbe correspond à cette évolution temporelle ?

a
0

Ta

Tb

t

T

b
0

Ta

Tb

t

T

c
0

Tb

Ta

t

T

d
0

Ta

Tb

t

T

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 19.18 — Mélange de liquides.
Dans un calorimètre, on mélange une masse m1 d’eau liquide à la température T1 et une masse m2 d’eau
liquide à la température T2.

a) À l’équilibre, la température de l’ensemble Teq vérifie l’équation :

m1c(Teq − T1) +m2c(Teq − T2) = 0.

Déterminer Teq en fonction de T1, T2, m1, m2 . . . . . . . . . . . . . . . . . . .

b) En réalité, des pertes thermiques Q sont observées durant l’évolution de la température.
La température Teq vérifie alors l’équation suivante :

m1c(Teq − T1) +m2c(Teq − T2) = Q.

Déterminer Teq en fonction de T1, T2, m1, m2 et Q . . . . . . . . . . . . . .

Réponses mélangées

Ti e
Q
A

A

2 (Tf
2 − Ti

2) +B(Tf − Ti) −100 J −(P2 + P1)(Vfinal − Vinitial)
2 Q1 −Q2

−nRT0 ln
(
Vf

Vi

)
nR

γ − 1 Ti + n2a

CV

(
1
Vf

− 1
Vi

)
W1 −Q1 8,7 × 102 J

B 18 × 10−3 kcal · K−1 · mol−1 mc(Tf − Ti)
nR

γ − 1(Tf − Ti) 42 J · K−1

Ti + Q

C

nRγ

γ − 1 CV (Tf − Ti)
D

4 (Tf
4 − Ti

4) 0 150 J 300 J −268 kJ

W1 −Q2
PfVf − PiVi

k − 1 6,2 × 102 J 0 J nRTi ln
(
Vf

Vi

)
−0,5 J

Ta + (T0 − Ta)e− ht
C 4,2 kJ 76 J · K−1 · mol−1 b −P0(Vfinal − Vinitial)

m1T1 +m2T2
m1 +m2

+ Q

(m1 +m2)c
m1T1 +m2T2
m1 +m2

C

h

(
Ti

3 + 3Q
B

)1/3

▶ Réponses et corrigés page 296
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THM03 ThermodynamiqueFiche d’entraînement no 20

Second principe et machines thermiques

Prérequis
Équation d’état des gaz parfaits (PV = nRT ). Premier principe de la ther-
modynamique (∆U = W +Q). Fraction molaire. Activité d’une espèce chi-
mique (en phase gazeuse, en phase condensée). Loi de Dalton.
Constantes utiles
→ constante des gaz parfaits : R = 8,314 J ·K−1 ·mol−1

→ conversion entre kelvins et degrés Celsius : T (K) = θ (°C) + 273,15

Pour bien commencer

Entraînement 20.1 — Compression d’un gaz parfait.
On comprime un gaz parfait de capacité thermique isochore CV = 1,04 J · K−1 par l’apport d’un travail
W = 100 J. Il passe alors de Ti = 20 °C à Tf = 25 °C.
La variation d’énergie interne de ce gaz parfait vérifie le premier principe ∆U = W +Q et la première loi
de Joule ∆U = CV ∆T .

Calculer le transfert thermique Q (en joules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.2 — Bataille de chiffres.
On chauffe, sur deux réchauds identiques de puissance P = 1 500 W, une masse d’eau sur l’un et une même
masse d’huile sur l’autre, pour les emmener de 20 °C à 70 °C. Qui chauffe le plus vite ?

a l’eau (ceau = 4 180 J · K−1 · kg−1) b l’huile (chuile = 2 000 J · K−1 · kg−1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.3 — Identités thermodynamiques.
On rappelle l’identité thermodynamique :

dU = T dS − P dV.

a) Exprimer dH en fonction de T , V , dS et dP sachant que H = U + PV .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) À l’aide de la première loi de Joule, déterminer l’expression de dU pour un gaz parfait suivant une
transformation isotherme.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire l’expression de dS pour un gaz parfait suivant une transformation isotherme en fonction
de n,R, V et dV .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 20.4 — Variation élémentaire d’énergie interne.
On considère un système fermé dont l’énergie cinétique et l’énergie de pesanteur ne varient pas entre l’état
initial et l’état final et qui reçoit uniquement un travail des forces de pression extérieures.
On notera Pext la pression extérieure et P la pression du système.
Dans chacun des cas suivants, écrire la variation élémentaire d’énergie interne donnée par le premier principe
de la thermodynamique (dU = δW + δQ) :

a) pour une transformation adiabatique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) pour une transformation adiabatique et réversible . . . . . . . . . . . . . . . . . . . . . . . .

c) pour une transformation isochore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’entropie

Entraînement 20.5 — Variation élémentaire d’entropie.
Dans chacun des cas suivants, écrire la variation élémentaire d’entropie donnée par les principes de la
thermodynamique :

a) pour une transformation adiabatique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) pour une transformation adiabatique et réversible . . . . . . . . . . . . . . . . . . . . . . . .

c) pour une transformation isochore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.6 — Retrouver les lois de Laplace.
Un gaz parfait évolue des conditions initiales données par (Ti, Vi, Pi) vers un nouvel état donné par
(Tf , Vf , Pf ). Son entropie varie alors de ∆S, qu’on peut exprimer de trois manières différentes :

∆S = nR

γ − 1 ln
(
Tf

Ti

)
+ nR ln

(
Vf

Vi

)

= nRγ

γ − 1 ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)

= nR

γ − 1 ln
(
Pf

Pi

)
+ nRγ

γ − 1 ln
(
Vf

Vi

)
.

Sachant que la transformation est isentropique (on a donc ∆S = 0), établir la relation entre :

a) Tf , Ti, Vf et Vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Tf , Ti, Pf et Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Pi, Pf , Vi et Vf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 20.7 — Manipulation des lois de Laplace.
Un gaz parfait évolue de sorte que :

PV γ = Cte.

On peut déduire de cette identité d’autres relations du même type.
Pour chacune des relations suivantes, exprimer l’exposant x en fonction de γ.

a) TV x = Cte . . . . . . . . . . . . . . .

b) PT x = Cte . . . . . . . . . . . . . . .

c) P xT = Cte . . . . . . . . . . . . . . .

d) P γT x = Cte . . . . . . . . . . . . . .

e) P xT γ = Cte . . . . . . . . . . . . . .

Entraînement 20.8 — Bilan d’entropie.
On chauffe 1 mol de vapeur d’eau assimilée à un gaz parfait de pression initiale Pi = 1 bar à volume constant
de Ti = 120 °C à Tf = 130 °C.

On rappelle la seconde identité thermodynamique dH = T dS + V dP et ici CP = 5
2nR.

Calculer :

a) la pression finale Pf . . . . . . . . . b) la variation d’entropie ∆S . . .

Entraînement 20.9 — Calcul d’entropie créée (I).
On chauffe une mole d’un gaz parfait de coefficient γ = 1,4 initialement à une température Ti = 500 K en
le mettant en contact avec un thermostat à la température T0 = 550 K de manière isochore. Au terme de
la transformation, la température finale du gaz vaut Tf = T0 = 550 K.

a) Calculer la variation d’entropie du gaz ∆S = nR

γ − 1 ln
(
Tf

Ti

)
. . . . . . . . . . . . . . . .

b) Calculer l’entropie échangée au cours de la transformation Se = Q

T0
. . . . . . . . .

c) La transformation est-elle réversible ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.10 — Calcul d’entropie créée (II).
On considère la détente de n moles d’un gaz parfait selon le dispositif de Joule Gay-Lussac.
Le gaz de volume initial V0 se détend dans le vide pour atteindre un volume final 2V0. Cette détente est
isoénergétique.

Exprimer l’entropie créée Sc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 20.11 — Un autre bilan d’entropie.
On chauffe une masse m = 1,00 kg d’eau sous une pression P0 = 1,00 bar de Ti = 80,0 °C à Tf = 120,0 °C.
On indique que l’eau se vaporise à T0 = 100 °C sous 1 bar.
On donne les capacités thermiques massiques :

ceau = 4 180 J · K−1 · kg−1

cP,vapeur = 2 010 J · K−1 · kg−1

ainsi que l’enthalpie massique de vaporisation :

∆vapH
o = 2 257 kJ · kg−1.

La variation d’enthalpie ∆H de l’eau lors de cette transformation peut s’écrire :

∆H = mceau(T1 − T2) +m∆vapH
o +mcP,vapeur(T3 − T4).

a) Quelle est la valeur de T1 ?

a T0 b Ti c Tf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle est la valeur de T2 ?

a T0 b Ti c Tf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quelle est la valeur de T3 ?

a T0 b Ti c Tf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Quelle est la valeur de T4 ?

a T0 b Ti c Tf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

La variation élémentaire d’entropie pour un échauffement à pression constante s’exprime :

dS = mcP
dT
T
,

et la variation d’entropie de vaporisation s’exprime :

∆vapS
o = ∆vapH

o

T0
.

e) Déterminer numériquement la variation d’entropie ∆S de l’eau lors de cette transformation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 20.12 — Contact entre deux solides.
On met en contact thermique :

• une masse m1 = 200 g de cuivre, de capacité thermique massique c1, initialement à la température
T1 = 500 K ;

• une masse m2 = 400 g de fer, de capacité thermique massique c2, initialement à la température
T2 = 300 K.

Le système constitué des deux solides est isolé.

La capacité thermique molaire des deux solides est Cm = 3R. On donne :

M(Fe) = 55,8 g · mol−1 et M(Cu) = 63,5 g · mol−1.

a) Déterminer c1 . . . . . . . . . . . . . . . . . . b) Déterminer c2 . . . . . . . . . . . . . . . . . .

c) Exprimer la température finale Tf commune aux deux solides en fonction de T1, T2, m1, m2, c1 et c2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Donner la valeur numérique de Tf .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Calculer ∆S la variation d’entropie du système constitué des deux solides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f) Cette transformation est-elle réversible ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Autour du rendement

Entraînement 20.13 — Machine frigorifique.
On considère une machine frigorifique fonctionnant avec une source froide de température TF = 4 °C et
une source chaude de température TC = 20 °C.
Elle utilise une énergie journalière W = 17 MJ et présente une efficacité (ou COP) égale à 1,2.

a) Exprimer le transfert thermique journalier QF avec la source froide.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner la valeur numérique de QF (en joules).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exprimer puis calculer le transfert thermique QC avec la source chaude.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 20.14 — Moteur réel.
Un moteur cyclique ditherme évoluant entre une source froide de température TF = 400 K et une source
chaude de température TC = 650 K produit 500 J par cycle pour 1 500 J de transfert thermique fourni.
L’efficacité de Carnot de ce moteur est ηCarnot = 38,5 %.
a) Calculer le transfert thermique QF avec la source froide.

a −1 000 J b 1 000 J c 2 000 J d −2 000 J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer l’efficacité η de ce moteur réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.15 — Pompe à chaleur.
On considère une pompe à chaleur fournissant un transfert thermique hebdomadaire de 3,0 GJ avec une
efficacité (ou COP) égale à 3,0.
a) Exprimer l’énergie hebdomadaire W nécessaire au fonctionnement de cette pompe à chaleur.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Donner la valeur numérique de W (en joules).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Convertir 1 kWh en joules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Calculer le coût annuel de fonctionnement de cette pompe à chaleur en supposant qu’elle tourne la
moitié de l’année. On considérera un prix moyen de dix-sept centimes d’euro au kilowatt-heure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 20.16 — Calcul de la puissance d’un moteur.
On considère un moteur thermique évoluant entre une source froide à TF = 126,85 °C et une source chaude
à TC = 326,85 °C. On suppose que ce moteur suit le cycle de Carnot et qu’il libère un transfert thermique
de 600 J par cycle. On indique que ce moteur tourne à un régime de 2 000 cycles/min et qu’un cheval-vapeur
(cv) vaut 736 W.

On rappelle que le rendement de Carnot est donné par η = 1 − TF

TC
.

a) Calculer le rendement de Carnot η de ce moteur . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer le travail W libéré par ce moteur lors d’un cycle en fonction de QF et η.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Donner la valeur numérique de ce travail W . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Calculer la puissance de ce moteur en cv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les dérivées partielles

Entraînement 20.17 — Calcul de dérivées partielles.
On définit le coefficient de compressibilité isotherme. C’est :

χT = − 1
V

(
∂V

∂P

)
T

.

a) Exprimer χT pour un gaz parfait en fonction de P . . . . . . . . . . . . . . . . . . . . . . . . . . .

On définit le coefficient de dilatation isobare. C’est :

α = 1
V

(
∂V

∂T

)
P

.

b) Exprimer α pour un gaz parfait en fonction de T . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On considère Y le produit défini par :

Y =
(
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

.

c) Calculer Y pour un gaz parfait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

393 J · K−1 · kg−1 x = γ − 1 b 33 % ∆S =7,54 J · K−1 3,6 MJ

Tf
γPf

1−γ = Ti
γPi

1−γ 1
P

TfVf
γ−1 = TiVi

γ−1 dH = T dS + V dP

nR ln(2) dS = 0 x = γ

(1 − γ) dS = δSc 361 K 1,03 bar

dU = 0 PfVf
γ = PiVi

γ η = 33 % Non 1 GJ ηQF

(1 − η) −295 J

dU = δQ 13,4 cv x = 1 − γ 6 390 J · K−1 0,31 J · K−1 a
−QC

COP c −94,8 J 1
T

1,98 J · K−1 20,4 MJ 447 J · K−1 · kg−1

m1c1T1 +m2c2T2
m1c1 +m2c2

a x = (1 − γ)
γ

b 1,2 × 103 euros −37,4 MJ

W × COP dS = nR
dV
V

−1 1,89 J · K−1 dU = δW = −Pext dV

x = γ2

(1 − γ) dU = δW = −P dV Non dS = δQ

T
+ δSc a

▶ Réponses et corrigés page 300
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THM04 ThermodynamiqueFiche d’entraînement no 21

Statique des fluides

Prérequis
Pression dans un gaz et dans un liquide incompressible. Poussée d’Archi-
mède. Bases de la mécanique. Équations différentielles.
Constantes utiles
→ champ de pesanteur : g = 9,8 m · s−2

→ constante des gaz parfaits : R = 8,314 J ·K−1 ·mol−1

Pour commencer

Entraînement 21.1 — Quelques conversions.
On rappelle que 1 atm = 1 013,25 hPa.
Un fluide exerce sur une paroi une pression de 750 kPa. Convertir cette pression en :

a) N · cm−2 . . . . . b) bar . . . . . . . . . . . c) atm . . . . . . . . . .

Entraînement 21.2 — Champagne !
Dans une bouteille de champagne, le gaz est maintenu sous une pression p = 6,0 bar grâce à un bouchon
cylindrique de diamètre 20 mm.

a) Quelle est l’intensité de la force pressante qui pousse le bouchon vers le haut ? . . . . . . . . .

b) Quelle est la pression intérieure si l’on incline la bouteille de 30° ? . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.3 — Est-ce au moins homogène ?
On considère un fluide dont la pression p dépend de l’altitude z (comprise entre 0 et zmax). Pour z = 0,
la pression vaut p0. Après analyse et résolution du problème, quatre étudiants obtiennent quatre résultats
différents pour l’expression de p(z).
Indiquer le ou les résultats qui ont le mérite d’être homogènes :

a p(z) = p0 + z

b p(z) = p0

(
1 − e− z

zmax

)
+ z

c p(z) = zmax
zmax + z

p0

d p(z) = 1 − z − z2

1 − zmax − zmax2 p0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Pression dans un liquide

Entraînement 21.4 — Quelle est la formule déjà ?

On considère un liquide incompressible de masse volumique
ρ en équilibre dans le champ de pesanteur #»g uniforme et
soumis à une pression p0 à sa surface.

Comment s’exprime la pression au point M dans le liquide ?
#»g

h0
•M(x, y, z)

O

z

y⊙
x

liquide (ρ)

a p(M) = p0(1 − ρgz)
b p(M) = (p0 + ρgz) # »uz

c p(M) = p0 + ρgh0

d p(M) = p0 + ρg(h0 − z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.5 — La pression dans différents repères.
On note p la pression dans l’eau, supposée incompressible et de masse volumique ρ, et p0 la pression de
l’air à l’interface eau/air.

eau (ρ)

H

z1

O1

h

z2

O2

z3

O3 α

p0 air

#»g

Exprimer p dans les différents systèmes de coordonnées :

a) p(z1), en fonction de p0, de g et de z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) p(z2), en fonction de p0, de g, de z2 de H et de h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) p(z3), en fonction de p0, de g, de z3 de H et de α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 21.6 — Projection de vecteurs.

On considère un solide situé au fond de l’eau.
Exprimer, dans la base orthonormée ( #»ex,

#»ey,
#»ez),

le vecteur unitaire normal à la surface de l’objet
et orienté dans le sens de la force pressante de
l’eau sur l’objet :

x

y

⊙
z

//

/
/ R

π/6

A

B

C

a) En A . . . . . . . . . . . . . . . . . . . .

b) En B . . . . . . . . . . . . . . . . . . . .

c) En C . . . . . . . . . . . . . . . . . . . .

Entraînement 21.7 — Dans un tube en U.

On verse dans un tube en U, dont la section a pour
surface s, une certaine quantité d’eau puis un volume
Vh d’huile. Les liquides se répartissent comme indiqué
ci-contre.
On cherche à exprimer la différence de hauteur entre
les deux niveaux d’eau de part et d’autre.
On note patm la pression atmosphérique, ρe la masse
volumique de l’eau et ρh celle de l’huile.

#»g

huile

eau d1

d2

•
A

•
B

•
C

a) Que peut-on dire de la pression en A ?

a pA = patm + ρeg
Vh
s

b pA = patm + ρhg
Vh
s

c pA = patm + ρegd1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Que peut-on dire de la pression en B ?

a pB = patm + ρegd1 b pB = patm+ρeg

(
Vh
s

+ d1

)
c pB = pA + ρegd1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Que peut-on dire de la pression en C ?

a pC = pB b pC = patm + pA c pC = patm + ρegd2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) En déduire une expression de d2 − d1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 21.8 — Immersion et pression.

Un récipient cylindrique de section de surface S contient
un liquide sur une hauteur H : c’est la situation a .
On immerge complètement un cylindre solide de section
de surface s et de hauteur h que l’on maintient grâce à
une potence : c’est la situation b .
On note ρ la masse volumique du liquide et g le champ
de pesanteur.

liquide (ρ)

#»gH

p0

a

liquide (ρ)

p0

h

b

Exprimer la pression au fond du récipient en fonction des données :

a) Situation a . . . b) Situation b . . .

Poussée d’Archimède

Entraînement 21.9 — Immersion de volumes.
La poussée d’Archimède #»Π subie par un corps submergé ou immergé dans un fluide est une force dont
l’intensité correspond à celle du poids de fluide déplacé par ce corps :

∥∥ #»Π
∥∥ = mfluide × g.

On connaît les masses volumiques suivantes, à 25 °C :

Matériau aluminium eau fer glycérine plastique savon liquide
Masse volumique (en g · cm−3) 2,7 1,0 7,9 1,2 0,9 2,5

Calculer, à 25 °C, l’intensité de la poussée d’Archimède qui s’exerce sur :
a) un cube de fer de côté a = 10 cm totalement immergé dans de la glycérine.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) une boule d’aluminium de rayon a = 10 cm à moitié immergée dans du savon liquide.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) un cylindre de plastique de rayon a = 10 cm et de hauteur 4a immergé verticalement aux deux tiers
dans de l’eau.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.10 — Flottaison d’un glaçon.
Un glaçon de masse volumique ρS et de volume VS , déposé dans un fluide de masse volumique ρL et de
volume VL, s’immerge d’un volume Vimm. Comment sont reliées ces grandeurs ?

a ρLVS = ρSVimm

b ρLVimm = ρSVS

c ρSVimm = ρSVS

d ρSVimm = ρLVS

e ρLVimm = ρLVL

f Vimm = VS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 21.11 — Eurêka !

Un bloc solide qui a la forme d’un cube d’arête a est plongé
dans un liquide de masse volumique ρ.
Il est soumis à des forces pressantes sur chacune des faces.
On note #»

R la résultante de ces forces.

liquide (ρ)
air

a

#»g

O

z

y
x

z1

z2

Exprimer les composantes de #»

R dans le repère orthonormé (O, x, y, z) :

a) Rx . . . . b) Ry . . . . . c) Rz . . . . .

d) Retrouver #»

R en fonction du poids # »

Pd du liquide déplacé . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.12 — Mesure de densité.

Un morceau de métal de volume inconnu est suspendu
à une corde.
Avant immersion, la tension dans la corde vaut 10 N.
Une fois le métal totalement immergé dans l’eau, on
mesure une tension de 8 N.

#»g

#»

T

eau (ρe)

# »

T ′

a) Calculer l’intensité de la poussée d’Archimède . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la densité du métal par rapport à l’eau . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.13 — Ligne de flottaison.

Un bloc en forme de parallélépipède, de masse volumique ρs,
de base S et d’épaisseur h, flotte à la surface d’un liquide de
masse volumique ρℓ > ρs.

On note #»

P le poids du solide, #»Π la poussée d’Archimède, #»g le
champ de pesanteur et x la hauteur de la partie émergée.
Enfin, on note #»

R = #»

P + #»Π.
liquide (ρℓ)

solide (ρs)
h

x

#»g

•

#»

P

•

#»Π

a) Exprimer #»

R en fonction de x, h, S, ρs, ρℓ et #»g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la valeur de x quand le bloc est à l’équilibre . . . . . . . . . . . . . . . . . . . . . . . . .

c) On exerce une force verticale #»

F supplémentaire sur le glaçon pour le maintenir totalement immergé.

Que vaut ∥ #»

F ∥ ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 21.14 — Iceberg conique.
Un iceberg en forme de cône, de masse volumique ρs, de hauteur h, flotte à la surface de l’eau de masse
volumique ρe. On note x la hauteur de la partie émergée.

eau (ρe)

h

x
#»g

On rappelle que le volume d’un cône de section de surface S et de hauteur h vaut 1
3Sh.

a) Parmi les résultats faux suivants, indiquer ceux qui ont le mérite d’être homogènes :

a x = h

(
1 − ρs

ρe

)
b x = 3

√
hρs
ρe

c x = 1
3
h− ρs
ρe

d x = h(ρs − ρe)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer le volume immergé en fonction de S, h et x . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire x en traduisant l’égalité entre la poussée d’Archimède et le poids de l’iceberg.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.15 — Quand Archimède fait mal à la tête.
Considérons deux verres identiques A et B. On remplit le verre A d’eau jusqu’à une certaine hauteur h.
a) Dans le verre B, on met quelques glaçons, et on complète avec de l’eau jusqu’à la même hauteur h.
Les masses mA et mB des deux verres vérifient :

a mA < mB b mA = mB c mA > mB

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Dans le verre B, on remplace maintenant les glaçons par des boules de polystyrène de même masse que
les glaçons mais de densité inférieure.
Par à rapport à la hauteur initiale, le niveau dans ce verre :

a augmente b reste le même c diminue
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) On remplace les glaçons par des boules en fer de masse identique aux glaçons dans le verre B.
Par à rapport à la hauteur initiale, le niveau dans ce verre :

a augmente b reste le même c diminue
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Équation de la statique des fluides

Entraînement 21.16 — Musculation sur le gradient.
On donne l’expression du gradient en coordonnées cartésiennes :

#      »grad(p) = ∂p

∂x
#»ex + ∂p

∂y
#»ey + ∂p

∂z
#»ez.

Exprimer #      »grad(p) pour les champs de pression suivants :

a) p(x, y, z) = p0 +Az, où p0 et A sont des constantes . . . . . . . . . . . . . . . .

b) p(x, y, z) = Bxy2 + Ce2z, où B et C sont des constantes . . . . . . . . . . . .

Entraînement 21.17 — Atmosphère de Mars.
L’atmosphère de Mars est composée de 96 % de dioxyde de carbone, 2 % d’argon, 2 % de diazote et contient
des traces de dioxygène, d’eau et de méthane.
La pression et la température moyennes à la surface de Mars sont p0 = 6 mbar et T = −60 °C.
On donne les masses molaires des éléments suivants :

Élément H C O N Ar
Masse molaire (en g · mol−1) 1 12 16 14 40

a) Quelle est la masse molaire M de l’atmosphère martienne ? . . . . . . . . . . . . . . . . . .

On considère l’atmosphère martienne comme un gaz parfait, et on note ρ sa masse volumique.

b) Estimer ρ à la surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dans le référentiel martien d’axe (Oz) vertical ascendant, la pression vérifie l’équation :

dp
dz = −ρg.

La température est considérée uniforme dans toute l’atmosphère.
c) La pression p(z) dans l’atmosphère de Mars, qui vérifie p(0) = p0, s’écrit alors :

a p(z) = p0

(
1 − z

z0

)
avec z0 = RT

Mg

b p(z) = p0 exp
(

− z

z0

)
avec z0 = Mg

RT

c p(z) = p0 exp
(

− z

z0

)
avec z0 = RT

Mg

d p(z) = p0

(
1 − z

z0

)
avec z0 = Mg

RT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Le champ de pesanteur sur Mars vaut g = 3,72 m · s−2.

d) Estimer l’épaisseur H de l’atmosphère, qu’on assimilera à 5z0 . . . . . . . . . . . . . . . .
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Entraînement 21.18 — Une expression infinitésimale.
On considère un fluide dont la pression p dépend de l’altitude z (comprise entre 0 et zmax).
On suppose que cette pression vérifie la relation suivante :

p(z + dz) − p(z) = − 2
zmax

p(z) dz.

On souhaite trouver l’expression de p(z) en fonction de z et de p0 (qui est la pression en z = 0).

a) Donner l’équation différentielle vérifiée par p . . . . . . . . . .

b) Donner l’expression de p(z) en fonction de p0 . . . . . . . . .

Entraînement 21.19 — Résoudre l’équation de la statique.
Un fluide en équilibre dans le champ de pesanteur #»g = −g #»ez vérifie l’équation :

#      »grad(p) = ρ #»g ,

où ρ est la masse volumique du fluide, qui dépend éventuellement de la pression.
Dans chacun des cas suivants, déterminer le champ de pression p(x, y, z) sachant que p(x, y, 0) = p0 et que
les paramètres a, b, c et g sont des constantes :

a) ρ = a
p

p0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) ρ = a+ b(p− p0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ρ = a− b e−z/c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 21.20 — Attention ça déborde !

Un récipient cubique contenant un liquide incompressible de
masse volumique ρ est soumis à une accélération uniforme
#»a = −a #»ey.
Dans le référentiel lié au récipient, la pression vérifie l’équa-
tion :

#      »grad(p) = ρ( #»g − #»a ),

avec p(0, 0, 0) = p0.
liquide (ρ)

#»g

#»a •M(x, y, z)

O

z

y.x

a) Déterminer p(x, y, z) dans le liquide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire l’équation de la surface libre . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Forces pressantes

Entraînement 21.21 — Pression sur un barrage.
Un barrage rectangulaire de hauteur h et de largeur L baigne d’un côté dans l’air et de l’autre dans de
l’eau.
On modélise la situation à l’aide du schéma suivant :

p = ρg(h− z)
•

C

# »

Fp

#»g

z

•
O x

h

La fonction p = ρg(h− z) correspond à la surpression exercée par l’eau à l’altitude z, étant donné la masse
volumique de l’eau ρ et l’intensité du champ de pesanteur g.
Calculer :

a) la résultante des forces pressantes Fp =
¨

barrage
p(z) dy dz . . . . . . . . . . . . . . . . . . . . . . . .

b) le moment en O des forces pressantes Mp =
¨

barrage
z p(z) dy dz . . . . . . . . . . . . . . . . .

c) la position du centre de poussée zC tel que Mp = zC × FP . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

c − #»ey b dp
dz = − 2p

zmax
75 N · cm−2 7,5 bar p0 + a

b

(
e−bgz − 1

)
0 2 N h

(
1 − 3

√
ρs
ρe

)
(ρℓ − ρs)Shg 1,9 × 102 N p0e−agz/p0 c

ρg(H − z3 sin(α)) + p0 0 c 7,4 atm 12 N 43,6 g · mol−1 A #»ez d

p0 + ρg(H − h− z2) 1
3
S(h− x)3

h2
1
3h 5 b b p0 + ρg

(
H + s

S
h
)

c 1
2ρgLh

2 h

(
ρℓ − ρs
ρℓ

)
[ρsh− ρℓ(h− x)]S #»g − # »

Pd 6 bar

p0 − agz + bcg
(

1 − e−z/c
)

p0 e−2z/zmax ρ(ay − gz) + p0 p0 + ρgH 82 N

55 km 14,8 g · m−3 a z = a

g
y −ρga3 By2 #»ex + 2Bxy #»ey + 2Ce2z #»ez b

−1
2

(√
3 #»ex + #»ey

)
51 N ρhVh

ρes

1√
2

( #»ex − #»ey) p0 + ρgz1 a c 1
6ρgLh

3

▶ Réponses et corrigés page 307
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CHI01 ChimieFiche d’entraînement no 22

Fondamentaux de la chimie des solutions

Prérequis
Pour cette fiche, on utilisera les masses molaires des éléments suivants :

Élément H C O F Ca
Masse molaire (en g ·mol−1) 1 12 16 19 40

MH MC MO MF MCa

On rappelle la masse volumique de l’eau : ρH2O = 1,0× 103 kg/m3

Constantes utiles
→ nombre d’Avogadro : NA = 6,02× 1023 mol−1

Avant toute chose

Entraînement 22.1 — Morceau de sucre.
Un morceau de sucre est un corps pur qui contient 6,0 g de saccharose C12H22O11. Calculer :

a) La quantité de matière n de saccharose dans le morceau de sucre . . . . . . . . .

b) Le nombre N de molécules de saccharose dans le morceau de sucre . . . . . . . .

Entraînement 22.2 — Atomes de carbone dans le diamant.
Le diamant est un cristal contenant uniquement des atomes de carbone, de masse molaire M = 12 g · mol−1.
Sa valeur est évaluée par sa masse en carats. Un carat est équivalent à 200 mg. Le plus gros diamant jamais
découvert l’a été en 1905 avec une masse de 3 106 carats. Calculer :

a) La masse m d’atomes de carbone contenue dans ce diamant . . . . . . . . . . . . . .

b) La quantité de matière n d’atomes de carbone dans ce diamant . . . . . . . . . . .

c) Le nombre N d’atomes de carbone dans ce diamant . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.3 — Un verre d’eau à la mer.
On verse un verre d’eau de volume V = 24,0 cL contenant initialement N0 molécules d’eau dans la mer, et
on suppose qu’il est possible d’agiter vigoureusement pour obtenir une répartition homogène de ce verre
d’eau dans l’ensemble des mers et océans du globe qui représentent un volume total Vtot = 1,37 × 1018 m3.

a) Calculer N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer le rapport R = V

Vtot
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Si on remplit alors le verre d’eau dans la mer, combien de molécules N contenues initialement dans le

verre retrouve-t-on ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 22.4 — Combat de masses volumiques.
On considère un morceau de cuivre de 20 cm3 pesant 178 g et un morceau de fer de 3 dm3 pesant 24 kg.

Qui a la masse volumique la plus élevée ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.5 — Calcul autour du pH.

Le pH d’une solution aqueuse est défini par pH = − log10(aH3O+) = − log10

(
[H3O+]
C◦

)
.

On rappelle que C◦ = 1 mol · L−1.

a) Calculer le pH d’une solution aqueuse contenant [H3O+] = 0,1 mol · L−1 . . . . . . . . . . . . . . .

b) Exprimer puis calculer la concentration en H3O+ en fonction du pH si celui-ci vaut 7 . .

On considère une solution dont la concentration en H3O+ vaut x, et on note pH0 son pH.
c) Exprimer en fonction de pH0 le pH d’une solution pour laquelle la concentration en H3O+ a été

multipliée par 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.6 — Diagramme de prédominance.
L’acide malonique, ou acide propanedioïque, de formule HOOC − CH2 − COOH, est caractérisé par les
constantes pKA1 = 2,85 et pKA2 = 5,80. Il sera noté H2A par la suite.
On rappelle la constante d’équilibre de l’autoprotolyse de l’eau Ke = 10−14.

pHx y

a b c

0 14

a) Identifier les valeurs de x et y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Identifier les espèces correspondant à a , b et c . . . . . . . . . . . . . . . . . . . . . . .

c) Quelle espèce prédomine dans une solution de pH = 4,2 ? . . . . . . . . . . . . . . . . .

d) Quelle espèce prédomine dans une solution de concentration [H3O+]éq = 1,0 × 10−2 mol · L−1 en ions

oxonium ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Quelle espèce prédomine dans une solution de concentration [HO−]éq = 1,0 × 10−5 mol · L−1 en ions

hydroxyde ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Concentrations, dilutions

Entraînement 22.7 — Combat de concentrations.
Qui est le plus concentré ?

a) 8 g de sel dans 3 cL d’eau ou 3 kg de sel dans 1 × 103 L d’eau ? . . . . . . . . . . . . . . . . . . .

b) 3 mol de sucre dans 10 mL d’eau ou 400 kmol de sucre dans 2 m3 d’eau ? . . . . . . . . .

Entraînement 22.8 — Du sucre dans votre thé ?
On prépare 20 cL de thé sucré en y ajoutant 3 morceaux de sucre, constitués chacun de 6 g de saccharose
de masse molaire M = 344 g · mol−1. Calculer :

a) La concentration en masse Cm de saccharose dans le thé . . . . . . . . . . . . . . . . . .

b) La concentration en quantité de matière C de saccharose dans le thé . . . . . .

Entraînement 22.9 — Dilution homogène.
On mélange un volume V1 = 10 mL de solution aqueuse d’ion Fe3+ à C1 = 0,10 mol · L−1 et V2 = 10 mL
de solution aqueuse d’ions Sn2+ à C2 = 0,10 mol · L−1.
On souhaite donner la composition du système en Fe3+ avant toute réaction.
a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d’être homogènes ?

a [Fe3+]i = C1
V1

b [Fe3+]i = C1V1

c [Fe3+]i = C1
V1

(V1 + V2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Établir l’expression littérale correcte donnant [Fe3+]i dans le mélange . . . . .

Entraînement 22.10 — Un café au lait sucré.
On mélange 100 mL de café à la concentration en masse de caféine C1 = 0,7 g · L−1 avec 150 mL de lait
sucré à la concentration en masse de sucre C2 = 40 g · L−1.

a) Calculer la concentration finale en masse C ′
1 en caféine . . . . . . . . . . . . . . . . . . .

b) Calculer la concentration en masse C ′
2 en sucre dans le mélange obtenu . . .
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Entraînement 22.11 — Mélange de solutions.
On mélange deux bouteilles d’eau sucrée de volumes respectifs V1 et V2 dont les concentrations en mole de
sucre sont respectivement C1 et C2. On veut exprimer la concentration en quantité de matière C du sucre
dans le mélange en fonction de V1, V2, C1 et C2.
a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d’être homogènes ?

a C = C1
V1 + V2

b C = C1V1 + C2V2

c C = C1(V1 + V2)
C2V1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Déterminer la formule correcte donnant C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.12 — Manipulation de formules.
Soit C la concentration en quantité de matière et Cm la concentration en masse d’un soluté en solution.
On note n, m et M la quantité de matière, la masse et la masse molaire du soluté et V le volume de la
solution.
Exprimer :

a) Cm en fonction de n, M et V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La quantité de matière n en fonction de Cm, V et M . . . . . . . . . . . . . . . . . . . . .

c) Le volume V en fonction de M , C et m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.13 — Préparation d’une solution par dilution.
a) On dispose d’une grande quantité d’une solution mère d’acide acétique à la concentration en masse
C = 80 g · L−1. On souhaite préparer 100 mL d’une solution à la concentration en masse de 20 g · L−1 par
dilution.

Quel volume Vi de la solution mère doit-on prélever ? . . . . . . . . . . . . . . . . . . .

b) On prélève 20 mL d’une solution mère de permanganate de potassium à la concentration en masse
Cm = 40 g · L−1 que l’on verse dans une fiole jaugée de 250 mL et que l’on complète ensuite jusqu’au trait
de jauge avec de l’eau distillée.

Calculer la concentration en masse Cf de la solution finale . . . . . . . . . . . . .
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Dissolution

Prérequis
On rappelle qu’on dit qu’une solution est saturée lorsque la concentration
du soluté correspond à la concentration maximale que l’on peut dissoudre
(la solubilité) à cette température.

Entraînement 22.14 — Dissoudre du sel ou du sucre.
Une solution aqueuse saturée en sel a une concentration en masse de sel valant 358 g · L−1. Une solution
aqueuse saturée en sucre contient 2,00 kg de sucre par litre de solution.
a) Quelle est la masse de sel contenue dans 20 mL d’une solution saturée en sel ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quelle masse de sucre peut-on dissoudre dans une tasse de 300 mL ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.15 — Saturation du carbonate de potassium.
On peut dissoudre au maximum 1 220 g de carbonate de potassium K2CO3 dans 1,0 L d’eau. On indique
la masse molaire du carbonate de potassium M = 138 g · mol−1.
Calculer :
a) La quantité de matière n de carbonate de potassium dans 250 mL d’une solution saturée en carbonate

de potassium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La quantité de matière n1 en ions potassium K+ . . . . . . . . . . . . . . . . . . . . . . . . .

c) La quantité de matière n2 en ions carbonates CO2−
3 dans la solution . . . . . .

Entraînement 22.16 — Fluorure de calcium.
On dissout 10,0 g de fluorure de calcium CaF2 dans 500 mL d’eau. Calculer :

a) La quantité de matière de fluorure de calcium dissoute . . . . . . . . . . . . . . . . . . . .

b) La quantité de matière en ions calcium Ca2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) La masse en ions fluorures dans la solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Autour de la masse volumique

Prérequis
On rappelle que la densité d d’un liquide correspond au rapport entre sa
masse volumique et la masse volumique de l’eau.

Entraînement 22.17 — Le sel.
On dissout une masse m = 10 g de sel dans un volume V = 20 mL d’eau à 25 °C. La solubilité du sel à
cette température est s = 330 g · L−1. On suppose que cette dissolution s’opère à volume constant.

a) Calculer la masse de sel qui reste sous forme solide . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer la densité d de la solution finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) La densité expérimentale de la solution est dexp = 1,35.
Le volume de la solution a-t-il diminué ou augmenté lors de la dissolution ? . . .

Entraînement 22.18 — Densité et température.
Le graphe suivant présente l’évolution, en fonction de la température, de la densité de l’eau pure, de l’huile
de tournesol et de l’éthanol. La pression est la pression atmosphérique.

−100 0 100 200

0.8

0.9

1

1

2

3

T (°C)

d

Liquide Tsolidification (°C) Tébullition (°C)
Eau 0 ?

Éthanol −117 78
Huile 3 230

Températures de changement d’état (P = Patm)

a) À quelle courbe correspond la densité de l’eau pure ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) À quelle courbe correspond la densité de l’huile ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Retrouver, par lecture graphique, la température d’ébullition de l’eau pure.

a 0 °C b 50 °C c 100 °C d −50 °C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Titre massique

Prérequis
On rappelle que le titre massique t correspond au rapport, exprimé en pour-
centage, de la masse de composé dissous sur la masse de la solution.

Entraînement 22.19 — Acide chlorhydrique.
Une solution d’acide chlorhydrique concentrée possède un titre massique en HCl de 37 % pour une densité
d = 1,19. On donne MHCl = 36,5 g · mol−1.
Calculer :

a) La masse m d’un litre de cette solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La masse mHCl d’acide chlorhydrique pur contenu dans ce litre de solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) La concentration en quantité de matière C en acide chlorhydrique de cette solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 22.20 — Acide sulfurique.
Une solution d’acide sulfurique concentrée possède une concentration en quantité de matière C = 18 mol · L−1

en H2SO4 pour une densité d = 1,84. On donne MH2SO4 = 98 g · mol−1.

Calculer le titre massique t en acide sulfurique de cette solution . . . . . . . .

Entraînement 22.21 — L’éthanol.
On prépare V = 10 000 L d’éthanol de titre massique t = 95,4 % par distillation fractionnée. Cette solution
possède une densité d = 0,789 et on indique que l’éthanol, de formule brute C2H6O, présente une masse
molaire M = 46,07 g · mol−1.
Quelle est la quantité de matière n d’éthanol dans cette solution ?

a 163 × 103 mol
b 461 × 103 mol
c 439 × 103 mol
d 7,53 × 103 mol

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

0,26 mol · L−1 n×M

V
3,4 g 1,19 kg a = H2A, b = HA− et c = A2−

2,2 mol 12 mol · L−1 1,75 × 10−22 3,12 × 1025 C1V1 + C2V2
V1 + V2

7,2 g

c 4,86 g 3,2 g · L−1 Aucune 25 mL V × Cm

M
A2− C1V1

V1 + V2

[H3O+] = 10−7mol · L−1 1 400 0,44 kg V = m

C ×M
Le premier

1,1 × 1022 2 621 g 600 g c 0,128 mol 1 pH0 − 2

18 mmol HA− 4,4 mol H2A 2,2 mol 0,128 mol 1,33

a x = 2,85 et y = 5,80 90 g · L−1 0,28 g · L−1 8,01 × 1024

Il a diminué 51,8 mol 1 Le premier 24 g · L−1 Le cuivre 96 %

▶ Réponses et corrigés page 315
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CHI02 ChimieFiche d’entraînement no 23

Fondamentaux de la chimie en phase gazeuse

Prérequis
Équation d’état des gaz parfaits (PV = nRT ). Fraction molaire. Activité
d’une espèce chimique (en phase gazeuse, en phase condensée).
Loi de Dalton.
Constantes utiles
→ constante des gaz parfaits : R = 8,31 J ·K−1 ·mol−1

Corps pur à l’état gazeux

Entraînement 23.1 — Volume molaire d’un gaz parfait.
On considère un échantillon gazeux de n moles contenues dans un volume V à la température T et à la
pression P . Le gaz est supposé se comporter comme un gaz parfait.

Exprimer le volume molaire Vm (en fonction de R, T et P ) . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.2 — Calculs de volumes molaires.
Pour chacun des jeux de conditions de pression P et de température T suivants, déterminer le volume
molaire (en litres par mole) d’un gaz se comportant comme un gaz parfait.
On rappelle que T (K) = T (°C) + 273,15.

a) P = 1,00 bar, T = 150 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) P = 1,00 bar, T = 300 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) P = 5,000 kPa, T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) P = 500 mbar, T = −123 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.3 — Bataille de chiffres.
On donne les masses molaires suivantes :

Élément chimique Hydrogène Hélium Azote Oxygène
Masse molaire (en g · mol−1) 1 4 14 16

Dans les conditions de pression et de température identiques, quel est l’échantillon gazeux (supposé être
un gaz parfait) ayant la masse la plus importante ?

a 5 L d’hélium
b 750 mL de dioxygène

c 1 000 cm3 de diazote
d 0,1 hL de dihydrogène

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 23.4 — Expérimentalement parfait.
L’équation d’état des gaz parfaits résulte de la combinaison de différentes lois expérimentales traduisant des
relations de proportionnalité entre les grandeurs d’état P , V , n et T . Identifier la représentation graphique
associée à chacune des lois expérimentales caractérisant un gaz parfait.

a

Volume

Pr
es

sio
n

b

Température
Vo

lu
m

e

c

Quantité de matière

Vo
lu

m
e

d

Température

Pr
es

sio
n

a) Loi de Charles : le rapport V/T est constant si P et n sont fixés . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Loi d’Avogradro : la grandeur Vm est constante si P et T sont fixées . . . . . . . . . . . . . . . . . . . . . .

c) Loi de Gay-Lussac : le rapport P/T est constant si V et n sont fixés . . . . . . . . . . . . . . . . . . . . . .

d) Loi de Boyle-Mariotte : le produit PV est constant si n et T sont fixés . . . . . . . . . . . . . . . . . . . .

Entraînement 23.5 — Une bouteille de plongée.
Une bouteille de plongée standard est une bonbonne de 12 L qui contient de l’air à la pression de 200 bar. Un
détendeur permet de fournir au plongeur de l’air à la pression standard. En supposant que la température
de l’air en entrée et en sortie du détendeur est constante, et que l’air se comporte comme un gaz parfait,
on peut estimer que le plongeur dispose d’une réserve respirable de :

a 12 L d’air
b 2 400 L d’air

c 6 L d’air
d 200 L d’air

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.6 — Un gaz mystérieux.
Une expérience réalisée à température ambiante (T = 25◦C) et sous la pression ambiante (P = 1,00 bar)
permet de produire un volume V = 9,0 mL d’un gaz, que l’on admet être un gaz parfait. L’échantillon
gazeux est caractérisé par une masse m = 0,70 mg.

a) Calculer la masse volumique ρ du gaz en g · L−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer le volume molaire en L · mol−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Calculer la masse molaire du gaz en g · mol−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Identifier le gaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170 Fiche no 23. Fondamentaux de la chimie en phase gazeuse



Entraînement 23.7 — Parfait... mais pas uniquement.
Pour la modélisation d’un gaz, on considère les deux modèles suivants :

• le modèle du gaz parfait : PV = nRT ;

• le modèle de van der Waals :
(
P + an2

V 2

)(
V

n
− b

)
= RT , où a et b sont des constantes.

a) Exprimer PVm pour un gaz parfait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer PVm pour un gaz de van der Waals . . . . . . . . . . . . . . . . . . . . . . . . .

c) Que valent a et b pour un gaz parfait ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mélanges gazeux

Entraînement 23.8 — La bouteille de gaz.
On dispose de trois bouteilles de gaz de même volume remplies avec des gaz différents (supposés parfaits)
et à des pressions différentes.
Si on transvase (sans aucun changement de température) toutes les bouteilles dans une unique bouteille
de même volume que les autres, que vaut la pression dans cette bouteille ?

a 1 350 kPa
b 450 kPa
c 600 kPa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 23.9 — Cocktails gazeux.
Un système de production industriel permet de transvaser dans un unique flacon de volume V0 un ensemble
de N volumes Vk de différents gaz dont les pressions respectives sont notées Pk. On note P la pression du
mélange obtenu dans le flacon. L’ensemble du système est maintenu à une température T0 constante, et
on admet que tous les gaz sont modélisables comme des gaz parfaits.
Exprimer la pression dans le flacon dans le cas :

a) général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) où Vk = V0/N et Pk = P0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) où Vk = V0 et Pk = kP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) où Vk = n0RT0
Pk

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.10 — Des fractions molaires aux pressions partielles.
Au cours de la respiration, des échanges chimiques permettent aux poumons de prélever le dioxygène de
l’air et de rejeter du dioxyde de carbone. Tous les gaz sont supposés parfaits.
• Mélange inspiré :

Espèce chimique N2 O2 CO2 total
Quantité de matière 119 mmol 32 mmol 0 mmol a)

Fraction molaire b) c) 0 mmol 1,000
Pression 800 mbar d) 0 mmol 1 013 mbar

• Mélange expiré :

Espèce chimique N2 O2 CO2 total
Quantité de matière 119 mmol 24 mmol e) 151 mmol

Fraction molaire 0,788 f) 0,050 1,000
Pression 798 mbar g) h) 1 013 mbar

Compléter les valeurs manquantes dans les deux tableaux.

a) ntot = . . . . . . . . . . . . . . . .

b) xins(N2) = . . . . . . . . . . . .

c) xins(O2) = . . . . . . . . . . . .

d) Pins(O2) = . . . . . . . . . . . .

e) nexp(CO2) = . . . . . . . . . .

f) xexp(O2) = . . . . . . . . . . .

g) Pexp(O2) = . . . . . . . . . . .

h) Pexp(CO2) = . . . . . . . . .
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Entraînement 23.11 — Proportions dans un mélange gazeux.
On considère une enceinte fermée contenant un mélange de deux gaz parfaits différents. Indiquer si les
propositions suivantes sont vraies ou fausses : « Les quantités de matière sont différentes si ...

a) les pressions partielles sont égales » . .

b) les fractions molaires sont égales » . . .

c) les masses des gaz sont égales » . . . . . .

d) les volumes des gaz sont égaux » . . . . .

Entraînement 23.12 — Atmosphères et pressions partielles.
Le tableau suivant présente la composition de différentes atmosphères de planètes du système solaire.

Planète Pression en surface Composition atmosphérique (fractions molaires)
Vénus 9 MPa dioxyde de carbone (96 %), diazote (4 %)
Terre 1 000 hPa diazote (78 %), dioxygène (21 %)
Mars 600 Pa dioxyde de carbone (95 %), diazote (3 %)

Calculer les pressions suivantes en bar :

a) PN2 sur Vénus . . . . . . . . . . . . . . .

b) PN2 sur Terre . . . . . . . . . . . . . . .

c) PN2 sur Mars . . . . . . . . . . . . . . .

d) PCO2 sur Vénus . . . . . . . . . . . . .

e) PCO2 sur Mars . . . . . . . . . . . . . .

f) PO2 sur Terre . . . . . . . . . . . . . . .

Entraînement 23.13 — Pression et avancement.
On considère la réaction chimique de synthèse de l’ammoniac, modélisée par l’équation chimique suivante :

N2 (g) + 3H2 (g) = 2NH3 (g).

Les quantités initiales valent nN2 = n mol et nH2 = 3n mol. On considère un état intermédiaire quelconque
de la réaction, qui est réalisée à température constante dans un volume constant. On considère que tous
les gaz se comportent comme des gaz parfaits. Exprimer les grandeurs suivantes uniquement en fonction
de la pression initiale totale Pi du mélange et/ou de la quantité de matière n et/ou de l’avancement ξ de
la réaction.

a) Quantité de matière totale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Pression totale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Pression partielle en amoniac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Pression partielle en diazote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Pression partielle en dihydrogène . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Activité chimique et constante d’équilibre

Entraînement 23.14 — Activité d’un gaz.
On considère un mélange de gaz parfaits confiné dans une enceinte de 2 m3 à la température de 25 °C. Ce
système contient du dioxygène présent à hauteur de 10 moles. Son activité doublera si :

a on ajoute 20 moles de dioxygène
b l’enceinte est agrandie à 4 m3

c la température passe à 323 °C
d la température passe à 50 °C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.15 — La juste puissance.
Pour chacun des quotients de réaction suivants, déterminer la puissance à laquelle est élevée la pression de
référence P ◦ après l’avoir simplifié au maximum.

a) Q1 =

(
n1
ntot

P

P ◦

)2(
n2
ntot

P

P ◦

)3

(
n3
ntot

P

P ◦

)3(
n4
ntot

P

P ◦

)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Q2 =

(
n1
ntot

P

P ◦

)4(
n2
ntot

P

P ◦

)2

(
n3
ntot

P

P ◦

)(
n4
ntot

P

P ◦

)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Q3 =

( c1
C◦

)2
(
n1
ntot

P

P ◦

)5

(
n2
ntot

P

P ◦

)3(
n3
ntot

P

P ◦

)4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Q4 =
(
n1
ntot

P

P ◦

)3( c1
C◦

)2
(
n2
ntot

P

P ◦

)−2( c2
C◦

)−3
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 23.16 — Des quotients de réaction.
Pour chacune des réactions chimiques suivantes, exprimer les quotients de réaction en les simplifiant au
maximum, c’est-à-dire en faisant apparaître le moins de fois possible les facteurs P ◦ et/ou C◦ correspondant
respectivement à la pression de référence 1 bar et à la concentration de référence 1 mol · L−1.

a) N2 (g) + 3H2 (g) = 2NH3 (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) 4H(g) + O2 (g) = 2H2O(ℓ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) CH4 (g) + 2O2 (g) = CO2 (aq) + 2H2O(ℓ) . . . . . . . . . . . . . . . . . . . . . .

d) H2O(ℓ) + CO2 (g) = H2CO3 (aq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 23.17 — Un soda pétillant.
Les boissons gazeuses contiennent du dioxyde de carbone dissous et sont pressurisées avec ce même gaz
pour leur stockage et leur transport.
On considère une boisson qui contient 7,0 g · L−1 de dioxyde de carbone (de masse molaire 44 g · mol−1) et
dont le gaz en haut de la bouteille (uniquement du dioxyde de carbone) est à une pression de 3,0 bar.
En supposant l’équilibre chimique atteint, la constante d’équilibre de la réaction CO2(g) = CO2(aq) à la
température considérée vaut :

a 2,3
b 19

c 0,050
d 2,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Réponses mélangées

H2 c faux ξ

2 − ξ
Pi c 495 L · mol−1 vrai a 2 g · mol−1

164 mbar Nn0RT0
V0

[CO2](P ◦)3

PCH4P
2
O2
C◦ −1 c RT + bP − a

Vm
+ ab

V 2
m

2n− ξ

2n Pi 0,788 a 6 × 10−3 bar 9 × 101 bar RT 24,9 L · mol−1

P 2
NH3

(P ◦)2

PN2P
3
H2

0,078 g · L−1 c 0,21 0,162 b 24,8 L · mol−1

(P ◦)5

P 4
H2
PO2

+2 −2 4n− 2ξ 0, 78 bar 0 N(N + 1)
2 P0 b

12,5 L · mol−1 faux RT

P
faux d 8 mmol 2 × 10−4 bar

4 bar P0
1
V0

N∑
k=0

PkVk 151 mmol 3(n− ξ)
4n Pi 0 0,21 bar

24,9 L · mol−1 51 mbar [H2CO3]P ◦

PCO2C
◦

(n− ξ)
4n Pi 213 mbar

▶ Réponses et corrigés page 320
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CHI03 ChimieFiche d’entraînement no 24

Réactions chimiques

Prérequis
Tableaux d’avancement, avancement (ξ) et avancement volumique (ξv) d’une
réaction. Loi d’action de masse. Définition du pH, constante d’acidité.
Constante d’autoprotolyse de l’eau.

Pour commencer

Entraînement 24.1 — Ajuster des équations de réaction.
Ajuster les équations des réactions suivantes.

a) CO + O2 = CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Ag+ + Cu = Ag + Cu2+ . . . . . . . . . . . . . . . . . . . . . . . . . .

c) NO + CO = N2 + CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) S2O2−
8 + I− = SO2−

4 + I2 . . . . . . . . . . . . . . . . . . . . . . . . .

e) C8H18 + O2 = CO2 + H2O . . . . . . . . . . . . . . . . . . . . . . .

f) MnO−
4 + H+ + Fe2+ = Fe3+ + Mn2+ + H2O . . . . .

Entraînement 24.2 — Tableau d’avancement.
On considère le tableau d’avancement en quantité de matière suivant :

N2(g) + 3 H2(g) = 2 NH3(g)

État initial n1 n2 0

État final α β γ

où n1 et n2 sont des quantités de matière. À l’instant final, l’avancement molaire de la réaction vaut ξ.

Déterminer en fonction de n1, n2 et ξ, les quantités suivantes :

a) α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 24.3 — Dimension de la constante thermodynamique d’équilibre.
On considère la transformation d’équation :

SO2Cl2(g) = SO2(g) + Cl2(g).

Trouver, parmi les formules suivantes, l’expression de sa constante d’équilibre K◦ :

a K◦ = P (SO2)eq × P (Cl2)eq
P (SO2Cl2)eq

b K◦ = P (SO2Cl2)eq
P (SO2)eq × P (Cl2)eq

c K◦ = P (SO2Cl2)eq × P ◦

P (SO2)eq × P (Cl2)eq

d K◦ = P (SO2)eq × P (Cl2)eq
P (SO2Cl2)eq × P ◦

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.4 — Expression de la constante thermodynamique d’équilibre.
On considère la transformation d’équation :

Cd(OH)2(s) + 4 NH3(aq) = [Cd(NH3)4]2+
(aq) + 2 HO−

(aq).

Trouver, parmi les formules suivantes, l’expression de sa constante d’équilibre K◦ :

a K◦ =
[
HO−]

eq ×
[
[Cd(NH3)4]2+]

eq
[Cd(OH)2]eq × [NH3]eq

b K◦ =
[
HO−]2

eq ×
[
[Cd(NH3)4]2+]

eq

[Cd(OH)2]eq × [NH3]4eq × (C◦)2

c K◦ =
[
HO−]2

eq ×
[
[Cd(NH3)4]2+]

eq × (C◦)2

[Cd(OH)2]eq × [NH3]4eq

d K◦ =
[
HO−]2

eq ×
[
[Cd(NH3)4]2+]

eq

[NH3]4eq × C◦

e K◦ =
[
HO−]2

eq ×
[
[Cd(NH3)4]2+]

eq × C◦

[NH3]4eq

f K◦ =
[NH3]4eq × C◦[

HO−]2
eq × [[Cd(NH3)4]2+]eq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.5 — Expression et calcul de la constante d’équilibre.
On considère la réaction acide-base entre le chlorure d’ammonium (NH+

4 ; Cl−) et l’hydroxyde de sodium
(Na+ ; HO−) :

NH+
4 (aq) + HO−

(aq) = NH3(aq) + H2O(ℓ).

a) En utilisant la loi d’action de masse, exprimer la constante d’équilibre K◦ de la réaction en fonction
des activités des différentes espèces physico-chimiques intervenant dans la réaction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La constante d’acidité KA du couple NH+
4 /NH3 est la constante d’équilibre de la réaction

NH+
4 (aq) + H2O = NH3(aq) + H3O+

(aq).

Exprimer KA en fonction des activités des espèces pertinentes . . . . . . . . . .
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c) La constante d’autoprotolyse de l’eau Ke est la constante d’équilibre de la réaction

2 H2O(ℓ) = H3O+
(aq) + HO−

(aq).

Exprimer Ke en fonction des activités des espèces pertinentes . . . . . . . . . .

d) Donner l’expression de K◦ en fonction de KA et Ke . . . . . . . . . . . . . . . .

e) À 25 °C, on donne pKA = − log10(KA) = 9,25 et pKe = − log10(Ke) = 14.

Calculer K◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Composition finale d’un système siège d’une réaction chimique

Entraînement 24.6 — Sens d’évolution d’une réaction.
On considère la transformation d’équation :

CH3COOH(aq) + F−
(aq) = CH3COO−

(aq) + HF(aq)

dont la constante d’équilibre à 25 °C est K◦ = 10−1,6.
On réalise cette réaction en partant de différentes concentrations initiales de réactifs et de produits.

Pour chacun des cas ci-dessous, déterminer le sens d’évolution de la réaction.
a) [CH3COOH]i =

[
F−]

i
= 1 × 10−1 mol · L−1 et

[
CH3COO−]

i
= [HF]i = 0 mol · L−1

a sens direct
b sens indirect

c pas d’évolution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) [CH3COOH]i =
[
F−]

i
=
[
CH3COO−]

i
= 1 × 10−1 mol · L−1 et [HF]i = 0 mol · L−1

a sens direct
b sens indirect

c pas d’évolution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) [CH3COOH]i =
[
F−]

i
=
[
CH3COO−]

i
= [HF]i = 1,0 × 10−1 mol · L−1

a sens direct
b sens indirect

c pas d’évolution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) [CH3COOH]i = 8,0 × 10−4 mol · L−1 et
[
F−]

i
= [HF]i = 4,0 × 10−3 mol · L−1

et
[
CH3COO−]

i
= 2,0 × 10−5 mol · L−1

a sens direct
b sens indirect

c pas d’évolution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 24.7 — Détermination du réactif limitant.
On considère la réaction entre les ions fer (III) et les ions hydroxyde, formant un précipité d’hydroxyde de
fer Fe(OH)3(s), aussi connu sous le nom de rouille. L’équation de la réaction est :

Fe3+
(aq) + 3 HO−

(aq) = Fe(OH)3(s).

À l’instant initial, on mélange une solution de chlorure de fer (III) (Fe3+ ; 3 Cl−) avec une solution de
soude (hydroxyde de sodium (Na+ ; HO−)) de sorte à obtenir les conditions suivantes :

Fe3+ Cl− Na+ HO−

Quantité de matière initiale 3,0 × 10−2 mol 9,0 × 10−2 mol 6,0 × 10−2 mol 6,0 × 10−2 mol

Déterminer le réactif limitant.

a Fe3+
(aq) b HO−

(aq) c Fe(OH)3(s) d Il n’y en a pas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.8 — Transformation totale.
On considère la réaction de combustion du butane à l’état gazeux suivante, ainsi que les concentrations
initiales des réactifs :

2 C4H10(g) + 13 O2(g) −→ 8 CO2(g) + 10 H2O(g).

C4H10 O2 CO2 H2O
Quantité de matière initiale n1 = 0,10 mol n2 = 0,65 mol 0 mol 0 mol

Sachant que la réaction est totale, déterminer :

a) L’avancement maximal ξmax pour cette transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La quantité de matière de dioxyde de carbone (CO2) à l’état final . . . . . . . . . . . . . . . . . .

Entraînement 24.9 — Une autre transformation totale.
On s’intéresse à la réaction des ions argent avec le cuivre selon l’équation de réaction :

2 Ag+
(aq) + Cu(s) −→ Cu2+

(aq) + 2 Ag(s).

Cette réaction est totale. On mélange initialement un volume V = 20 mL d’une solution contenant des ions
argent (Ag+) à la concentration C = 0,25 mol · L−1 avec une masse m = 0,254 g de cuivre solide (Cu).
On donne la masse molaire du cuivre MCu = 63,5 g · mol−1 et celle de l’argent MAg = 107 g · mol−1.
a) Quel est le réactif limitant ?

a Ag+
(aq) b Cu(s) c Il n’y en a pas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) À la fin de la réaction, la quantité de matière de Cu(s) vaut :

a 1,5 mmol b 2,5 mmol c 0 mmol
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 24.10 — Loi d’action de masse et composition à l’équilibre.
À l’instant initial, on mélange un volume V1 d’une solution aqueuse d’ions benzoate (PhCOO−) à la
concentration C1 et un volume V2 d’une solution aqueuse d’ions oxonium (H3O+) à la concentration C2.
On donne l’équation de la réaction et son tableau d’avancement en quantité de matière :

PhCOO−
(aq) + H3O+

(aq) = PhCOOH(s) + H2O(ℓ)

État initial C1V1 C2V2 0 excès

État final C1V1 − ξ C2V2 − ξ ξ excès

a) À l’aide de la loi d’action de masse, exprimer la constante d’équilibre K◦ associée à cette réaction, en
fonction de C1, C2, V1, V2, C◦ et ξ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire l’équation du second degré permettant de déterminer la valeur de ξ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.11 — À la recherche de l’équilibre.
La loi d’action de masse permet de déterminer l’avancement ξ ou l’avancement volumique ξv à l’équilibre.
Mettre ces différentes lois d’action de masse sous la forme d’une équation du second degré en ξ ou ξv.

a) K◦ = ξ2
v

(C1 − ξv) × (C2 − ξv) . . . . . . . . . . . . . . . . . . . .

b) K◦ = ξv(C2 + ξv)
(C1 − ξv) × C◦ . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) K◦ =

(
ξRT

V

)2

(
(n1−ξ)RT

V

)
×
(

(n2−ξ)RT
V

) . . . . . . . . . . . . . . .

d) K◦ =

(
ξRT

V

)
· P ◦(

(n−2ξ)RT
V

)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) K◦ =

(
ξ

n−ξ · P
)
P ◦(

(n−2ξ)
n−ξ · P

)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 24.12 — Calcul de l’avancement à l’équilibre.
Dans chacune des situations suivantes, une réaction se produit dans le sens direct. On indique que son
avancement maximal est ξv,max = 1,0 × 10−1 mol · L−1.
La loi d’action de masse donne l’équation dont est solution l’avancement volumique ξv.

Calculer ξv.

a) ξ2
v(1 −K◦) + ξvK

◦(C1 + C2) −K◦C1C2 = 0 avec
{
K◦ = 2,0
C2 = 2C1 = 1,0 × 10−1 mol · L−1

b) ξ2
v + ξvK

◦C◦ −K◦C1C
◦ = 0 avec

{
K◦ = 10−1,7

C1 = 1,0 × 10−1 mol · L−1 . . . . . . . . . . . . . . . . . . . . .

Autour des réactions acido-basiques

Entraînement 24.13 — pH d’une solution.

La constante d’autoprotolyse de l’eau Ke = a(HO−) × a(H3O+)
a(H2O)2 vaut Ke = 10−14 à 25 °C.

Calculer le pH de la solution dans les cas suivants.

a) Une solution telle que [H3O+] = 5,0 × 10−2 mol · L−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Une solution telle que [HO−] = 1,0 × 10−2 mol · L−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.14 — Quelques combats de concentration.
Pour chacun des cas suivants, déterminer quelle solution possède la plus grande concentration en ions
oxonium.
a) Premier cas

a Une solution de pH = 1,0. b Une solution de pH = 2,0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Deuxième cas

a Une solution avec [H3O+] = 5,0 × 10−2 mol · L−1. b Une solution de pH = 3,0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Troisième cas

a Une solution avec [HO−] = 2,0 × 10−2 mol · L−1.
b Une solution avec [HO−] = 8,0 × 10−2 mol · L−1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Quatrième cas

a Une solution avec [HO−] = 1,0 × 10−1 mol · L−1.
b Une solution de pH = 9,0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 24.15 — Constante d’acidité.
On considère le couple NH+

4 /NH3.
Sa constante d’acidité KA est la constante d’équilibre de la réaction :

NH+
4 (aq) + H2O(ℓ) = NH3(aq) + H3O+

(aq).

On donne KA = 10−9,2 à 25 °C.
a) À l’aide de la loi d’action de masse, exprimer le pH en fonction de pKA = − log10(KA) ainsi que des
concentrations [NH+

4 ] et [NH3].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Sachant qu’on a [NH+
4 ] = 2,0 × 10−3 mol · L−1 et [NH3] = 1,0 × 10−3 mol · L−1, calculer le pH de la

solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 24.16 — Équilibre acido-basique.
On introduit un volume V = 20,0 mL d’une solution d’acide éthanoïque CH3COOH à la concentration
C = 2,00 × 10−3 mol · L−1 dans un bécher contenant un volume V ′ = 20,0 mL d’eau distillée.
Un équilibre s’établit selon l’équation de réaction :

CH3COOH(aq) + H2O(ℓ) = CH3COO−
(aq) + H3O+

(aq).

La constante d’équilibre de cette réaction est KA = 10−4,8 à la température de l’expérience.
a) Établir l’équation du second degré vérifiée par l’avancement volumique ξv à l’état final d’équilibre.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer [CH3COOH]eq à l’équilibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire le pH de la solution à l’équilibre . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

8,8 × 10−4 mol · L−1 n2 − 3ξ

4K◦ξ2 − ξ

(
4K◦n+ P ◦V

RT

)
+K◦n2 = 0 b a 2 CO + O2 = 2 CO2

3,6 × 10−2 mol · L−1 5,0 × 10−2 mol a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

2 C8H18 + 25 O2 = 16 CO2 + 18 H2O 3,9 1,3 c

ξ2(4K◦P + P ◦) − ξ(4nK◦P + nP ◦) +K◦n2P = 0 ξ2
v + ξv(C2 +K◦C◦) −K◦C1C

◦ = 0

2ξ 2 NO + 2 CO = N2 + 2 CO2 ξ2(K◦ − 1) − ξK◦(n1 + n2) +K◦n1n2 = 0

a b a pH = pKA + log10

(
[NH3]
[NH+

4 ]

)
a

n1 − ξ ξ2 − ξ(C1V1 + C2V2) + C1C2V1V2 − [C◦(V1 + V2)]2

K◦ = 0

MnO−
4 + 8 H+ + 5 Fe2+ = 5 Fe3+ + Mn2+ + 4 H2O 7,6 × 10−2 mol · L−1

a a(HO−)eq × a(H3O+)eq
a(H2O)2

eq

(C◦(V1 + V2))2

(C1V1 − ξ) × (C2V2 − ξ)
e S2O2−

8 + 2 I− = 2 SO2−
4 + I2 a a 104,75

ξ2
v(1 −K◦) + ξvK

◦(C1 + C2) −K◦C1C2 = 0 12 ξ2
v +KAC

◦ ξv −KAC1C
◦ = 0

d 8,9 2 Ag+ + Cu = 2 Ag + Cu2+ 4,0 × 10−1 mol b K◦ = KA

Ke

▶ Réponses et corrigés page 326
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CHI04 ChimieFiche d’entraînement no 25

Cinétique chimique

Prérequis
Avancement. Spectrophotométrie. Catalyse. Équations différentielles.

Vitesse de réaction et notion d’ordre

Entraînement 25.1 — Constante de vitesse.
On considère une transformation chimique modélisée par la réaction d’équation :

A −−→ B.

On suppose que la réaction admet un ordre, on note k la constante de vitesse et v la vitesse volumique de
réaction.
a) On suppose que k s’exprime en s−1.
Parmi ces relations fausses, laquelle a au moins le mérite d’être homogène ?

a v = k × [B]
b v = k2 × [A]

c v = k

[A]
d v = ln(k) × [A]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La constante k s’exprime en L2 · mol−2 · s−1.
Quel est l’ordre probable de la réaction ?

a 0 b 1
2

c 2 d 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’unité de k s’écrit molα · Lβ · sγ .
c) Quelle est la valeur de γ quel que soit l’ordre de la réaction ?

a 0 b 1 c −1 d 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Quelle est la valeur de α si l’ordre de la réaction est 2 ?

a 0 b 1 c −1 d 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 25.2 — Exprimer des vitesses de réaction.
On considère l’équation de la réaction de formation de l’ammoniac NH3 à partir du diazote N2 et du
dihydrogène H2, en phase gazeuse :

N2(g) + 3 H2(g) = 2 NH3(g).

a) Exprimer la vitesse volumique de formation du produit en fonction de sa concentration.

a vform(NH3) = + d[NH3]
dt

b vform(NH3) = − d[NH3]
dt

c vform(NH3) = 1
2

d[NH3]
dt

d vform(NH3) = 2 d[NH3]
dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer la vitesse volumique de disparition de H2 en fonction de sa concentration.

a vdisp(H2) = − 1
3

d[H2]
dt

b vdisp(H2) = − d[H2]
dt

c vdisp(H2) = 3 d[H2]
dt

d vdisp(H2) = −3 d[H2]
dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Choisir les bonnes réponses parmi les propositions suivantes définissant la vitesse volumique v de
réaction.

a v = 1
2

d[NH3]
dt

b v = −1
2

d[NH3]
dt

c v = − d[N2]
dt

d v = − 1
3

d[H2]
dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Exprimer la vitesse de disparition des réactifs et la vitesse de formation du produit en fonction de la
vitesse volumique v de réaction.

a 1
2v ; v ; v

b v ; −3v ; −2v

c v ; 3v ; 2v
d v ; −v ; −v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 25.3 — Notion d’ordre.
Indiquer si les réactions suivantes possèdent un ordre global et, si oui, préciser sa valeur.

a) NO2(g) + CO(g) = NO(g) + CO2(g) ; v = k × [NO2]2 . . . .

b) CO(g) + Cℓ2(g) = COCℓ2(g) ; v = k × [CO][Cℓ2]3/2 . . . . .

c) H2(g) + Br2(g) = 2 HBr(g) ; v = k × [H2][Br2]1/2

1 + k′ × [HBr]
[Br2]

. . . . . . .
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Entraînement 25.4 — Déterminer graphiquement des vitesses.
On considère la transformation chimique d’équation suivante :

3 CℓO−
(aq) −−→ CℓO3

−
(aq) + 2 Cℓ−

(aq).

Le profil de concentration des réactifs et des produits est présenté ci-dessous :

0 1 2 3 4 5 6 7 8 9 100

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

t (en min)

c
(e

n
m

m
ol

·L
−

1 )

[CℓO−]
[CℓO3

−]
[Cℓ−]

Déterminer graphiquement, à l’instant t = 0 min :

a) la vitesse de disparition des ions hypochlorite CℓO– . . . . . . . . . . . . . . . . . . . . . .

b) la vitesse de formation des ions chlorate CℓO3
– . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) la vitesse de formation des ions chlorures Cℓ– . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) la vitesse de réaction v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

186 Fiche no 25. Cinétique chimique



Autour de la loi d’Arrhenius

La constante de vitesse k d’une réaction est donnée par la relation d’Arrhenius :

k = A× exp
(

− Ea
RT

)
, (∗)

où A est le facteur de fréquence indépendant de la température, Ea l’énergie d’activation de la transfor-
mation (en J · mol−1) et R = 8,314 J · K−1 · mol−1 la constante des gaz parfaits.

Entraînement 25.5 — Exploiter la loi d’Arrhenius.

a) À l’aide de (∗), exprimer Ea en fonction de k, A, R et T . . . . . . . . . . .

La valeur de k double entre T1 = 25 °C et T2 = 35 °C.

b) Déterminer la valeur de Ea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 25.6 — Exploiter la loi d’Arrhenius linéarisée.

Dans cet entraînement, la constante de vitesse k est exprimée en L · mol−1 · s−1.

a) À l’aide de (∗), exprimer ln(k) en fonction de Ea, A, R et T . . . . . . . .

On considère la régression linéaire ci-dessous.

0,95 1 1,05 1,1 1,15 1,2 1,25 1,3 1,35 1,4 1,45 1,5
·10−3

−4

−2

0

2

4

y = ax+ b

a = −21 796,0
b = 27,0

1/T (en K−1)

ln
(k

)

points expérimentaux
modélisation

b) À l’aide de cette régression, déterminer la valeur de l’énergie d’activation Ea . . . .

c) À l’aide de cette régression, déterminer la valeur du facteur de fréquence A . . . . . .

Fiche no 25. Cinétique chimique 187



Autour des réactions admettant un ordre

On considère une transformation chimique modélisée par la réaction d’équation :

αA −−→ β B,

où A et B sont des composés chimiques et où α et β sont les coefficients stœchiométriques correspondants.
La constante de vitesse de la réaction est notée k.

Entraînement 25.7 — Établir une loi d’ordre 0.
a) Donner l’expression de v, la vitesse volumique de réaction, en fonction de [A].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) La réaction est supposée d’ordre 0 par rapport à A. Quelle est l’autre expression de v ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire, par intégration, la concentration [A] en fonction du temps.
On notera [A]0 la concentration initiale.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 25.8 — Établir une loi d’ordre 1.
a) La réaction est supposée d’ordre 1 par rapport à A. Quelle est l’autre expression de v ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire, par intégration, la concentration [A] en fonction du temps.
On notera [A]0 la concentration initiale.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 25.9 — Établir une loi d’ordre 2.
a) La réaction est supposée d’ordre 2 par rapport à A. Quelle est l’autre expression de v ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire, par intégration, l’expression de 1
[A] en fonction du temps.

On notera [A]0 la concentration initiale.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire l’expression de [A] en fonction du temps.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 25.10 — Exprimer un temps de demi-réaction.
On considère une transformation chimique modélisée par la réaction d’équation :

αA −−→ β B,

où A et B sont des composés chimiques et où α et β sont les coefficients stœchiométriques correspondants.
On appelle temps de demi-réaction et on note t1/2, le temps au bout duquel la moitié du réactif limitant
a été consommée. On note [A]0 la concentration initiale en A.

Exprimer le temps de demi-réaction t1/2 pour chaque expression de [A] :

a) [A] = [A]0 − αkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) [A] = [A]0 × exp(−αkt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) 1
[A] = 1

[A]0
+ αkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Détermination expérimentale d’ordre

Entraînement 25.11 — Appliquer la méthode du temps de demi-réaction.
On considère la réaction d’isomérisation ci-dessous dont on a mesuré le temps de demi-réaction t1/2 pour
différentes concentrations initiales en réactif :

O
A

−→

O
B

.

[A]0 (en mol · L−1) 2,66 3,24 4,03 4,87
t1/2 (en s) 877 876 878 877

On rappelle ci-dessous les expressions des temps de demi-réaction pour des réactions d’ordre 0, 1 ou 2.

Ordre 0 1 2

t1/2
[A]0
2k

ln(2)
k

1
[A]0k

a) Déterminer l’ordre de la réaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Calculer la constante de vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 25.12 — Appliquer la méthode de la dégénérescence de l’ordre.
On étudie dans cet entraînement la réaction de transformation du 1-bromo-2-méthylpropane (noté RBr)
en 2-méthylpropan-1-ol (noté ROH) par l’hydroxyde de sodium en solution aqueuse.
L’équation associée à cette réaction, de constante de vitesse k, est :

RBr(aq) + HO−
(aq) −−→ ROH(aq) + Br−

(aq).

Pour étudier sa cinétique, on mesure la concentration en réactif [RBr] au cours du temps, durant une
expérience pour laquelle la concentration initiale en ions hydroxyde est [OH– ] = 1,0 × 10−1 mol · L−1.

Temps t (en min) 0 20 70 140 280
Concentration c (en 10−3 mol/L) 1,00 0,80 0,50 0,25 0,06

a) Déterminer le temps de demi-réaction t1/2 à l’aide du tableau.

a t1/2 = 20 min
b t1/2 = 70 min

c t1/2 = 140 min
d t1/2 = 280 min

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) On suppose que l’ordre partiel par rapport à chacun des réactifs est de 1.
La loi de vitesse peut s’écrire (plusieurs réponses sont possibles) :

a v = k[RBr][HO−]
b v = kapp[HO−] avec kapp = k[RBr]0

c v = kapp[RBr] avec kapp = k[HO−]0
d v = k[RBr]2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Indiquer le graphique à tracer pour déterminer la valeur de la constante apparente kapp.

a [RBr] en fonction du temps
b ln

(
[RBr]

)
en fonction du temps

c 1
[RBr] en fonction du temps

d exp
(
[RBr]

)
en fonction du temps

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) On trouve kapp = 1,0 × 10−2 min−1. En déduire la valeur de k.

a k = 1,0 × 10−3 mol · L−1 · min−1

b k = 1,0 × 10−3 L · mol−1 · min−1

c k = 1,0 × 10−1 mol · L−1 · min−1

d k = 1,0 × 10−1 L · mol−1 · min−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 25.13 — Appliquer la méthode différentielle.
On étudie la synthèse du sulfure d’hydrogène H2S(g) à partir de vapeurs de soufre S(g) et de dihydrogène
gazeux H2(g) suivant la réaction d’équation :

S(g) + H2(g) −−→ H2S(g).

On suppose que la vitesse initiale est de la forme v0 = k × [S]0n × [H2]0m.
Deux séries d’expériences ont été effectuées afin de déterminer les ordres partiels par rapport à chacun des
réactifs.

Série 1
[S]0 (en 10−3 mol · L−1) 1,67 1,67 1,67

[H2]0 (en 10−3 mol · L−1) 0,62 1,24 1,86
v0 (en 10−4 mol · L−1 · min−1) 0,75 1,50 2,25

a) Déterminer la valeur de m par exploitation des données expérimentales de la série 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

La deuxième série d’expériences donne la régression linéaire suivante pour [H2]0 = 1,86 × 10−3 mol · L−1.

−7 −6,8 −6,6 −6,4 −6,2 −6 −5,8 −5,6 −5,4 −5,2 −5
−9

−8,5

−8

−7,5

−7

y = ax+ b

a = ?
b = −5,19

ln
(
[S]0

)

ln
(v

0)

points expérimentaux
modélisation

b) Exprimer ln(v0) en fonction de ln[S]0 et montrer que ces entités sont reliées par une fonction affine.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Exploiter la régression linéaire afin de déterminer la valeur de n . . . . . . . . . . . . . . . . .

d) Déterminer la valeur de la constante de vitesse k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

m = 1 k[A]2 k d ln(2)
αk

a c d 1,8 × 102 kJ · mol−1

1
[A]0αk

n = 1
2 a [A]0

2αk 1,7 mmol · L−1 · min−1 3,3 mmol · L−1 · min−1

1,7 mmol · L−1 · min−1 ln(A) − Ea
RT

3,00 L1/2· mol−1/2· min−1 53 kJ · mol−1

1 Oui : 5
2 Non 7,90 × 10−4 s−1 [A]0 × exp(−αkt) Oui : 2

RT
(

ln(A) − ln(k)
) 1

[A]0
+ αkt a 5,0 mmol · L−1 · min−1 a et c

c b d − 1
α

d[A]
dt ln

(
k × [H2]m0

)
+ n ln

(
[S]0
)

c b
[A]0

1 + α[A]0kt
[A]0 − αkt 5,3 × 1011 L · mol−1 · s−1 v = k[A] c b

▶ Réponses et corrigés page 333
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GAL02 GénéralitésFiche d’entraînement no 26

Chiffres significatifs et incertitudes

Prérequis

• Les incertitudes sont à donner avec deux chiffres significatifs.
• Toutes les incertitudes fournies sont des incertitudes-types.

Ainsi, si le résultat d’une mesure de vitesse est de 30 mètres par seconde
avec une incertitude-type de 1 mètre par seconde, on notera cette vitesse :

v = (30,0± 1,0) m · s−1.

Résultats numériques

Entraînement 26.1 — Écriture scientifique.
Réécrire les nombres en utilisant l’écriture scientifique. On veillera à garder les chiffres significatifs.

a) 31,5 . . . . . . . . . . . . . . . . . . . . . .

b) 0,001 9 . . . . . . . . . . . . . . . . . . .

c) 0,812 0 . . . . . . . . . . . . . . . . . . .

d) 1 600 002 . . . . . . . . . . . . . . . . .

e) 2 023,9 . . . . . . . . . . . . . . . . . . .

f) 7 300 . . . . . . . . . . . . . . . . . . . . .

g) 330 × 106 . . . . . . . . . . . . . . . .

h) 70,22 × 10−4 . . . . . . . . . . . . .

Entraînement 26.2 — Combien de chiffres significatifs ?
Indiquer le nombre de chiffres significatifs des grandeurs mesurées suivantes :

a) une intensité électrique de 0,39 A . .

b) une tension de 12,84 mV . . . . . . . . . . .

c) une vitesse de 12,250 km · h−1 . . . . . .

d) une longueur de 0,002 0 m . . . . . . . . . .

Entraînement 26.3 — Opérations et chiffres significatifs.
Effectuer les calculs en gardant le bon nombre de chiffres significatifs.
a) Combien de kilomètres sont parcourus en 6,0 min par une voiture roulant à une vitesse moyenne

v = 80 km · h−1 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quel est le périmètre d’un rectangle de largeur 6 mm et de longueur 15 cm ? . . . . .

Le gain d’un pont diviseur de tension vaut G = R2
R1 +R2

. On effectue le montage avec une résistance
R1 = 0,9 kΩ et une résistance R2 = 100 Ω.

c) Que vaut le gain G ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 26.4 — Incertitude et chiffres significatifs.
Une mesure de focale donne pour résultat f ′ = 12,016 835 7 cm avec une incertitude-type de 32,316 648 2 mm.
Quel sera votre résultat numérique final ?

a f ′ = (12 ± 3) cm
b f ′ = (120 ± 65) mm

c f ′ = (12,0 ± 3,2) cm
d f ′ = (120 ± 33) mm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Propagation des erreurs

Prérequis
On considère x et y, deux grandeurs expérimentales indépendantes, et on
considère z = f(x, y) une grandeur calculée.
L’incertitude-type u(z) est reliée à celles de x et y via les relations :

u(z)2 = a2 u2(x) + b2 u2(y) si z = ax+ by(
u(z)
z

)2

= a2
(

u(x)
x

)2

+ b2
(

u(y)
y

)2

si z = c xayb

où a, b et c sont des paramètres fixés.

Entraînement 26.5 — Pour commencer.
On mesure x = (10,0 ± 0,2) m et y = (9,1 ± 0,3) m.

Calculer :

a) x+ y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) x− y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) x× y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) y

x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.6 — Dosage d’une solution.
On dose une solution acide de concentration cA inconnue. Le volume de la solution dosée est VA, et la
solution utilisée pour le dosage est de concentration cB . À l’équivalence, un volume VB de base est versé
et l’on a :

cA = cB × VB

VA
.

La base est préparée de sorte à avoir cB = (100,0 ± 2,0) mmol · L−1.
De plus, on mesure les volumes VA = (20,00 ± 0,10) mL et VB = (11,80 ± 0,10) mL.

Quel résultat obtient-on pour cA ? (en mmol · L−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 26.7 — Puissance électrique dans une résistance.
On désire mesurer la puissance dissipée par effet Joule dans une résistance, donnée par P = U × I = RI2.
Donner la puissance (exprimée en watts) et son incertitude pour les mesures suivantes :

a) U = (2,382 ± 0,050) V et I = (0,500 ± 0,010) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) I = (0,500 ± 0,010) A et R = (4,70 ± 0,14) Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Ces deux mesures sont-elles compatibles ?

a Oui b Non
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.8 — Diamètre d’un tube.
On mesure l’épaisseur d’un tube cylindrique au pied à coulisse.
Le diamètre intérieur du tube est d = (6,8 ± 0,1) mm et le diamètre extérieur D = (10,3 ± 0,1) mm.
a) Exprimer l’épaisseur e du tube en fonction de d et D.

a π(D2 − d2) b D − d

2
c
√
D2 + d2 d d−D

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire l’expression de l’incertitude-type sur l’épaisseur u(e) en fonction de D, d, u(d) et u(D).

a 1
2
√

u2(D) + u2(d)

b

√(
u(D)
D

)2
+
(

u(d)
d

)2

c
√
u2(D) + u2(d)

d 1
2

√(
u(D)
D

)2
+
(

u(d)
d

)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) En déduire le résultat de la mesure de e.

a e = (1,75 ± 0,07) mm
b e = (1,75 ± 0,10) mm

c e = (1,8 ± 0,1) mm
d e = (1,750 ± 0,071) mm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.9 — Analyse d’une figure de diffraction.
On mesure la figure de diffraction obtenue en interposant un cheveu entre un écran et un laser. La distance
entre le cheveu et l’écran est D = (3 ± 10 × 10−3) m, la longueur d’onde du laser λ = (632,80 ± 0,10) nm,
et l’on observe une tache de diffraction de largeur ℓ = (5,10 ± 0,30) cm.
Le diamètre d du cheveu peut alors se déduire de ces mesures via la relation :

d = 2λD
ℓ
.

a) Exprimer l’incertitude u(d) en fonction de d, λ, D, ℓ,

et de u(λ), u(D) et u(ℓ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Quel résultat obtient-on pour d ? (en µm) . . . . . . . . . . . . .
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Incertitudes expérimentales

Entraînement 26.10 — Série de mesures.
On procède à n = 10 mesures d’une tension. Le tableau ci-dessous recense les résultats :

Mesure no 1 2 3 4 5 6 7 8 9 10
Ui (en V) 4,955 5,596 4,271 4,955 5,164 5,371 4,671 4,736 5,393 4,183

a) Que vaut la moyenne arithmétique m = 1
n

∑
i

Ui de la série ? . . . . . . . . . . . . .

b) Calculer l’écart-type expérimental de la série σU =
√∑

i(Ui −m)2

n− 1 . . . . . . .

L’incertitude-type de m est donnée par u(m) = σU√
n

.

c) En déduire le résultat final de la mesure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.11 — Focométrie.
On procède à des mesures d’une distance focale (notée f ′) ; le tableau ci-dessous recense les résultats :

f ′ (en cm) 24,6 24,5 25,1 25,1 25,3 25,4 24,9 24,8 24,9 25,4 25,3 24,9

Donner le résultat final de la mesure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.12 — Résistances en série.
On dispose de n résistances identiques, dont l’incertitude relative est donnée à 1 %. On les monte en série.
Ainsi, la résistance totale est égale à la somme des résistances individuelles.
Quelle est l’incertitude relative pour la résistance totale lorsque n = 5 ?

a 0,44 % b 1 % c 2,2 %
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 26.13 — Mesure au pied à coulisse.
On mesure le diamètre d d’un fil de cuivre au pied à coulisse (on prendra u(d) = 0,050 mm) :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 10

±0,05mm

a) Que vaut le diamètre ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) En déduire la section droite du fil (en mm2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Autour du z-score

Prérequis
On appelle écart normalisé (ou z-score) entre deux grandeurs x1 et x2,
connues avec des incertitudes-types u(x1) et u(x2), le nombre réel positif
défini par :

z = |x2 − x1|√
u(x1)2 + u(x2)2

.

Par convention, les deux valeurs x1 et x2 sont dites compatibles si z ⩽ 2.
Comme c’est un indicateur à comparer à 2, on ne garde qu’une décimale
lors de sa détermination.
On utilise en particulier cette définition dans le cas où une des grandeurs, par
exemple x1 peut être considérée comme une référence, avec une incertitude
négligeable. On a alors u(x1)≪ u(x2) et la formule approchée plus simple :

z = |x2 − x1|
u(x2) .

Entraînement 26.14 — Z-scores et compatibilité.
Dans chaque situation, deux valeurs d’une même grandeur sont obtenues indépendamment.
Indiquer, en calculant leurs z-scores, si ces valeurs sont compatibles :
a) La vitesse du son dans l’air est déterminée expérimentalement à (349,0 ± 2,3) m · s−1. Une table de
référence donne (344,08 ± 0,69) m · s−1.

a Oui, elles sont compatibles b Non, elles ne le sont pas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Une température est mesurée par deux groupes en TP. Le premier groupe obtient (52,900 ± 0,060) °C,
le second (53,100 ± 0,060) °C.

a Oui, elles sont compatibles b Non, elles ne le sont pas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Une lentille est vendue pour avoir une focale de 25 cm. Lors d’une séance de TP, cette focale est mesurée
à (24,05 ± 0,85) cm.

a Oui, elles sont compatibles b Non, elles ne le sont pas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Réponses mélangées

3,30 × 108 8,0 km (1,191 ± 0,035) W 1,0 × 10−1 7,300 × 103 0,472 V

a 5 4,929 5 V 4 a 0,910 ± 0,035 (19,10 ± 0,36) m

a b b 7,022 × 10−3 3,15 × 101 a (74,4 ± 4,4) µm

(91,0 ± 3,5) m2 c et d 2 31 cm d

√(
u(λ)
λ

)2

+
(

u(D)
D

)2

+
(

u(ℓ)
ℓ

)2

(2,49 ± 0,14) mm2 2 1,600 002 × 106 2,023 9 × 103 (1,175 ± 0,059) W

8,120 × 10−1 (59,0 ± 1,4) mmol · L−1 (0,90 ± 0,36) m (1,780 ± 0,050) mm

(4,93 ± 0,15) V d 1,9 × 10−3 (25,017 ± 0,092) cm b

▶ Réponses et corrigés page 337
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Fiche no 1. Conversions

Réponses

1.1 a) . . . . . . . . . . . . . 1 · 10−1 m

1.1 b) . . . . . . . . . . . . . 2,5 · 103 m

1.1 c) . . . . . . . . . . . . . 3 · 10−3 m

1.1 d) . . . . . . . . . . . 7,2 · 10−9 m

1.1 e) . . . . . . . . . . . 5,2 · 10−12 m

1.1 f) . . . . . . . . . . . 1,3 · 10−14 m

1.2 a) . . . . . . . . . . . . 1,50 · 105 m

1.2 b) . . . . . . . . . . . . 7 · 10−13 m

1.2 c) . . . . . . . . . . . . . . . . . 2,34 m

1.2 d) . . . . . . . . . . 1,20 · 10−7 m

1.2 e) . . . . . . . . . . . . 2,3 · 10−4 m

1.2 f) . . . . . . . . . . . 4,1 · 10−10 m

1.3 a) . . . . . . . . . . . 7,3 · 106 m/s

1.3 b) . . . . . . . . . 2,6 · 107 km/h

1.4 . . . . . . . . . . . . . . . . . . . 2,4 MJ

1.5 . . . . . . . . . . . . . . 5,5 · 10−2 Ω

1.6 a) . . . . . . . . . . . 1,99 · 106 Rg

1.6 b) . . . . . . . . . . . 1,99 · 103 Qg

1.6 c) . . . . . . . . . . . 1,90 · 103 Rg

1.6 d). . . . . . . . . . . . . . . . 1,90 Qg

1.6 e) . . . . . . . . . . . . . . . . 5,97 Rg

1.6 f) . . . . . . . . . . 5,97 · 10−3 Qg

1.6 g) . . . . . . . . . . . . 1,67 · 103 rg

1.6 h) . . . . . . . . . . . 1,67 · 106 qg

1.6 i) . . . . . . . . . . . 9,10 · 10−1 rg

1.6 j) . . . . . . . . . . . . 9,10 · 102 qg

1.7 a) . . . . . . . . . . . . . . . . . . 250 g

1.7 b) . . . . . . . . . . . . . . . . . . 200 g

1.7 c) . . . . . . . . . . . . . . . . . . 125 g

1.7 d) . . . . . . . . . . . . . . . . . . . . 5 g

1.8 a). . . . . . . . . . . . . . . . . . . 10 %

1.8 b) . . . . . . . . . . . . . . . . . . 0,7 %

1.8 c) . . . . . . . . . . . . . . . . . . . 50 %

1.8 d). . . . . . . . . . . . . . . . . . . . 5 %

1.8 e). . . . . . . . . . . . . . . . . . 180 %

1.8 f) . . . . . . . . . . . . . . . . . . 0,5 %

1.9 . . . . . . . . . . . . . . . . . . . . 5,2 %

1.10 a) . . . . . . 1,03 × 103 TWh

1.10 b). . . . . . . . . . . . . 722 TWh

1.10 c) . . . . . . . . . . . . . 406 TWh

1.10 d). . . . . . . . . . . . . 113 TWh

1.10 e) . . . . . . . . . . . . . . 64 TWh

1.10 f) . . . . . . . . . . . . . . 62 TWh

1.10 g) . . . . . . . . . . . . . . 41 TWh

1.10 h). . . . . . . . . . . . . 134 TWh

1.11 . . . . . . . . . . . . . . . . . . . . . l’or

1.12 a) . . . . . . . . . . . 1 · 10−10 m

1.12 b) . . . . 0,000 000 000 1 m

1.13 a). . . . . . . . . . 4,43 · 1016 m

1.13 b) . . . . . . . . 4,43 · 1013 km

1.14 a) . . . . . . . . . . . . 10 000 m2

1.14 b) . . . . . . . . . . . . . 0,01 km2

1.14 c) . . . . . . . . . 6,72 · 1011 m2

1.14 d) . . . . . . . . . . 6,72 · 107 ha

1.14 e) . . . . . . . . . . 5,89 · 108 m2

1.14 f) . . . . . . . . . . 5,89 · 104 ha

1.15 a) . . . . . . . . . . . . . . . . . . . oui

1.15 b). . . . . . . . . . . . . . . . . . . oui

1.16 a) . . . . . . . . . 1 · 103 kg/m3

1.16 b) . . . . . . . . . . . 625 kg/m3

1.17 a) . . . . . . . . . . . . . . . . . . 7,87

1.17 b) . . . . . . 1,6 × 103 kg/m3

1.18 . . . . . . . . . La boule en or
1.19 . . . . . . . . . . . . . . . . . . . . non

1.20 . . . . . . . . . . . . . . La voiture

1.21 a) . . . . . . . . . . . . . . 30 dm/s

1.21 b) . . . 1 année-lumière/an

1.22 a) . . . . . . . 0,017 tour/min

1.22 b) . . . . . . . . . 0,001 7 rad/s

1.22 c) . . 1,90 · 10−6 tour/min

1.22 d). . . . . . 1,99 · 10−7 rad/s
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Corrigés

1.3 a) Il faut bien penser à garder le bon nombre de chiffres significatifs (deux ici car les données en possèdent
également deux) :

v =
√

2× 1,6 · 10−19 C× 150 V
9,1 · 10−31 kg = 7,3 · 106 m/s.

.......................................................................................................................................................
1.3 b) On v = 7,3 · 106 m/s = 7,3 · 103 km/s = 7,3 · 103 × 3 600 km/h = 2,6 · 107 km/h.
.......................................................................................................................................................
1.4 On a 1 Ws = 1 J donc 1 Wh = 3 600 J donc 1 kWh = 3,6 · 106 J.

Ainsi, on trouve T = 0,67 kWh = 2,4 · 106 J = 2,4 MJ.
.......................................................................................................................................................

1.5 On calcule R = 10 m
59 · 106 S/m× 3,1 · 10−6 m2 = 5,5 · 10−2 Ω.

.......................................................................................................................................................
1.11 Pour comparer ces abondances et trouver la plus petite, on peut les convertir dans la même unité, par

exemple en ppm :

Silicium Or Hydrogène Fer Oxygène Cuivre
2,75 · 105 ppm 1 · 10−3 ppm 1,4 · 103 ppm 5,0 · 104 ppm 4,6 · 105 ppm 50 ppm

.......................................................................................................................................................
1.13 a) Une année lumière est la distance que parcourt la lumière en une année. Elle vaut donc :

1 an× 365,25 jours/an× 24 h/jour× 3 600 s/h× 3,00 · 108 m/s = 9,47 · 1015 m.

La distance entre Alpha du Centaure et la Terre est donc 4,7× 9,47 · 1015 m = 4,4 · 1016 m.
.......................................................................................................................................................
1.14 a) On a 1 ha = 100 m× 100 m = 1× 104 m2.
.......................................................................................................................................................
1.14 b) On a 1 ha = 0,1 km× 0,1 km = 0,01 km2.
.......................................................................................................................................................
1.14 c) On a 672 051 km2 = 672 051 · 1× 106 m2 = 6,72 · 1011 m2.
.......................................................................................................................................................
1.14 d) On a 672 051 km2 = 672 051 · 1× 102 ha = 6,72 · 107 ha.
.......................................................................................................................................................
1.14 e) On a 589 km2 = 589× 1× 106 m2 = 5,89 · 108 m2.
.......................................................................................................................................................
1.14 f) On a 589 km2 = 589× 1× 102 ha = 589 · 102 ha = 5,89 · 104 ha.
.......................................................................................................................................................
1.15 a) On peut convertir : 2,5 · 10−4 m3 = 250 mL.
.......................................................................................................................................................
1.15 b) On peut convertir : 7,5 · 10−2 m3 = 75 L.
.......................................................................................................................................................
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1.16 b) La masse volumique de la farine est 0,25 g
0,4 cL = 0,625 kg/L = 625 kg/m3.

.......................................................................................................................................................
1.18 Le volume du cube est (10 cm)3 = 1 000 cm3. Sa masse est donc :

11,20 g/cm3 × 1 000 cm3 = 11,20 · 103 g = 11,2 kg.

Le volume de la boule est 4
3π(15 cm)3 = 14 · 103 cm3 = 1,4 · 10−2 m3. Sa masse est alors :

19 300 kg/m3 × 1,4 · 10−2 m3 = 270 kg.

.......................................................................................................................................................

1.19 On a 2 mg
1 · 103 mm3 = 2 · 10−3 g

1 · 10−3 L = 2 g/L.
.......................................................................................................................................................
1.20 On a 110 km/h = 30 m/s.
.......................................................................................................................................................
1.21 a) On résume les calculs dans le tableau suivant :

20 km/h 10 m/s 1 année-lumière/an 22 mm/ns 30 dm/s 60 cm/ms
5,56 m/s 10 m/s 3,00 · 108 m/s 2,2 · 107 m/s 3,0 m/s 600 m/s

.......................................................................................................................................................
1.21 b) Voir les vitesses indiquées dans le corrigé précédent.
.......................................................................................................................................................
1.22 a) On a 1 tour/60 min = 0,017 tour/min.
.......................................................................................................................................................
1.22 b) On a 1 tour/60 min = 2π rad/3 600 s = 0,001 7 rad/s.
.......................................................................................................................................................
1.22 c) On a 1 tour/1 an = 1 tour/(1 an× 365,25 j/an× 24 h/j× 60 min/h) = 1,90 · 10−6 tour/min.
.......................................................................................................................................................
1.22 d) On a 1 tour/1 an = 2π rad/(1 an× 365,25 j/an× 24 h/j× 60 min/h× 60 s/min) = 1,99 · 10−7 rad/s.
.......................................................................................................................................................
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Fiche no 2. Signaux

Réponses

2.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − sin(α)

2.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − sin(α)

2.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cos(α)

2.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cos(α)

2.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 cos(2t)

2.2 b) . . . −2 sin(t+ 4) cos(t+ 4) = − sin(2t+ 8)

2.2 c) . . . . . . . . . . . . . . . . cos2(t) − sin2(t) = cos(2t)

2.3 a) . . . . . . . 2A cos
(
ω1 − ω2

2 t

)
cos
(
ω1 + ω2

2 t

)

2.3 b) . . . . . . . 2A sin
(
ω2 − ω1

2 t

)
sin
(
ω1 + ω2

2 t

)
2.4 . . . . . . . . . A sin(φ) cos(ωt) +A cos(φ) sin(ωt)

2.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 2

2.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 4

2.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 3

2.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 1

2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

2.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5 V

2.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2 rad

2.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 s

2.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,5 Hz

2.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π rad · s−1

2.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . En retard

2.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . φ < 0

2.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −2π
3 rad

2.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u3(t)

2.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u1(t)

2.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u2(t)

2.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

2.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0√
2

2.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5 V

2.11 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

3 V

2.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0
2

2.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0√
2

2.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,7 km

2.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,7 µs

2.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 km/h

2.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6 s

2.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 cm

2.15 c) . . . . . . . . . . . . . . . . . 2 sin(3,9t− 13x+ 0,3π)
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Corrigés

2.1 a)

En utilisant le cercle trigonométrique, on voit directement que :

sin(α+ π) = − sin(α).

Remarquons qu’on peut également utiliser les formules trigonométriques :

sin(α+ π) = sin(α) cos(π) + sin(π) cos(α) = − sin(α).

α
α + π

sin(α)

sin(α + π)

.......................................................................................................................................................
2.1 b)

On a cos
(
α+ π

2

)
= − sin(α).

sin(α)

cos(α + π/2)
.......................................................................................................................................................
2.1 c)

On a sin
(
α+ π

2

)
= cos(α).

cos(α)

sin(α + π/2)

.......................................................................................................................................................
2.1 d)

On a sin
(
π

2 − α
)

= cos(α).

cos(α)

sin(π/2 − α)

.......................................................................................................................................................
2.3 a) On somme les formules trigonométriques :{

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

pour obtenir cos(a+ b) + cos(a− b) = 2 cos(a) cos(b).

On a : {
a+ b = ω1t

a− b = ω2t
⇐⇒

a = ω1 + ω2

2 t

b = ω1 − ω2

2 t.

On en déduit :
A cos(ω1t) +A cos(ω2t) = 2A cos

(
ω1 + ω2

2 t
)

cos
(
ω1 − ω2

2 t
)
.

Ainsi, C = 2A, Ω = ω1 + ω2

2 et ω = ω1 − ω2

2 conviennent.
.......................................................................................................................................................
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2.3 b) On somme les formules trigonométriques :{
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

pour obtenir cos(a− b)− cos(a+ b) = 2 sin(a) sin(b).

On a : {
a− b = ω1t

a+ b = ω2t
⇐⇒

a = ω1 + ω2

2 t

b = ω2 − ω1

2 t.

On en déduit A cos(ω1t)−A cos(ω2t) = 2A sin
(
ω2 − ω1

2 t
)

sin
(
ω1 + ω2

2 t
)

.
.......................................................................................................................................................
2.4 On utilise la formule trigonométrique : sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

On a A sin(ωt+ φ) = A[sin(ωt) cos(φ) + cos(ωt) sin(φ)] = A sin(φ) cos(ωt) +A cos(φ) sin(ωt).
Ainsi, B = A sin(φ) et C = A cos(φ) conviennent.
.......................................................................................................................................................
2.5 a) On a sin(0) = 0. La courbe 2 est la seule courbe passant par le point (0, 0) et est donc la seule courbe

compatible. On vérifie aussi que la courbe 2 est comprise dans l’intervalle [−1, 1] et que sa période est égale à 2π.
.......................................................................................................................................................
2.5 b) On a cos(0) = 1, ce qui est cohérent avec les courbes 1, 3 et 4. Ce n’est donc pas suffisant pour déterminer

quelle courbe correspond à la fonction cosinus. Mais on sait de plus que cos(x) ∈ [−1, 1], ce qui correspond à la
courbe 4. On vérifie également que la courbe 4 a une période égale à 2π.
.......................................................................................................................................................
2.5 c) On a 1 + sin(0) = 1 et 1 + sin(x) ∈ [0, 2]. Cela correspond à la courbe 3. On vérifie également que la

courbe 3 a une période égale à 2π.
.......................................................................................................................................................
2.5 d) On a cos2(0) = 1 et cos2(x) ∈ [0, 1]. Cela correspond à la courbe 1. C’est aussi la seule courbe qui a une

période égale à π.
.......................................................................................................................................................
2.6 On peut mettre A sin(ωt + φ) sous la forme B cos(ωt) + C sin(ωt) avec B = A sin(φ) et C = A cos(φ).

On a donc ici : {
A sin(φ) = 1
A cos(φ) = 1.

En faisant le rapport des deux équations, on obtient sin(φ)
cos(φ) = tan(φ) = 1, ce qui correspond à φ = π

4 .

On utilise alors la première équation : A sin
(
π

4

)
= A√

2
= 1. Donc, A =

√
2.

Finalement, cos(ωt) + sin(ωt) =
√

2 sin(ωt+ π/4), ce qui correspond à la réponse c .
.......................................................................................................................................................
2.7 b) On lit graphiquement u(0) = 0 = U0 cos(φ). Donc, cos(φ) = 0. Donc, φ = π

2 .
.......................................................................................................................................................

2.7 d) On a mesuré, à la question précédente, T = 2 s. D’où f = 1
T

= 0,5 Hz.
.......................................................................................................................................................
2.7 e) On a déterminé f = 0,5 Hz à la question précédente, d’où ω = 2πf = π rad · s−1.
.......................................................................................................................................................
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2.8 a) Le signal u1(t) atteint son premier maximum avant u2(t). Le signal u2(t) est donc en retard sur u1(t).
.......................................................................................................................................................

2.8 c) On lit graphiquement le retard τ = −1 s de u2(t) sur u1(t). On en déduit φ = ωτ = −2π
3 rad.

.......................................................................................................................................................

2.9 c) Le signal u1(t) a pour période T1 = 300 µs. Le signal u2(t) a pour période T2 = 1
f2

= 125 µs. Enfin, le

signal u3(t) a pour période T3 = 2π
ω3

= 628 µs. On classe donc les trois signaux par ordre croissant de période :
T2 < T1 < T3 puis, par identification : u3(t)←→ Voie A ; u1(t)←→ Voie B ; u2(t)←→ Voie C.
.......................................................................................................................................................

2.10 a) Par définition, on a Umoy = 1
T

ˆ T

0
u(t) dt. On calcule donc :

Umoy = 1
T

ˆ T

0
U0 cos

(2π
T
t
)

dt = U0

T
× T

2π

[
sin
(2π
T
t
)]T

0
= U0

2π (0− 0) = 0.

.......................................................................................................................................................

2.10 b) Par définition, on a Ueff =
√

1
T

ˆ T

0
u(t)2 dt. On calcule donc : Ueff

2 = 1
T

ˆ T

0
U2

0 cos2
(2π
T
t
)

dt.

Pour calculer cette intégrale, il faut linéariser le cosinus au carré. Pour cela, on peut utiliser les formules trigono-
métriques :

cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 donc cos2(x) = 1 + cos(2x)
2 .

D’où :

Ueff
2 = U2

0
T

ˆ T

0

(
1
2 +

cos
(4π
T
t
)

2

)
dt = U2

0
2

(
1
T

ˆ T

0
dt
)

+ U2
0

2T

ˆ T

0
cos
(4π
T
t
)

dt︸ ︷︷ ︸
=0

= U2
0

2 .

Ainsi, Ueff = U0√
2

.
.......................................................................................................................................................
2.11 a) On lit graphiquement que la période est T = 4 s et que, sur une période, le signal prend les valeurs :

u(t) =
∣∣∣∣3 V si 0 s < t ⩽ 1 s
1 V si 1 s < t ⩽ 4 s.

On calcule donc :
Umoy = 1

4

( ˆ 1

0
3 dt+

ˆ 4

1
1 dt
)

= 1
4(3 + 3) = 6

4 = 1,5 V.

.......................................................................................................................................................
2.11 b) On a toujours T = 4 s et :

u(t) =
∣∣∣∣3 V si 0 s < t ⩽ 1 s
1 V si 1 s < t ⩽ 4 s.

On calcule donc :

Ueff
2 = 1

4

( ˆ 1

0
9 dt+

ˆ 4

1
1 dt
)

= 1
4(9 + 3) = 12

4 = 3 V2.

Donc, Ueff =
√

3 V.
.......................................................................................................................................................
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2.12 a) On calcule :

Umoy = 1
T

(ˆ T/2

0
U0 dt+

ˆ T

T/2
0 dt
)

= U0

2 .

.......................................................................................................................................................
2.12 b) On calcule :

Ueff
2 = 1

T

(ˆ T/2

0
U2

0 dt+
ˆ T

T/2
0 dt
)

= U0
2

2 .

Ainsi, Ueff = U0√
2

.
.......................................................................................................................................................
2.13 a) Le délai entre l’éclair et le tonnerre est dû à la durée nécessaire pour que le son se propage entre l’endroit

où l’onde sonore a été émise et l’endroit où se tient l’observateur. On a donc :

d = cs ×∆t = 1,7 km.

On garde uniquement deux chiffres significatifs car ∆t est donné avec deux chiffres significatifs.
.......................................................................................................................................................

2.13 b) On a τ = d

c
= 5,7 µs.

.......................................................................................................................................................
2.13 c) La durée τ est très inférieure à la précision de la mesure de 0,5 s, on peut donc considérer que la

propagation de la lumière est instantanée.
.......................................................................................................................................................
2.14 On lit graphiquement que la vague a avancé de 300 m en 1 minute, donc sa célérité est :

c = 300
60 = 5 m · s−1 = 18 km/h.

.......................................................................................................................................................

2.15 a) Le sinus étant 2π périodique, la période est T = 2π
3,9 = 1,6 s.

.......................................................................................................................................................
2.15 b) On a λ = cT = 48 cm.
.......................................................................................................................................................
2.15 c) Compte tenu de la vitesse de propagation, on trouve :

s(x, t) = s
(

0, t− x

c

)
= 2 sin

(
3, 9
(
t− x

0, 30

)
+ 0, 3π

)
= 2 sin(3,9t− 13x+ 0,3π).

.......................................................................................................................................................
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Fiche no 3. Étude des circuits électriques I

Réponses

3.1 . . . . . . . . . . . . . . . . . . . . . . b

3.2 . . . . . . . . . . . . . . . . 2,5 · 1017

3.3 a) . . . . . . . . . . . . . . . . . . . . . 2i

3.3 b) . . . . . . . . . . . . . . . . . . . . . . i

3.3 c) . . . . . . . . . . . . . . . . . . . . . . 0

3.4 a) . . . . . . . . . . . . . . . . . 80 mA

3.4 b) . . . . . . . . . . . . . . . . . 30 mA

3.4 c) . . . . . . . . . . . . . . −350 mA

3.5 a) . . . . . . . . . . . . . . . . E − U1

3.5 b) . . . . . . . . . . . . . . . . U1 − E

3.5 c) . . . . . . . . . . . . . . . . E − U1

3.6 a) . . . . . . . . . . . . . . . . . . . . 1 V

3.6 b) . . . . . . . . . . . . . . . . . . −6 V

3.6 c) . . . . . . . . . . . . . . . . . . . . 7 V

3.7 a) . . . . . . . . . . . . . . . . . −u/R

3.7 b) . . . . . . . . . . . . . . . . . . u/2R

3.7 c) . . . . . . . . . . . . . . . . . . u/3R

3.8 a) . . . . . . . . . . . . . . . . . . . . 5
6R

3.8 b) . . . . . . . . . . . . . . . . . . . . . R

5

3.8 c). . . . . . . . . . . . . . . . . . . . . R

N

3.8 d) . . . . . . . . . . . R

(
1 − a2

3 − a2

)
3.9 a) . . . . . . . . . . . . . . . . . . . 1 kΩ

3.9 b). . . . . . . . . . . . . . . . . . . 1 kΩ

3.9 c) . . . . . . . . . . . . . . . . . . . 1 kΩ

3.10 . . . . . . . . . . . . 4R(R+R′)
2R+R′

3.11 a) . . . . . . . . . . . . . . . . . . . 2R

3.11 b) . . . . . . . . . . . . . . . . . . . . R

3.11 c) . . . . . . . . . . . . . . . . . . . . . 0

3.12 a) . . . . . . . . . . . . . . . . . . . I0
3

3.12 b) . . . . . . . . . . . R2
R1 +R2

I0

3.13 a) . . . . . . . . . . . 1
4Ri+Ri1

3.13 b) . . . . . . . . . 13
4 Ri− 3Ri1

3.14 a) . . . . . . . . . . . . . . . . . . . E

R

3.14 b) . . . . . . . . . . . . . . . . . . 3E
4R

3.15 a) . . ER1
R1 +R2 +R3 +R4

3.15 b) . . E(R2 +R3)
R1 +R2 +R3 +R4

3.15 c) . . −ER4
R1 +R2 +R3 +R4

3.16 a) . . . . . . . . . . . . . . . . . . . . . 2

3.16 b). . . . . . . . . . . . . . . . . . . . . 3

3.17 a) . . . . . . . . . . . . . . . . . . 3
4R

3.17 b) . . . . . . . . . . . . . . . . . . 3
4E

3.17 c) . . . . . . . . . . . . . . . . . . −E

4

3.18 a) . . . . . . . . . . . . . . . . . . 3E
8R

3.18 b) . . . . . . . . . . . . . . . . . . E

4R

3.18 c) . . . . . . . . . . . . . . . . . − E

8R

Corrigés

3.1 Calculons le nombre d’électrons transférés pendant une seconde :
• 5 000 électrons durant 1 ms correspond à 5 · 106 s−1 ;
• 0,2 mol d’électrons durant 1 an correspond à

0,2 mol× 6,0 · 1023 mol−1/
(
365 jour · an−1 × 24 h · jour−1 × 3 600 s · h−1) = 3,8 · 1015 s−1 ;

• 20 milliards d’électrons durant 1 min correspond à 20× 109 min−1

60 min/h−1 = 3,3 · 108 s−1.

Par conséquent, c’est le courant b qui donne la plus grande intensité.
.......................................................................................................................................................
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3.2 La quantité de charge transférée vaut q = I×∆t = 4× 10−3 A×10 s = 40 mC. Cette quantité de charge
correspond à un nombre d’électrons N = q/e = 40× 10−3 C/1,6× 10−19 C = 2,5 · 1017 électrons.
.......................................................................................................................................................
3.5 a) La loi des mailles donne la relation : U + U1 − E = 0, soit U = E − U1.
.......................................................................................................................................................
3.5 b) Les points A et C sont au même potentiel, ainsi que les points B et D. Par conséquent, la tension
UAB = UCD = −UDC = −U . Donc, UAB = U1 − E.
.......................................................................................................................................................
3.5 c) D est au même potentiel que B de sorte que UDA = UBA = −UAB. On trouve donc UDA = E − U1.
.......................................................................................................................................................
3.6 a) Dans la maille triangulaire, on a 6 = U1 + 5, soit U1 = 1 V.
.......................................................................................................................................................
3.6 b) Dans la grande maille rectangulaire, la loi des mailles donne 12 + U2 − 6 = 0, soit U2 = −6 V.
.......................................................................................................................................................
3.6 c)

12 V 6 V

U1
U2

U3
5 V

Dans la maille surlignée et parcourue dans le sens indiqué, on trouve la relation 12 − U3 − 5 = 0, ce qui donne
U3 = 7 V.
.......................................................................................................................................................
3.7 a) La loi d’Ohm s’écrit u = Ri en convention récepteur et u = −Ri en convention générateur. Ici la

résistance est fléchée en convention générateur. Ainsi, on trouve i = −u/R.
.......................................................................................................................................................
3.7 b) La loi d’Ohm donne u = 2Ri, soit i = u

2R .
.......................................................................................................................................................
3.7 c) La résistance est fléchée en convention générateur : on a u = −(3R)× (−i), d’où i = u

3R .
.......................................................................................................................................................

3.8 a) Req = R

2 + R

3 = 5
6R.

.......................................................................................................................................................

3.8 b) 1
Req

= 2
R

+ 3
R

= 5
R

, soit Req = R

5 .
.......................................................................................................................................................

3.8 c) 1
Req

= 1
R

+ . . .+ 1
R︸ ︷︷ ︸

N fois

= N

R
, d’où Req = R

N
.

.......................................................................................................................................................
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3.8 d) La résistance équivalente Req est telle que :

1
Req

= 1
R

+ 1
R(1 + a) + 1

R(1− a) = 1
R

(
1 + 1

1 + a
+ 1

1− a

)
= 1
R

(
1 + 2

1− a2

)
= 1
R

(
3− a2

1− a2

)
.

On en déduit Req = R

(
1− a2

3− a2

)
.

.......................................................................................................................................................
3.9 a) En associant les deux résistances en série, on se ramène à deux résistances de 2 kΩ en parallèle, ce qui

est équivalent à une résistance de 1 kΩ.
.......................................................................................................................................................
3.9 b) En répétant la méthode précédente plusieurs fois, on arrive au même résultat.
.......................................................................................................................................................

3.10 La résistance équivalente du dipôle AB vaut Req = 2R+ 2RR′

2R+R′ , soit Req = 4R(R+R′)
2R+R′ .

.......................................................................................................................................................
3.11 a) On doit résoudre :

4R(R+R′)
2R+R′ = 3R soit 4R2 + 4RR′ = 6R2 + 3RR′ d’où RR′ = 2R2.

Comme R ̸= 0, on obtient R′ = 2R.
.......................................................................................................................................................
3.11 b) On doit résoudre :

4R(R+R′)
2R+R′ = 8

3R soit 12R2 + 12RR′ = 16R2 + 8RR′ d’où 4RR′ = 4R2.

Comme R ̸= 0, on obtient R′ = R.
.......................................................................................................................................................
3.11 c) Résolvons l’équation :

4R(R+R′)
2R+R′ = 2R soit 4R2 + 4RR′ = 4R2 + 2RR′ d’où 2RR′ = 0.

Comme R ̸= 0, il faut nécessairement R′ = 0.
.......................................................................................................................................................
3.12 b) Isolons I :

R1I +R2(I0 + I) = 2R2I0
(R1 +R2)I +R2I0 = 2R2I0

(R1 +R2)I = R2I0

I = R2

R1 +R2
I0.

.......................................................................................................................................................
3.13 a) Appliquons la loi des mailles en parcourant la maille dans le sens ABCF :

E − 1
4Ri−Ri1 = 0 soit E = 1

4Ri+Ri1.

.......................................................................................................................................................
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3.13 b) Appliquons la loi des mailles en parcourant la maille dans le sens ABDE :

E − 1
4Ri− 3R(i− i1) = 0 d’où E = 13

4 Ri− 3Ri1.

.......................................................................................................................................................
3.14 a) Additionnons les deux relations après avoir multiplié par 3 la première :{

3Ri+ 12Ri1 = 12E
13Ri− 12Ri1 = 4E

donnent ainsi 16Ri = 16E d’où i = E

R
.

.......................................................................................................................................................
3.14 b) Dans la première relation, remplaçons i par E/R :

R×
(
E

R

)
+ 4Ri1 = 4E donc 4Ri1 = 3E d’où i1 = 3E

4R.

.......................................................................................................................................................
3.15 a) Rappelons la règle du diviseur de tension :

Dans un circuit où N conducteurs de résistances R1, . . . , RN sont placés en série, la tension Uk qui règne aux bornes
de la résistance Rk est donnée par la formule :

Uk = Rk

R1 +R2 + · · ·+RN
U avec U =

N∑
i=1

Ui.

Ici, cela donne U1 = E × R1

R1 +R2 +R3 +R4
.

.......................................................................................................................................................
3.15 b) Ici, on cherche la tension aux bornes de l’ensemble des résistances {R2, R3} placées en série et donc

équivalent à R2 +R3. La règle du diviseur donne alors U2 = E × R2 +R3

R1 +R2 +R3 +R4
.

.......................................................................................................................................................

3.15 c) Attention, ici il y a un piège. La loi du diviseur de tension donne U3 = U
R4

R1 +R2 +R3 +R4
où U est

la somme algébrique des tensions orientées dans le même sens que la tension que l’on cherche. Aussi a-t-on U = −E
de sorte que U3 = −E × R4

R1 +R2 +R3 +R4
.

.......................................................................................................................................................

3.16 a) La formule du diviseur de courant donne i1
i

= 1/(αR)
1/(αR) + 1/R .

Par conséquent, α doit vérifier l’équation :

1
1 + α

= 1
3 c’est-à-dire α = 2.

.......................................................................................................................................................
3.16 b) On peut utiliser les formules du diviseur de courant :

i1 = i× 1/(αR)
1/(αR) + 1/R et i2 = i× 1/R

1/(αR) + 1/R ,

ce qui permet de déduire i2/i1 = α. La solution est donc α = 3.
On peut aussi tout simplement écrire la loi des mailles : αRi1 = Ri2 pour aboutir plus immédiatement au résultat.
.......................................................................................................................................................

3.17 a) L’association (R ∥ 3R) est équivalente à un conducteur de résistance Req = R× 3R
R+ 3R = 3

4R.
.......................................................................................................................................................
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3.17 b) Simplifions le montage en remplaçant l’association (R ∥ 3R) par un conducteur de résistance Req = 3
4R.

+E
3
4

R

R/4

U1

U2

On reconnaît un diviseur de tension. La formule du diviseur donne U1 = E ×
3
4R

1
4R+ 3

4R
= 3

4E.
.......................................................................................................................................................
3.17 c) Là encore, on peut utiliser la formule du diviseur de tension en faisant attention à l’orientation :

−U2 = E ×
1
4R

1
4R+ 3

4R
soit U2 = −E4 .

Remarque : on peut aussi obtenir U2 à l’aide de la loi des mailles : E + U2 − U1 = 0 avec U1 = 3
4E.

.......................................................................................................................................................

3.18 a) Remplaçons l’association (2R ∥ R) par un conducteur de résistance Req = 2R×R
2R+R

= 2
3R. On obtient

le circuit à une maille suivant :

2
3

R

R

R

E

i
i

La loi des mailles donne alors E −Ri− 2
3Ri−Ri = 0, d’où i = 3

8
E

R
.

.......................................................................................................................................................
3.18 b) La formule du diviseur donne :

i1 = 1/R
1/R+ 1/(2R) × i = 2

3 i = E

4R.

.......................................................................................................................................................

3.18 c) Le plus simple consiste à utiliser la loi des nœuds : i+ i2 = i1, ce qui donne i2 = i1 − i = − E

8R .

On peut aussi utiliser la formule du diviseur de courant en faisant attention à l’orientation des courants :

−i2 = 1/(2R)
1/R+ 1/(2R) × i = 1

3 i = E

8R.

.......................................................................................................................................................
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Fiche no 4. Étude des circuits électriques II

Réponses

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . u = L
di
dt + L′ di

dt

4.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L+ L′

4.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . di
dt = u

L
+ u

L′

4.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LL′

L+ L′

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

4.4 a) . . . . . . . . . . . . . . . . . . . . . . . du
dt =

(
1
C

+ 1
C ′

)
i

4.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC ′

C + C ′

4.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . i = (C + C ′)du
dt

4.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C + C ′

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

2

4.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c et d

4.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

4.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

4.9 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . a , b et c

4.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

4.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

R

4.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

4.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

R

4.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2E
3R

4.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3E

4.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

R

4.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RC

2

4.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . di
dt + R

L
i = E

L

4.13 b) . . . . . . . . . . . . . . . . . duC

dt + 1
RC

uC = 1
RC

E

4.13 c). . . . . . . . . . . . . . . . . . . . . di(t)
dt + 1

RC
i(t) = 0

4.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . i = u

R
+ C

du
dt

4.13 e) . . . . . . . . . . . . . . . . . . . . . . du
dt + 2

RC
u = E

RC

4.14 a) . . . . . . . . . . . . . . . . . . uC(t) = E
(

1 − e−t/τ
)

4.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . i(t) = E

R
e−t/τ

4.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . uC(t) = 1
2E

4.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b
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4.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.15 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V

4.15 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V

4.15 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3 kΩ

4.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ω0] = T−1

4.16 b) . . . . . . . . . . . . . . . . . . . Q est sans dimension

4.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1√
LC

4.16 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R

√
C

L

4.17 a) . . . . . . . . . . . . . d2u

dt2 + R

L

du
dt + 1

LC
u = E

LC

4.17 b) . . . . . . . . . . . . . d2u

dt2 + 1
RC

du
dt + 1

LC
u = 0

4.18 a) . . . . . . . . . . . . . . . . . . . . . . E × (1 − cos(ω0t))

4.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . E

Lω0
sin(ω0t)

4.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.19 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.19 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.19 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.19 e). . . . . . . . . . . . . . . . . . . . . . . 1,2 × 103 rad · s−1

Corrigés

4.1 L’intensité est une succession de droites. Sa dérivée est donc constante par morceaux (et non définie
au niveau de la discontinuité). Si le dipôle se comportait comme une bobine, la tension devrait être constante par
morceaux, ce qui n’est pas ce que l’on observe. Il ne s’agit donc pas d’une bobine.
.......................................................................................................................................................

4.2 a) En vertu de la loi d’additivité des tensions, on a u = L
di
dt + L′ di

dt .
.......................................................................................................................................................

4.2 b) On peut donc écrire u = Leq
di
dt à condition de poser Leq = L+ L′.

.......................................................................................................................................................

4.2 c) En vertu de la loi des nœuds, on a i = iL + iL′ . Après dérivation, ceci donne di
dt = u

L
+ u

L′ .
.......................................................................................................................................................

4.2 d) On peut écrire u = Leq
di
dt à condition de poser :

1
Leq

= 1
L

+ 1
L′ soit Leq = LL′

L+ L′ .

.......................................................................................................................................................

4.3 On commence par regrouper les deux bobines en parallèle. On obtient alors L1 = L× L
L+ L

= L

2 . Cette

bobine se retrouve alors en série avec la première, d’où Leq = L

2 + L

2 = L.
.......................................................................................................................................................
4.4 a) En vertu de la loi d’additivité des tensions, on a u = uC + uC′ . Après dérivation par rapport au temps,

on obtient du
dt =

( 1
C

+ 1
C′

)
i.

.......................................................................................................................................................
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4.4 b) On peut donc écrire i = Ceq
du
dt à condition de poser :

1
Ceq

= 1
C

+ 1
C′ soit Ceq = CC′

C + C′ .

.......................................................................................................................................................

4.4 c) En vertu de la loi des nœuds, on a i = iC + iC′ = (C + C′)du
dt .

.......................................................................................................................................................

4.4 d) On peut écrire i = Ceq
du
dt à condition de poser Ceq = C + C′.

.......................................................................................................................................................
4.5 Si le dipôle est un condensateur alors l’intensité est proportionnelle à la dérivé de la tension. La tension

est constituée d’une droite croissante, puis d’une droite décroissante de pente opposée et enfin d’une parabole de
type at2 + bt + c avec a > 0. Si l’on dérive la tension, on obtient alors une constante positive, puis une constante
opposée et enfin une droite croissante (at+ b). C’est bien ce que l’on observe.
Notez que la tension est continue, ce qui est le propre d’un condensateur.
.......................................................................................................................................................
4.6 On commence par regrouper les deux condensateurs en parallèle. On obtient alors C1 = C/2+C/2 = C.

Ce condensateur se retrouve alors en série avec le premier, d’où Ceq = C × C
C + C

= C/2.
.......................................................................................................................................................

4.7 a) En régime stationnaire, on a duC

dt = 0, d’où i = 0. Cela correspond à la relation constitutive de
l’interrupteur ouvert, qui ne laisse pas passer le courant.
.......................................................................................................................................................

4.7 b) En régime stationnaire, on a di
dt = 0, d’où uL = 0, ce qui correspond à la relation constitutive de

l’interrupteur fermé.
.......................................................................................................................................................
4.8 En régime permanent, la bobine se comporte comme un fil et le condensateur comme un interrupteur

ouvert. L’ampoule A1 est court-circuitée et ne brille pas. Le courant dans la branche du condensateur est nul :
l’ampoule A3 est éteinte. Reste l’ampoule A2 dont la tension à ses bornes est E : elle brille donc.
.......................................................................................................................................................
4.9 a) La tension aux bornes du condensateur est toujours continue ; de plus, la tension d’un interrupteur fermé

est nulle, donc toujours continue.
Pour affirmer que la tension aux bornes d’un condensateur est continue, il faut se placer dans un cas où il n’existe
pas de courants infinis pendant une durée infiniment brève.
.......................................................................................................................................................
4.9 b) Du fait de la présence de la bobine, l’intensité i du courant électrique est une grandeur continue. Vu que
uR = Ri, c’est aussi le cas de la grandeur uR.
.......................................................................................................................................................
4.9 c) Du fait de la présence du condensateur, la tension uC est une grandeur continue. En revanche, i est

discontinue : sa valeur passe de i(0−) = 0 à i(0+) = E/R. Par conséquent, uR = Ri est également discontinue.
.......................................................................................................................................................
4.9 d) Le courant i circulant à travers une bobine est continu. On en déduit que uR = Ri est aussi continu. De

plus, la tension uC aux bornes du condensateur est aussi continue. Seule la tension aux bornes de la bobine peut
présenter une discontinuité.
.......................................................................................................................................................

Réponses et corrigés 215



4.9 e) Les courants i et i2 sont continus car ces courants traversent une bobine. Ainsi, d’après la loi des nœuds,
le courant i1 l’est également.
La tension u est celle aux bornes du condensateur donc continue (la présence de la bobine en parallèle n’y change
rien). Finalement, la tension uL ne l’est pas car uL(0−) = 0 (régime stationnaire) et uL(0+) = E (loi des mailles).
.......................................................................................................................................................
4.10 a) À t = 0−, l’interrupteur K est ouvert donc i(0−) = 0. De plus, ce courant circulant dans une bobine, il

est continu, d’où finalement i(0+) = i(0−) = 0.
.......................................................................................................................................................
4.10 b) La tension uL n’est pas nécessairement une grandeur continue, il convient alors d’appliquer la loi des

mailles à l’instant t = 0+, d’où E = Ri(0+) + uL(0+).
De plus, on a par continuité du courant (bobine dans la branche) i(0−) = i(0+) = 0 car K est initialement ouvert.
On en déduit finalement que uL(0+) = E −R× 0 = E.
.......................................................................................................................................................
4.10 c) Le courant i n’est pas nécessairement une grandeur continue car il n’y a pas de bobine dans la branche.

On applique alors la loi des mailles à l’instant t = 0+, d’où E = Ri(0+) + uC(0+).
Or, on a uC(0+) = uC(0−) (continuité de la tension aux bornes du condensateur) puis uC(0+) = 0 car ce dernier
est initialement déchargé. On en déduit finalement que i(0+) = E/R.
.......................................................................................................................................................
4.10 d) La tension uR n’est pas nécessairement continue. On applique alors la loi des mailles (maille de gauche)

à l’instant t = 0+, d’où E = uR(0+) + u(0+).
Or, la tension u est à la fois celle du résistor mais aussi celle du condensateur car ces dipôles sont placés en parallèle.
On en déduit que u(0+) = u(0−) (continuité de la tension aux bornes du condensateur) puis u(0+) = 0 car ce dernier
est initialement déchargé, d’où finalement uR(0+) = E.
.......................................................................................................................................................
4.10 e) On applique la loi des nœuds à l’instant t = 0+, d’où i(0+) = i1(0+) + i2(0+).

De plus, on a i2(0+) = u(0+)/R = 0 et i(0+) = uR(0+)/R = E/R d’après la question précédente. On en déduit
finalement que i1(0+) = E/R.
.......................................................................................................................................................
4.11 a) La tension u aux bornes du condensateur est continue. De plus, on a u(0−) = 0 car le condensateur est

initialement déchargé. On en déduit que u(0+) = 0.
.......................................................................................................................................................

4.11 b) Pour le condensateur, on a, à l’instant t = 0+, i1(0+) = C
du
dt (0+). Il convient alors de trouver l’expression

de ce courant.
La loi des nœuds indique que i(0+) = i1(0+) + i2(0+). Or, on a i(0+) = i(0−) = 0 par continuité du courant
circulant dans la bobine, et du fait de l’ouverture de K pour t < 0. De plus, on a i2(0+) = 2u(0+)/R = 0. On en
déduit que i1(0+) = 0 et donc que du

dt (0+) = 0.
.......................................................................................................................................................
4.11 c) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme

un fil. La loi des mailles indique alors E = Ri(+∞) + R

2 i(+∞), d’où au final i(+∞) = 2E
3R . Ce résultat aurait aussi

pu être obtenu à l’aide d’un schéma équivalent.
.......................................................................................................................................................
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4.11 d) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme
un fil. On observe alors un pont diviseur de tension formé par les deux résistors restants.

On en déduit u(+∞) = R/2
R+R/2E = 1

3E.
.......................................................................................................................................................

4.12 a) On écrit l’équation sous sa forme canonique : di
dt + R

L
i = E

L
. Ainsi, on identifie τ = L/R.

.......................................................................................................................................................

4.12 b) De la même manière, l’équation mise sous forme canonique est duC

dt + 2
RC

i = E

RC
, d’où τ = RC

2 .
.......................................................................................................................................................

4.13 a) Le circuit ne peut être simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri+L
di
dt

puis de mettre cette équation sous la forme canonique di
dt + R

L
i = E

L
.

.......................................................................................................................................................
4.13 b) Le circuit ne peut être simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri+ uC .

L’équation constitutive du condensateur indique i = C
duC

dt , d’où, en combinant avec la loi des mailles :

E = RC
duC

dt + uC .

On en déduit sa forme canonique duC

dt + 1
RC

uC = 1
RC

E.
.......................................................................................................................................................
4.13 c) La loi des mailles indique que E = Ri+ uC . Cette fois-ci, il faut garder i et remplacer uC . Cependant,

la relation constitutive du condensateur fait apparaître la dérivée temporelle de cette tension.

Il convient alors de dériver l’équation obtenue à l’aide de la loi des mailles et d’écrire Rdi
dt + duC

dt = 0. Finalement,

on obtient di
dt + 1

RC
i = 0.

.......................................................................................................................................................
4.13 d) Le circuit comporte deux mailles indépendantes mais ne peut pas être simplifié. Il convient alors de faire

particulièrement attention aux indices et variables utilisées pour les différents courants et tensions.

La loi des nœuds indique que i = i1 + i2 avec i2 = u/R et i1 = C
du
dt . On obtient alors, en combinant ces résultats,

l’équation i = u

R
+ C

du
dt .

.......................................................................................................................................................
4.13 e) La loi des nœuds ayant déjà été appliquée, il convient d’appliquer la loi des mailles pour la petite maille

de gauche ; on en déduit E = Ri+u. On combine alors ce résultat avec celui de la question précédente pour obtenir
que E = u+RC

du
dt + u et au final du

dt + 2
RC

u = E

RC
.

.......................................................................................................................................................
4.14 a) Cherchons une solution particulière constante. On trouve up = E. La solution générale est donc de la

forme Ae−t/τ +E. La condition initiale donne uC(0) = 0 = A+E, soit A = −E. Finalement, uC(t) = E
(
1− e−t/τ

)
.

.......................................................................................................................................................
4.14 b) Ici, l’équation différentielle est homogène (sans second membre). La solution est de la forme Ae−t/τ . La

condition initiale donne i(0) = E/R = A. Finalement, i(t) = E

R
e−t/τ .

.......................................................................................................................................................
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4.14 c) Cherchons une solution particulière constante. On trouve up = 1
2E. La solution générale est donc de la

forme Ae−t/τ + 1
2E. La condition initiale donne u(0) = 1

2E = A+ 1
2E, soit A = 0. Finalement, uC(t) = 1

2E.
.......................................................................................................................................................
4.15 d) La courbe 2, associée à l’expression de u1, possède une asymptote horizontale d’expression u1(+∞) = E1.

On en déduit E1 = 4 V par lecture graphique.
.......................................................................................................................................................

4.15 e) La courbe 3, associée à l’expression de u2, possède une valeur initiale u2(0+) = 1
2E2. On en déduit

E2 = 4 V par lecture graphique. On peut vérifier que l’asymptote donne u2(+∞) = E2 = 4 V.
.......................................................................................................................................................

4.15 f) La courbe 1, associée à l’expression de i(t), a pour ordonnée à l’instant initial i(0+) = 3 mA = E1

R
donc

on a R = E1/i(0+) ≃ 1,3 kΩ.
.......................................................................................................................................................

4.16 a) On a dans le membre de gauche de l’équation d’ordre 2 :
[

d2x

dt2

]
=
[
ω2

0
]
[x] donc [x]T−2 =

[
ω2

0
]
[x].

Finalement, on a [ω0] = T−1.
.......................................................................................................................................................

4.16 b) On a dans le membre de gauche de l’équation d’ordre 2 :
[

d2x

dt2

]
=
[
ω0

Q

][dx
dt

]
donc [x]T−2 = T−1 [x]

[Q]T .

Finalement, on a [Q] = 1 ; donc, Q est sans dimension.
.......................................................................................................................................................

4.17 a) La loi des mailles indique que E = Ri+u+L
di
dt . De plus, la relation constitutive du condensateur donne

que i = C
du
dt . On en déduit que :

E = RC
du
dt + u+ LC

d2u

dt2 soit d2u

dt2 + R

L

du
dt + 1

LC
u = E

LC
.

.......................................................................................................................................................

4.17 b) La loi des nœuds donne i = i1 + i2. Cependant, la relation constitutive de la bobine fait intervenir di2
dt .

On dérive alors la loi des nœuds puis on la combine avec les relations constitutives des deux dipôles de droite pour

obtenir di
dt = C

d2u

dt2 + u

L
.

La loi des mailles (petite maille de gauche) indique ensuite que E = Ri + u. On dérive cette relation pour faire
apparaître la dérivée temporelle du courant puis on combine avec l’expression de cette dernière. D’où :

0 = RC
d2u

dt2 + R

L
u+ du

dt .

On en déduit finalement son expression canonique d2u

dt2 + 1
RC

du
dt + 1

LC
u = 0.

.......................................................................................................................................................
4.18 a) Cherchons une solution particulière constante (comme le second membre). On trouve up = E. La solution

générale est de la forme A cos(ω0t+ φ) + E. Les conditions initiales donnent :{
uC(0) = A cos(φ) + E = 0
duC

dt (0) = −Aω0 sin(φ) = 0
soit

{
φ = 0
A = −E.

On en déduit que uC(t) = E(1− cos(ω0t)).
.......................................................................................................................................................
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4.18 b) La solution est de la forme A cos(ω0t+φ) = a cos(ω0t) + b sin(ω0t). Appliquons les conditions initiales :{
i(0) = a = 0
di
dt (0) = bω0 = E

L

soit

{
a = 0
b = E

Lω0
.

On en déduit que i(t) = E

Lω0
sin(ω0t).

.......................................................................................................................................................
4.19 a) Le facteur de qualité est inférieur à 1/2 pour la courbe 3. De plus, il est sensiblement égal au nombre

d’oscillations observables dans le cas du régime pseudo-périodique. On observe environ dix oscillations pour la
courbe 2 et six pour la courbe 1. La courbe 2 possède donc le facteur de qualité le plus grand.
.......................................................................................................................................................
4.19 b) La fonction u1(t) ne contient pas de grandeurs circulaires (cos(ωt) ou sin(ωt)) et évolue de u1(0) = a− b

vers u1(+∞) = 0. Cela correspond à la courbe 3.
.......................................................................................................................................................
4.19 c) La tension u2(t) présente des oscillations amorties et tend vers zéro lorsque t tend vers l’infini. Seule la

courbe 2 vérifie ces propriétés.
.......................................................................................................................................................
4.19 d) On a lim

t→+∞
u3(t) = E. Seule la courbe 1 présente une asymptote horizontale d’ordonnée non nulle.

.......................................................................................................................................................
4.19 e) On détermine la pseudo-période T en mesurant la durée correspondant à 10 oscillations : 10T ≃ 52 ms

d’où T ≃ 5,2 ms. On en déduit Ω = 2π/T ≃ 1,2× 103 rad · s−1.
.......................................................................................................................................................
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Fiche no 5. Étude des filtres

Réponses

5.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
a2 + b2

5.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b/a

5.1 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

5.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f

5.2 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R

5.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lω

5.2 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/2

5.2 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cω

5.2 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −π/2

5.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R+ 1
jCω

5.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RjLω
R+ jLω

5.3 c) . . . . . . . . . . . . . . . . . . . . . . RjLω
R+ jLω −RLCω2

5.3 d) . . . . . . . . . . . . . . . . . . . . . .
R
(
1 − LCω2)

1 − LCω2 + jRCω

5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 kHz

5.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,5 V

5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

5.7 a) . . . . . . . . . . . . . . . 1
2 cos(a+ b) + 1

2 cos(a− b)

5.7 b) . . . . . . .

S0 cos(2πfpt)

+mS0
2

(
cos(2π(fp + f0)t)

+ cos(2π(fp − f0)t)
)

5.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S0

5.7 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mS0/2

5.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mS0/2

5.7 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

5.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.8 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

5.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

5.9 a) . . . . . . . . . . . . . . . . . . . . . . .
1
3

1 + 1
3jRCω + jRCω

3

5.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . 2,1 × 104 rad/s

5.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i1 + i2

5.10 b) . . . . . . . . . . . . . . . . . . . . . . u(2 + jRCω) − us

5.10 c) . . . . . . . . . . . . . . . . . . 1
1 + 3jRCω − (RCω)2

5.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
RC

5.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9,5 dB

5.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 log
(
ω

ω0

)

5.11 c) . . . . . . . . . . . . . . . . . . . 10 log
(

1 +
(
ω

ω1

)2
)
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5.11 d) . . . . . . . . . . . . . . . . . . . 10 log
(

9 +
(
ω

ω0

)2
)

5.11 e) . . . . 20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)

5.11 f) . . . . . 20 log
(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)

5.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/2

5.12 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . arctan
(
ω

ω1

)

5.12 d) . . . . . . . . . . . . . . . . . . . . . . . . − arctan
(

ω

3ω0

)

5.12 e) . . . . . . . . . . . . . . . . . . . . . . . π

2 − arctan
(
ω

ω1

)

5.12 f) . . . . . . . . . . . . . . . . . . . . . . . π

2 + arctan
(
ω

ω1

)

5.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/4

5.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2

5.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/
√

2

5.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/4

5.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −28,0 dB

5.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −17,1 dB

5.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8,0 dB

5.15 d) . . . . . . . . . . . . . . . . . . . . . . . . . +20 dB/décade

5.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,0 kHz

5.16 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11,7 kHz

5.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19,2 kHz
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Corrigés

5.1 a) En multipliant les deux expressions de Z par leur conjugué complexe, on obtient :

Z × Z∗ = (a+ jb)(a− jb) = Z2
0 (cos(φ) + j sin(φ))(cos(φ)− j sin(φ)).

Après calcul, cette relation se réduit à a2 + b2 = Z2
0
(
cos2 φ+ sin2 φ

)
. Ainsi, on a Z0 =

√
a2 + b2.

.......................................................................................................................................................
5.1 b) En égalant les parties réelles et imaginaires des deux expressions de Z, on obtient :

a = Z0 cos(φ) et b = Z0 sin(φ).

Ainsi, on a cos(φ) = a

Z0
et sin(φ) = b

Z0
. Puis, tan(φ) = sin(φ)

cos(φ) = b

Z0

Z0

a
. Donc, on a tan(φ) = b

a
.

.......................................................................................................................................................
5.1 c) On utilise une représentation géométrique du nombre complexe Z. Les axes des abscisses et des ordonnées

du plan complexe correspondent respectivement à la partie réelle et à la partie imaginaire de Z. L’argument φ est
l’angle entre l’axe des abscisses et la droite passant par le centre du cercle et Z.

Re(Z)

Im(Z)
Z
•

a

b

φ Re(Z)

Im(Z)

Z
•

a

b

φ

On constate que si a ⩾ 0 alors φ est compris entre −π/2 et π/2.
De la même manière, on constate que si a > 0 et b ⩽ 0 alors φ est compris entre −π/2 exclu (a > 0) et 0 inclus.
.......................................................................................................................................................
5.2 a) On a Z0 =

√
R2 + 0 = R.

.......................................................................................................................................................

5.2 b) On a tan(φ) = 0
R

= 0. Donc, φ = arctan
( 0
R

)
= 0.

.......................................................................................................................................................

5.2 c) On a Z0 =
√

0 + (Lω)2 = Lω.
.......................................................................................................................................................

5.2 d) On a tan(φ) = Lω

0 → +∞. Donc, φ = arctan
(
Lω

0

)
= π

2 .
.......................................................................................................................................................

5.2 e) On a ZC = 1
jCω = −j 1

Cω
. Donc, Z0 =

√
0 +

(
− 1
Cω

)2
= 1
Cω

.
.......................................................................................................................................................

5.2 f) On a tan(φ) = − 1
Cω

1
0 → −∞. Donc, φ = arctan

(
− 1
Cω

1
0

)
= −π2 .

.......................................................................................................................................................

5.3 a) On a ZAB = R+ 1
jCω .

.......................................................................................................................................................
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5.3 b) Les deux dipôles sont associés en parallèle, nous devons sommer les admittances :

Y AB = Y R + Y L = 1
R

+ 1
jLω = R+ jLω

RjLω .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = RjLω
R+ jLω .

.......................................................................................................................................................
5.3 c) Les trois dipôles sont associés en parallèle, nous devons sommer leurs admittances :

Y AB = Y R + Y L + Y C = 1
R

+ 1
jLω + jCω = R+ jLω −RLCω2

RjLω .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = RjLω
R+ jLω −RLCω2 .

.......................................................................................................................................................
5.3 d) On commence par considérer un circuit équivalent au circuit donné.

Le circuit donné est équivalent au schéma ci-contre, où on a :

Z1 = jLω + 1
jCω = 1− LCω2

jCω .
•A

Z1

R

•B

L’admittance du dipôle est donc :

Y AB = 1
R

+ 1
Z1

= R+ Z1
R× Z1

=
(
R+ 1− LCω2

jCω

)
1

R 1−LCω2
jCω

= 1− LCω2 + jRCω
R(1− LCω2) .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB =
R
(
1− LCω2)

1− LCω2 + jRCω .
.......................................................................................................................................................
5.4 On commence par considérer un circuit équivalent au circuit donné.

C’est le circuit ci-contre, avec Z1 = R+jLω. Ainsi, l’admittance équivalente est :

Y AB = jCω + 1
Z1

= jCω × Z1 + 1
Z1

= 1− LCω2 + jRCω
R+ jLω .

•A

Z1

C

•B

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = R+ jLω
1− LCω2 + jRCω .

.......................................................................................................................................................
5.5 a)

La période du signal est sur 5 carreaux. La base de temps indique 20 µs/division.

T = 5× 20× 10−6 s soit T = 1× 10−4 µs.

La fréquence du signal observé est donc f0 = 1
T

= 10 kHz.

base de temps : 20 µs/division
calibre vertical : 1 V/division

0 V

T

5 carreaux

2A05 carreaux

.......................................................................................................................................................
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5.5 b) Nous avons 5 carreaux pour la double amplitude, soit 2U0 = 5× 1 = 5 V. Donc, on a U0 = 2,5 V.
.......................................................................................................................................................
5.7 a) On calcule cos(a+ b) + cos(a− b) = 2 cos(a) cos(b) et on en déduit la formule :

cos(a) cos(b) = 1
2 cos(a+ b) + 1

2 cos(a− b).

.......................................................................................................................................................
5.7 b) On calcule :

s(t) = S0 cos(2πfpt)(1 +m cos(2πf0t)) = S0 cos(2πfpt) +mS0 cos(2πfpt) cos(2πf0t)

= S0 cos(2πfpt) + mS0

2

(
cos
(
2π(fp + f0)t

)
+ cos

(
2π(fp − f0)t

))
.

.......................................................................................................................................................
5.7 c) La composante de fréquence fp de s(t) est S0 cos(2πfpt), son amplitude est donc de S0.
.......................................................................................................................................................

5.7 d) La composante de fréquence fp + f0 de s(t) est mS0

2 cos(2π(fp + f0)t), son amplitude est donc de mS0

2 .
.......................................................................................................................................................

5.7 e) La composante de fréquence fp− f0 de s(t) est mS0

2 cos(2π(fp − f0)t), son amplitude est donc de mS0

2 .
.......................................................................................................................................................
5.8 a) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 1 kHz, 3 kHz et 5 kHz. Les

spectres a et d ne peuvent pas convenir.

De plus, la valeur moyenne de s1(t) est nulle. Le spectre c est donc à associer à s1(t).
.......................................................................................................................................................
5.8 b) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 2 kHz, 4 kHz et 6 kHz. Les

spectres b et c ne peuvent pas convenir.

De plus, la valeur moyenne de s2(t) est égale à 1 V. Le spectre a est donc à associer à s2(t).
.......................................................................................................................................................
5.8 c) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 2 kHz, 4 kHz et 6 kHz. Les

spectres b et c ne peuvent pas convenir.

De plus, la valeur moyenne de s3(t) est nulle. Le spectre d est donc à associer à s3(t).
.......................................................................................................................................................
5.8 d) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 1 kHz, 3 kHz et 5 kHz. Les

spectres a et d ne peuvent pas convenir.

De plus, la valeur moyenne de s4(t) est égale à 1 V. Le spectre b est donc à associer à s4(t).
.......................................................................................................................................................

5.9 a) À l’aide d’un pont diviseur de tension, on constate que us = ue

Z2
Z1 + Z2

. Ainsi, on a :

H(jω) = us

ue

= Z2
Z1 + Z2

= R

1 + jRCω
1

R+ 1
jCω

+ R
1+jRCω

= R

1 + jRCω
1 + jRCω

3R+ jR2Cω + 1
jCω

= R

3R+ j
(
R2Cω − 1

Cω

) =
1
3

1 + j 1
3

(
RCω − 1

RCω

) .
.......................................................................................................................................................

224 Réponses et corrigés



5.9 b) Par identification dans l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que H0 = 1
3 .

.......................................................................................................................................................
5.9 c) Par identification dans l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que Q = 1
3 .

.......................................................................................................................................................
5.9 d) Par identification de l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que x = RCω donc que ω0 = 1
RC

. L’application numérique donne :

ω0 = 1
RC

= 1
1× 103 Ω× 47× 10−9 F

= 2,1× 104 rad/s.

.......................................................................................................................................................
5.10 a) D’après la loi des nœuds, on a i = i1 + i2.
.......................................................................................................................................................
5.10 b) En multipliant la réponse précédente par la résistance R, on obtient Ri = Ri1 +Ri2.

Ainsi, d’après les trois égalités, on a :

ue − u = u− us + jRCωu donc ue = u(2 + jRCω)− us.

.......................................................................................................................................................
5.10 c) En utilisant la réponse précédente et en exprimant u à partir de la relation donnée, il vient que :

ue = us(1 + jRCω)(2 + jRCω)− us = us

(
1 + 3jRCω − (RCω)2).

Ainsi, on a H(jω) = us

ue

= 1
1 + 3jRCω − (RCω)2 .

.......................................................................................................................................................
5.10 d) En comparant les deux égalités suivantes :

H(jω) = H0

1 + jx
Q
− x2

et H(jω) = 1
1 + 3jRCω − (RCω)2 ,

on trouve H0 = 1 et x = ω

ω0
= RCω donc ω0 = 1

RC
et Q = 1

3 .
.......................................................................................................................................................
5.11 a) On a GdB1 = 20 log(∥3∥) = 20 log(3) = 9,5 dB.
.......................................................................................................................................................

5.11 b) On a GdB2 = 20 log
(∣∣∣j ω

ω0

∣∣∣) = 20 log
(
ω

ω0

)
.

.......................................................................................................................................................
5.11 c) On calcule :

GdB3 = 20 log
(∣∣∣1 + j ω

ω1

∣∣∣) = 20 log

(√
1 +

(
ω

ω1

)2
)

= 20 log

((
1 +

(
ω

ω1

)2
) 1

2
)

= 20× 1
2 log

(
1 +

(
ω

ω1

)2
)

= 10 log
(

1 +
(
ω

ω1

)2
)
.

.......................................................................................................................................................
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5.11 d) On a :

GdB4 = 20 log(|H1 −H2|) = 20 log
(∣∣∣3− j ω

ω0

∣∣∣) = 20 log

(√
9 +

(
ω

ω0

)2
)

= 10 log
(

9 +
(
ω

ω0

)2
)
.

.......................................................................................................................................................
5.11 e) On calcule :

GdB5 = 20 log
(∣∣∣∣H2
H3

∣∣∣∣) = 20 log
(
|H2|
|H3|

)
= 20 log(|H2|)− 20 log(|H3|) = GdB2 −GdB3

= 20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)
.

.......................................................................................................................................................
5.11 f) On calcule :

GdB6 = 20 log(|H2 ×H3|) = 20 log(|H2| × |H3|) = 20 log(|H2|) + 20 log(|H3|) = GdB2 +GdB3

= 20 log
(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)
.

.......................................................................................................................................................

5.12 a) On a φ1 = arg(H1) = arctan
(

Im(H1)
Re(H1)

)
= arctan

(0
3

)
= arctan(0) = 0.

.......................................................................................................................................................

5.12 b) On a φ2 = arg(H2) = arctan
(

Im(H2)
Re(H2)

)
= arctan

( ω
ω0

0

)
= lim

x→+∞
arctan(x) = π

2 .
.......................................................................................................................................................

5.12 c) On a φ3 = arg(H3) = arctan
(

Im(H3)
Re(H3)

)
= arctan

( ω
ω1

1

)
= arctan

(
ω

ω1

)
.

.......................................................................................................................................................

5.12 d) On a φ4 = arg(H1 −H2) = arg
(

3− j ω
ω0

)
= arctan

(− ω
ω0

3

)
= arctan

(
− ω

3ω0

)
= − arctan

(
ω

3ω0

)
.

.......................................................................................................................................................

5.12 e) On a φ5 = arg
(
H2
H3

)
= arg(H2)− arg(H3) = π

2 − arctan
(
ω

ω1

)
.

.......................................................................................................................................................

5.12 f) On a φ6 = arg(H2 ×H3) = arg(H2) + arg(H3) = π

2 + arctan
(
ω

ω1

)
.

.......................................................................................................................................................
5.13 a) Notons que x = ω

ω0
> 0. Ainsi, on a :

φ = arg(H(jω)) = arg
(

jx
1 + jx

)
= arg(jx)− arg(1 + jx) = arctan

(
x

0

)
− arctan

(
x

1

)
= π

2 − arctan(x).

Pour x = 1, on obtient φ = π

2 − arctan(1) = π

2 −
π

4 = π

4 .
.......................................................................................................................................................
5.13 b) On a vu plus haut que φ = π

2 − arctan(x) ; ainsi, pour ω ≫ ω0, c’est-à-dire pour x→ +∞, il vient que :

φ = lim
x→+∞

π

2 − arctan(x) = π

2 −
π

2 = 0.

.......................................................................................................................................................
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5.13 c) On a vu plus haut que φ = π

2 − arctan(x) ; ainsi, pour ω ≪ ω0, c’est-à-dire pour x→ 0, il vient que :

φ = π

2 − arctan(0) = π

2 .

.......................................................................................................................................................

5.14 a) Pour x = 1, H(jx) = 1− j
1 + j , donc G(x) =

∣∣∣∣1− j
1 + j

∣∣∣∣ = |1− j|
|1 + j| =

√
1 + 1√
1 + 1

= 1.
.......................................................................................................................................................

5.14 b) Pour x = 1, H(jx) = − j
1 + j , donc G(x) =

∣∣∣∣− j
1 + j

∣∣∣∣ = |j|
|1 + j| = 1√

1 + 1
= 1√

2
.

.......................................................................................................................................................

5.14 c) Pour x = 1 et m = 2, H(jx) = 1
1 + 4j + (j)2 = 1

4j , donc G(x) =
∣∣∣∣ 1
4j

∣∣∣∣ = |1|
|4j| = 1

4 .
.......................................................................................................................................................

5.15 a) On a GdB = 20 log
(0,04

1

)
= −28,0 dB.

.......................................................................................................................................................

5.15 b) On a GdB = 20 log
(0,14

1

)
= −17,1 dB.

.......................................................................................................................................................

5.15 c) On a GdB = 20 log
(0,4

1

)
= −8,0 dB.

.......................................................................................................................................................
5.15 d) En faisant l’application numérique, on trouve que la pente a de la droite vaut :

a = GdB(C)−GdB(A)
log(f(C))− log(f(A)) = −8,0 dB + 28,0 dB

log(2000)− log(200) = 20 dB.

Donc, le gain du filtre augmente de 20 dB
lorsque log(f) augmente d’une unité, soit
lorsque la fréquence f est multipliée par 10,
soit lorsque f augmente d’une décade.
La pente de la droite (AC) observée sur le
graphe est bien de +20 dB/décade.

101 102 103
−40

−30

−20

−10

0 f

GdB

1

+A
+B

+C

+20 dB/decade

.......................................................................................................................................................
5.16 a) Nous observons un maximum pour x = 1. Nous en déduisons que fr = f0 = 15,0 kHz.
.......................................................................................................................................................
5.16 b) La courbe de gain est maximale pour x = 1. Nous pouvons relever GdB max = −2 dB.

Aux fréquences de coupures, le gain doit vérifier GdB(xc) = GdB max − 3 dB = −5 dB.
La première valeur de xc collectée sur le graphique est xc1 = 0,78, elle correspond à une fréquence de coupure
fc1 = 0,78× f0 = 11,7 kHz.
.......................................................................................................................................................
5.16 c) La seconde valeur de xc collectée sur le graphique est xc2 = 1,28, elle correspond à une fréquence de

coupure fc2 = 1,28× f0 = 19,2 kHz.
.......................................................................................................................................................
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Fiche no 6. Énergie et puissance électriques

Réponses

6.1 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,5 kJ

6.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6 Wh

6.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 km

6.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . Hyundai Ioniq 6

6.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . Hyundai Ioniq 6

6.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.3 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,75 W

6.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2π
ω

6.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u0i0
2

6.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u0i0
2 cos(φ)

6.5 d) . . . . . . . . . . . . . . . . . . . . . . u0i0

(
2 + 1

2 sin(ψ)
)

6.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 cos
(

7π
12

)
W

6.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W

6.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

r +R

6.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2 R

(r +R)2

6.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2 r −R

(r +R)3

6.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(2)R0

6.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E − e

R+ r

6.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eR+ Er

R+ r

6.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
E − e

R+ r

6.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E − e)2

R+ r

6.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e
E − e

R+ r

6.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

E

6.10 g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 %

6.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

6.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.13 a) . . . . . . . . . . . . . . . . . . . . . . . . CE2

τ
exp(−t/τ)

6.13 b) . . . . . . . . . . . . . . . . . . . . . . . CE2

τ
exp(−2t/τ)

6.13 c). . . . . . . . CE2

τ

(
exp(−t/τ) − exp(−2t/τ)

)
6.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE2

6.13 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.13 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EC
duC

dt
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6.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . .
d
( 1

2Cu
2
C(t)

)
dt

6.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
d
( 1

2Li
2(t)

)
dt

6.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE2

6.14 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.14 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.14 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RuI
2

6.15 b). . . . . . . . . . . E√
(RG +Ru)2 + (XG +Xu)2

6.15 c) . . . . −RuE
2 2(XG +Xu)(

(RG +Ru)2 + (XG +Xu)2
)2

6.15 d) . . . . . . E2 (R2
G −R2

u) + (XG +Xu)2(
(RG +Ru)2 + (XG +Xu)2

)2

6.15 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

Corrigés

6.1 a) L’énergie contenue dans la batterie vaut E = P∆t où P = 5 W et ∆t = 55 min = 55 × 60 s = 3 300 s.
L’énergie vaut donc E = 5× 3 300 J = 16,5 kJ.
.......................................................................................................................................................
6.1 b) L’énergie contenue dans la batterie vaut E = 16,5 kJ. Par ailleurs, e = 1 Wh est l’énergie consommée à

une puissance de 1 W pendant 1 h, soit e = 1 W× 3 600 s = 3,6 kJ.

On a donc E = 16,5 kJ
3,6 kJ × 1 Wh = 4,6 Wh.

.......................................................................................................................................................
6.2 a) L’énergie contenue dans la batterie vaut E = 77,4 kWh.

La consommation moyenne valant C = 15,1 kWh/100 km, l’autonomie en kilomètres vaut :

E

C
= 77,4 kWh

15,1 kWh/100 km = 513 km.

.......................................................................................................................................................
6.2 b) En reprenant le calcul de la question précédente, e = 1 W/h = 3,6 kJ, donc l’énergie totale stockée dans

les batteries des voitures de série vaut, en joules, E = 77,4× 103 × 3,6× 103 J = 279 MJ. C’est donc la voiture de
série qui possède la batterie de plus grande capacité.
.......................................................................................................................................................
6.2 c) La puissance en cv du moteur de la voiture électrique de série vaut P = 239/0,735 cv = 325 cv.
.......................................................................................................................................................

6.3 a) La puissance reçue par la résistance s’écrit P = u2

R
. Ici, on a donc

P = 9
10 sin2(ωt) = 9

20
(
1− cos(2ωt)

)
.

La puissance a donc une valeur moyenne de 9
20 , une valeur maximale de 9

10 et une période T = 0,5 s.

C’est la réponse a qui est la bonne.
.......................................................................................................................................................
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6.3 b) Commençons par linéariser l’expression de la puissance. On a :

P(t) = u2

R
= 1

10
(
1 + 2 cos(ωt)

)2 = 1
10
(
1 + 4 cos2(ωt) + 4 cos(ωt)

)
= 1

10
(
3 + 2 cos(2ωt) + 4 cos(ωt)

)
.

On constate que la puissance est maximale à t = 0. De plus, la composante fondamentale de ce signal est de période
égale à Tfondamental = 2π

ω
= 2 s. Finalement, comme u(t) s’annule (par exemple en ωt = π

3 ), la puissance s’annule
aussi.
Il n’y a qu’une courbe qui vérifie ces conditions : c’est la c qui est la bonne.
.......................................................................................................................................................

6.3 c) La puissance a pour expression P = u2

R
= 9

10 exp
(
−2t
τ

)
. On a donc :

dP(t)
dt = − 2

τ

9
10 exp

(
−2t
τ

)
donc dP(t)

dt (t = 0) = − 2
τ

9
10 = − 9

10W · s−1.

En exploitant la pente à l’origine, on trouve que c’est la réponse c qui est la bonne.
.......................................................................................................................................................
6.4 On lit graphiquement une période de T = 3 ms et un décalage temporel ∆t = 0,5 ms entre les deux

signaux. Le déphasage est donc φ = 2π∆t
T

= π

3 rad. Donc, cos(φ) = 1
2 .

Les amplitudes de la tension et de l’intensité sont respectivement U0 = 3 V et I0 = 5 A. La puissance moyenne vaut
donc Pmoy = 1

23 V× 5 A× 1
2 = 3,75 W.

.......................................................................................................................................................

6.5 b) On a P(t) = u0i0 cos2(ωt+ ψ) = u0i0
2

(
1 + cos(2ωt+ 2ψ)

)
.

On intègre :

Pmoy = 1
T
× u0i0

2

ˆ T

0
1 + cos(2ωt+ 2ψ) dt

= 1
T
× u0i0

2

[
t+ 1

2ω sin(2ωt+ 2ψ)
]T

0
= u0i0

2 .

On peut retenir la propriété
〈
cos2(ωt+ ψ)

〉
=
〈
sin2(ωt+ ψ)

〉
= 1

2 .
.......................................................................................................................................................

6.5 c) On a P(t) = u0i0 cos(ωt) cos(ωt+ φ) = u0i0
2 [cos(φ) + cos(2ωt+ φ)].

On vérifie ensuite que :

⟨cos(2ωt+ φ)⟩ = 1
T

ˆ T

0
cos(2ωt+ φ) dt = 1

2ωT

[
sin(2ωt+ φ)

]T

0
= 0.

Donc, on a Pmoy = u0i0
2 cos(φ).

.......................................................................................................................................................
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6.5 d) La puissance peut se décomposer en plusieurs termes :

P(t) = u0i0(1 + cos(ωt))(2 + sin(ωt+ ψ))
= u0i0(2 + 2 cos(ωt) + sin(ωt+ ψ) + cos(ωt) sin(ωt+ ψ))

= u0i0

(
2 + 2 cos(ωt) + sin(ωt+ ψ) + cos(ωt) cos

(
ωt+ ψ − π

2

))
.

On peut alors séparer les calculs de valeurs moyennes :

Pmoy = u0i0

(
2 + 2⟨cos(ωt)⟩+ ⟨sin(ωt+ ψ)⟩+

〈
cos(ωt) cos

(
ωt+ ψ − π

2

)〉)
= u0i0

(
2 + 1

2 cos
(
ψ − π

2

))
= u0i0

(
2 + 1

2 sin(ψ)
)
.

.......................................................................................................................................................

6.6 a) On a Pmoy = 1
2 Re

(
jCω|u|2

)
= 0.

.......................................................................................................................................................

6.6 b) On a Pmoy = 1
2 Re

(
jLω|i|2

)
= 0.

.......................................................................................................................................................
6.6 c) Commençons par réécrire u et i :

u = 2
(

1√
2
− j√

2

)
ejωt = 2

(
e

−j
π

4
)

ejωt = 2ej(ωt−π/4)

i = 3

(
e

j
π

3
)

ejωt = 3ej(ωt+π/3).

On en déduit Pmoy = 1
2 Re

(
6ej(ωt−π/4) × ej(ωt+π/3)) = 3 Re

(
e−j(π/3+π/4)) = 3 cos

(7π
12

)
W.

.......................................................................................................................................................
6.6 d) On a :

Pmoy = 1
2 Re

(
4
√

2ej(ωt+π/4) × (3− 5j)e−jωt
)

= 2
√

2 Re
(
(3− 5j)ejπ/4)

= 2
√

2
(

3√
2

+ 5√
2

)
= 16 W.

.......................................................................................................................................................

6.7 a) La loi des mailles permet d’écrire E = ur + uR = rI +RI = (r +R)I. On a donc I = E

r +R
.

.......................................................................................................................................................

6.7 b) La puissance dissipée dans le conducteur ohmique de résistance R vaut P = uRI = RI2 = E2 R

(r +R)2 .
.......................................................................................................................................................
6.8 a) Il faut dériver la fonction P(R). On calcule :

dP
dR = E2 1× (r +R)2 −R× 2(r +R)

(r +R)4 = E2(r +R) (r +R)− 2R
(r +R)4 ,

soit finalement :
dP
dR = E2(r +R) r −R

(r +R)4 = E2 r −R
(r +R)3 .

.......................................................................................................................................................
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6.8 b) Il faut annuler la dérivée pour trouver l’extremum de P(R). Comme P(R) est positive et vaut 0 en
R = 0 et en R→∞, alors cet extremum est un maximum. On a alors, par annulation du numérateur Rmax = r.
.......................................................................................................................................................
6.9 Si on a R = 2R0, alors on a er/R0 = 2 et donc r/R0 = ln(2). Finalement, on a r = ln(2)R0.
.......................................................................................................................................................

6.10 a) On applique la loi des mailles E − UR − ur − e = 0. On a donc E − e = (R+ r)I, et donc I = E − e
R+ r

.
.......................................................................................................................................................
6.10 b) La batterie est en convention récepteur ; donc, on a :

U = e+ rI = e+ r
E − e
R+ r

= eR+ er + rE − re
R+ r

= eR+ Er

R+ r
.

.......................................................................................................................................................

6.10 c) La puissance fournie par le chargeur vaut P = EI = E
E − e
R+ r

.
.......................................................................................................................................................
6.10 d) La puissance est dissipée par effet Joule dans les deux conducteurs ohmiques, elle vaut donc :

PJ = RI2 + rI2 = (R+ r)
(
E − e
R+ r

)2
= (E − e)2

R+ r
.

.......................................................................................................................................................

6.10 e) La puissance reçue par la batterie vaut P = eI = e
E − e
R+ r

car elle est en convention récepteur.
.......................................................................................................................................................
6.10 f) En suivant la définition de l’énoncé, on trouve :

η =
eE−e

R+r

E E−e
R+r

= e

E
.

.......................................................................................................................................................
6.10 g) Numériquement, on calcule η = 12/13 = 92 %.
.......................................................................................................................................................
6.11 a) On fait le schéma :

E CU1

R

2R 2CU2

3CU3

R

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :

U1 = E et U2 = U3 = 2
3E.

Les énergies stockées dans les condensateurs sont alors :

E1 = 1
2CE

2, E2 = 4
9CE

2 et E3 = 3
2C
(4

9E
2
)

= 2
3CE

2.

On a alors E2 < E1 < E3. C’est la réponse c qui est la bonne.
.......................................................................................................................................................
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6.11 b) On fait le schéma :

6 V 3CU3

2C

U2

R

12 V CU1

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :

U1 = 12 V, U2 = −6 V et U3 = 6 V.

Les énergies stockées dans les condensateurs sont alors :

E1 = 1
2C(12)2 = 72C, E2 = 1

2 × 2C(6)2 = 36C et E3 = 1
2 × 3C(6)2 = 54C.

On a alors E1 > E3 > E2. C’est la réponse a qui est la bonne.
.......................................................................................................................................................
6.12 a) Les énergies stockées dans les différentes bobines sont :

E1 = 1
2L(4)2 = 8L, E2 = 1

2 × 2L(3)2 = 9L et E3 = 1
2 × 3L(1)2 = 3

2L.

Donc, on a E3 < E1 < E2. C’est la réponse b qui est la bonne.
.......................................................................................................................................................
6.12 b) Les bobines se comportent comme des fils en régime permanent. Le montage se simplifie alors :

E

I1

R

R

R

I2

2R

I3

En calculant les résistances équivalentes, on peut déterminer les valeurs des courants :

I1 = 8E
5R, I2 = 2

3

(3E
5R

)
= 2E

5R et I3 = 1
3

(3E
5R

)
= E

5R.

Ainsi, les énergies stockées dans les bobines sont :

E1 = 1
2L
(8E

5R

)2
= 32

25
LE2

R2 , E2 = 1
2 × 2L

(2E
5R

)2
= 4

25
LE2

R2 et E3 = 1
2 × 3L

(
E

5R

)2
= 3

50
LE2

R2 .

On a E3 < E2 < E1 : c’est la réponse a qui est la bonne.
.......................................................................................................................................................
6.13 a) La puissance instantanée délivrée par la source vaut :

PE(t) = Ei(t) = E × CE

τ
exp(−t/τ) = CE2

τ
exp(−t/τ).

.......................................................................................................................................................

Réponses et corrigés 233



6.13 b) La puissance dissipée par effet Joule l’est dans la résistance et vaut donc :

PJ (t) = Ri2(t) = R(CE)2

τ2 exp(−2t/τ).

En simplifiant à l’aide de la relation τ = RC, on trouve PJ (t) = CE2

τ
exp(−2t/τ).

.......................................................................................................................................................
6.13 c) La puissance instantanée reçue par le condensateur vaut :

PC(t) = uC(t)i(t) = E(1− exp(−t/τ))× CE

τ
exp(−t/τ) = CE2

τ

(
exp(−t/τ)− exp(−2t/τ)

)
.

Remarquons que, par conservation de la puissance, cette dernière expression peut s’obtenir en faisant la différence
entre les deux précédentes, la puissance reçue par le condensateur étant égale à la puissance fournie par la source
de tension dont on a retranché la puissance dissipée dans le conducteur ohmique. C’est un bon moyen de contrôler
le résultat.
.......................................................................................................................................................
6.13 d) Il faut intégrer la puissance PE(t) fournie par la source sur toute la durée de la charge du condensateur,

c’est-à-dire de t = 0 à t = +∞. On a donc :

EE =
ˆ t=+∞

t=0
PE(t) dt =

ˆ t=+∞

t=0

CE2

τ
exp(−t/τ) dt = (−τ)CE

2

τ

[
exp(−t/τ)

]+∞

0
= CE2.

Remarquons que cette expression est homogène à l’énergie contenue dans un condensateur 1
2Cu

2
C .

.......................................................................................................................................................
6.13 e) Il faut intégrer la puissance PJ (t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EJ =
ˆ t=+∞

t=0
PJ (t) dt =

ˆ t=+∞

t=0

CE2

τ
exp(−2t/τ) dt = CE2

τ

(
−τ2

)[
exp(−2t/τ)

]+∞

0
= 1

2CE
2.

.......................................................................................................................................................
6.13 f) Il faut intégrer la puissance PC(t) sur tout le temps de la charge du condensateur, c’est-à-dire de t = 0

à t = +∞. On a donc :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0

CE2

τ
(exp(−t/τ)− exp(−2t/τ)) dt.

On reconnaît les deux intégrales précédentes donc :

EC = (−τ)CE
2

τ

[
exp(−t/τ)

]+∞

0
− CE2

τ

(
−τ2

)[
exp(−2t/τ)

]+∞

0
= 1

2CE
2.

Alternativement, on aurait pu effectuer le calcul suivant :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0
uCi dt =

ˆ t=+∞

t=0
uC · C

duC

dt dt =
ˆ t=+∞

t=0
d
(1

2Cu
2
C

)
pour trouver :

EC = 1
2C
(
u2

C(+∞)− u2
C(0)

)
= 1

2CE
2,

qui est le même résultat.
Remarquons que, par conservation de l’énergie, cette dernière expression peut s’obtenir en faisant la différence entre
les deux précédentes, l’énergie reçue par le condensateur étant égale à l’énergie fournie par la source de tension dont
on a retranché l’énergie dissipée dans le conducteur ohmique. C’est un bon moyen de contrôler le résultat.
.......................................................................................................................................................
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6.14 a) La puissance instantanée délivrée par la source de tension s’écrit PE(t) = Ei(t) = EC
duC

dt .
.......................................................................................................................................................
6.14 b) La puissance instantanée reçue par le condensateur s’écrit :

PC(t) = uC(t)i(t) = uC(t)C duC

dt =
d
(

1
2Cu

2
C(t)

)
dt .

.......................................................................................................................................................

6.14 c) La puissance instantanée reçue par la bobine s’écrit PL(t) = uL(t)i(t) = L
di
dt i(t) =

d
(

1
2Li

2(t)
)

dt .
.......................................................................................................................................................
6.14 d) On intègre la puissance PE(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EE =
ˆ t=+∞

t=0
EC

duC

dt dt = CE

ˆ t=+∞

t=0
duC = CE

(
uC(t = +∞)− uC(t = 0)

)
= CE2.

.......................................................................................................................................................
6.14 e) On intègre la puissance PC(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0
d
(1

2Cu
2
C

)
= 1

2C
(
uC

2(+∞)− uC
2(0)

)
= 1

2CE
2.

.......................................................................................................................................................
6.14 f) On intègre la puissance PL(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EL =
ˆ t=+∞

t=0
PL(t) dt =

ˆ t=+∞

t=0
d
(1

2Li
2
)

= 1
2L(i2(+∞)− i2(0)) = 0.

.......................................................................................................................................................
6.14 g) Il faudrait intégrer la puissance dissipée par effet Joule PJ (t) = Ri2(t) sur tout le temps de la charge

du condensateur, de t = 0 à t = +∞. Cependant, on n’a pas accès à l’expression de i(t). On peut alors malgré tout
se servir de la conservation de l’énergie :

EJ = EE − EC − EL = CE2 − 1
2CE

2 − 0 = 1
2CE

2.

.......................................................................................................................................................
6.15 a) On a :

Pm = 1
2 Re

(
(Ru + jXu)I

√
2ej(ωt+φ) · I

√
2e−j(ωt+φ)) = Re(Ru + jXu)I2 = RuI

2.

.......................................................................................................................................................
6.15 b) La loi des mailles donne :

eG =
(
ZG + Zu

)
i

donc E
√

2ejωt = [RG +Ru + j(XG +Xu)]I
√

2ej(ωt+φ)

donc E = [RG +Ru + j(XG +Xu)]Iejφ.

En prenant le module, on obtient :
I = E√

(RG +Ru)2 + (XG +Xu)2
.

.......................................................................................................................................................
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6.15 c) En reportant l’expression de I obtenue dans celle de Pm, on retrouve l’expression donnée dans l’énoncé :

Pm = RuE
2

(RG +Ru)2 + (XG +Xu)2 .

La fonction dont il faut calculer la dérivée est du type Pm(Xu) = 1
f(Xu) . La dérivée sera donc du type :

∂Pm

∂Xu
= − f ′(Xu)

(f(Xu))2 .

Finalement, on calcule :
∂Pm

∂Xu
= −RuE

2 2(XG +Xu)(
(RG +Ru)2 + (XG +Xu)2

)2 .

.......................................................................................................................................................

6.15 d) La fonction dont il faut calculer la dérivée est du type Pm(Ru) = f(Ru)
g(Ru) , la dérivée sera donc du type :

∂Pm

∂Ru
= f ′(Ru)g(Ru)− f(Ru)g′(Ru)

(g(Ru))2 .

Ainsi, on calcule :

∂Pm

∂Ru
= E2 (RG +Ru)2 + (XG +Xu)2 − 2Ru(RG +Ru)(

(RG +Ru)2 + (XG +Xu)2
)2

= E2R
2
G +R2

u + 2RGRu + (XG +Xu)2 − 2R2
u − 2RuRG(

(RG +Ru)2 + (XG +Xu)2
)2

= E2 (R2
G −R2

u) + (XG +Xu)2(
(RG +Ru)2 + (XG +Xu)2

)2 .

.......................................................................................................................................................
6.15 e) On cherche pour quelles valeurs de Ru et Xu les deux dérivées partielles de Pm sont nulles.

On a ∂Pm

∂Xu
= 0 pour Xu +XG = 0, soit Xu = −XG.

On aura alors ∂Pm

∂Ru
= E2 (R2

G −R2
u)(

(RG +Ru)2 + (XG +Xu)2
)2 . Alors, on a ∂Pm

∂Ru
= 0 pour RG = Ru.

Mathématiquement, on pourrait avoir comme solution RG = Ru ou RG = −Ru. Ainsi, la solution a pourrait aussi
être considérée comme correcte. Mais, en physique, on a nécessairement RG ⩾ 0 et Ru ⩾ 0.
.......................................................................................................................................................
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Fiche no 7. Amplificateurs linéaires intégrés

Réponses

7.1 . . . . . . . . . . . . . . . . . . a d

7.2 a) . . . . . . . . . . . . . . . . . . . Vrai

7.2 b) . . . . . . . . . . . . . . . . . . . Vrai

7.2 c) . . . . . . . . . . . . . . . . . . Faux

7.2 d) . . . . . . . . . . . . . . . . . . Faux

7.3 a) . . . . . . . . . . . . . . . . . . . Oui

7.3 b) . . . . . . . . . . . . . V + = V −

7.3 c) . . . . . . . . . . . . . . . . . . . . 0 V

7.4 a) . . . . . . . . . . . . . . . . . . . . 0 V
7.4 b) . . . . . . . . . . . . . . . . . . . . . vs

7.4 c) . . . . . . . . . . . . . . . . . . . . 0 V
7.4 d) . . . . . . . . . . . . . . . . . . . . . ve

7.4 e) . . . . . . . . . . . . . . . . . . . . . vs

7.5 a) . . . . . . . . . . . . . . . . . . Faux

7.5 b) . . . . . . . . . . . . . . . . . . . Vrai

7.5 c) . . . . . . . . . . . . . . . . . . Faux

7.5 d) . . . . . . . . . . . . . . . . . . . Vrai

7.5 e) . . . . . . . . . . . . . . . . . . Faux

7.6 a) . . . . . . . . . . . . . . . . i1 = i2

7.6 b) . . . . . . . . . . . . . . . U1 = ve

7.6 c) . . . . . . . . . . . . . . U2 = −vs

7.6 d) . . . . . . . . . . . . . . . i1 = ve

R1

7.6 e) . . . . . . . . . . . . . i2 = − vs

R2

7.6 f) . . . . . . . . . . . . . . G = −R2
R1

7.6 g) . . . . . . . . . . . . . . . . . . . . b

7.7 . . . . . . . . . . . . . . . . . . . . . . c

7.8 . . . . . . . . . . C’est un temps

7.9 a) . . . . . . . . . . . . . . . . . . . Non
7.9 b) . . . . . . . . . . . . . . . . . . . . . ve

7.9 c) . . . . . . . . . . . . . . . . . . . . . vs

7.9 d) . . . . . . . . . . . . . . . iR = iC

7.9 e) . . . . . . . . . iC = −jCωUC

7.9 f) . . . . . . . . . . . . . . . − 1
jRCω

7.9 g) . . . . . . RC
dvs

dt
= −ve(t)

7.10 a) . . . . . . . . . . . . . . . . 1
RCω

7.10 b) . . . . . . . . . . . . . . . . . . . . π

2

7.10 c) . . . . . . . − E

RCω
sin(ωt)

7.10 d) . . . . . . . . . . . . . . . . 1 kHz

7.10 e) . . . . . . . . . . . . . . . . . . . 3,1

7.10 f) . . . . . . . . . . . . . . . . . . . b

7.11 a) . . . . . . . RC
dvs

dt = −ve

7.11 b) . . . . . . . . . . − E

RC
t+K

7.11 c) . . . . . . . . . . . . . . . . . . . b

7.12 a). . . . . . . . . . . . . . . . α+ 1
α

7.12 b) . . . . . . . . . . . . . . . α

1 + α2

7.12 c) . . . . . . . . . . . . . R1 = R2

7.12 d) . . . . . . . . . . . . . . . . α = 1

7.13 a) . . . . . . . . . . . . . . . i1 = i2

7.13 b) . . . . . . . . . . . R1
R1 +R2

vs

7.13 c) . . . . . . . . . . . . . . . . . . . . ve

7.13 d) . . . . . . . . . . . . . . 1 + R2
R1

7.13 e) . . . . . . . . . . . . . . . . . . . . 16

7.14 . . . . . . . . . . . . . . . . . . . . . d

7.15 a). . . . . . . . . . . . . . . vs = ve

7.15 b) . . . . . . . . . . . . . . . . . . . ∞

7.15 c) . . . . . . . . . . . . . . . . . . . 0 A
7.15 d) . . . . . . . . . . . . . . . . . . . ∞

7.16 a) . . . . . . . . . . . . . . . . . . . ve

Z1

7.16 b) . . . . . . . . . . . . . . . . . . . Z1

7.16 c) . . . . . . . . . . . . . . . . . . . . ∞

7.16 d). . . . . . . . . . . . . . . . . . . . . 0

7.16 e) . . . . . . . . . . . . C = 10 nF
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Corrigés

7.1 Les circuits pouvant fonctionner en régime linéaire sont les circuits a et d . Avec une rétroaction sur
la seule entrée non inverseuse, les montages b et c fonctionnent en régime saturé.
.......................................................................................................................................................
7.2 a) L’impédance d’entrée d’un ALI réel est de l’ordre du mégaohm (c’est-à-dire de l’ordre de 106 Ω). Dans

le cas de l’ALI idéal, l’impédance d’entrée est supposée infinie.
.......................................................................................................................................................
7.2 b) Les courants d’entrée d’un ALI sont nuls dans le cadre du modèle de l’ALI idéal, ce qui est le cas ici.
.......................................................................................................................................................
7.2 c) Le courant de sortie est variable et dépend de la charge du circuit à ALI.
.......................................................................................................................................................
7.2 d) En régime linéaire, c’est la différence des potentiels entre les deux entrées qui est nulle : V+ − V− = 0.
.......................................................................................................................................................
7.3 a) La résistance R2 établit une rétroaction sur l’entrée inverseuse, l’ALI peut donc bien fonctionner en

régime linéaire.
.......................................................................................................................................................
7.3 b) Lorsqu’un ALI fonctionne en régime linéaire, on a ε = V + − V − = 0. On a donc V + = V −.
.......................................................................................................................................................
7.3 c) L’entrée non inverseuse est reliée à la masse donc V + = 0. D’après le schéma : VA = V −. Le régime

linéaire donne donc VA = 0.
.......................................................................................................................................................
7.4 a) Le potentiel de l’entrée non inverseuse est nul et est égal au potentiel de l’entrée inverseuse en régime

linéaire.
.......................................................................................................................................................
7.4 c) Le potentiel de l’entrée non inverseuse est nul et est égal au potentiel de l’entrée inverseuse en régime

linéaire.
.......................................................................................................................................................
7.4 d) Le potentiel de l’entrée non inverseuse est ve. Grâce au régime linéaire, on en déduit que le potentiel de

l’entrée inverseuse est également ve.
.......................................................................................................................................................
7.4 e) L’entrée inverseuse est reliée à la sortie par un fil donc V − = vs. Le régime linéaire permet d’écrire
V + = V −, d’où le résultat.
.......................................................................................................................................................
7.5 a) La résistance R4 est en convention générateur. Les trois autres sont bien en convention récepteur.
.......................................................................................................................................................
7.5 c) Attention à la convention choisie pour les courants sur la figure.
.......................................................................................................................................................
7.5 d) On a U1 = ve − V − et U3 = ve − V +. L’ALI fonctionne en régime linéaire donc V + = V −.

Ainsi, on a bien U1 = U3.
.......................................................................................................................................................
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7.5 e) On a U4 = V +, mais U2 = V − − vs.
.......................................................................................................................................................
7.6 a) La loi des nœuds appliquée à l’entrée inverseuse donne i1 = i− + i2. L’ALI étant idéal, on a i− = 0.

Finalement, on a donc i1 = i2.
.......................................................................................................................................................
7.6 b) D’après le schéma, on a U1 = ve−V −. Comme l’ALI fonctionne en régime linéaire, on a V − = V + = 0.

D’où le résultat.
.......................................................................................................................................................
7.6 c) D’après le schéma, on a U2 = V −− vs. Comme l’ALI fonctionne en régime linéaire, on a V − = V + = 0.

D’où le résultat.
.......................................................................................................................................................

7.6 d) La résistance R1 est représentée en convention récepteur. On a donc i1 = U1

R1
.

.......................................................................................................................................................

7.6 e) La résistance R2 est représentée en convention récepteur. On a donc i2 = U2

R2
.

.......................................................................................................................................................
7.6 f) D’après la première question, on a i1 = i2. Donc, on a ve

R1
= − vs

R2
. On en déduit le résultat.

.......................................................................................................................................................

7.7 Avec la formule donnée, l’amplification du montage vaut −1
6 : c’est un réel négatif. Les tensions ve

et vs doivent donc être en opposition de phase, ce qui n’est pas le cas des réponses a et d . Sur la figure b ,

l’amplification vaut −1 alors qu’on a bien −1
6(= 0,5/3) sur la figure c : seule cette dernière convient.

.......................................................................................................................................................
7.8 On peut se rappeler que τ = RC est la constante de temps d’un circuit RC.
.......................................................................................................................................................
7.9 a) En régime constant, un condensateur est équivalent à un circuit ouvert. Il n’y a alors plus de rétroaction

sur l’entrée inverseuse et l’ALI ne peut pas fonctionner en régime linéaire.
.......................................................................................................................................................
7.9 b) L’ALI fonctionne en régime linéaire donc V − = V + = 0.
.......................................................................................................................................................
7.9 d) L’ALI est idéal donc i− = 0. La loi des nœuds à l’entrée inverseuse donne iR = iC .
.......................................................................................................................................................
7.9 e) Le condensateur est représenté en convention générateur. Par conséquent, la loi d’Ohm donne :

UC = −Z × iC avec Z = 1
jCω .

.......................................................................................................................................................
7.9 f) En combinant la loi des nœuds et la loi d’Ohm, on a iR =

ve

R
= iC = −jCωvs.

En isolant l’expression
vs

ve
, on trouve le résultat.

.......................................................................................................................................................
7.9 g) À partir de l’expression de H, on obtient que jRCωvs = −ve.

Cette relation devient, en grandeurs réelles, RC dvs(t)
dt = −ve(t).

.......................................................................................................................................................
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7.10 a) Le gain est égal au module de la fonction de transfert.
.......................................................................................................................................................
7.10 b) Le déphasage demandé est égal à l’argument de la fonction de transfert. Cette dernière est un imaginaire

pur de partie imaginaire strictement positive, car H = − 1
jRCω = j

RCω
.

.......................................................................................................................................................
7.10 c) On utilise les réponses aux deux questions précédentes : l’amplitude de ve est multipliée par le gain et

le déphasage est intégré dans le cos : vs = E

RCω
cos
(
ωt+ π

2

)
= − E

RCω
sin(ωt).

.......................................................................................................................................................
7.10 d) Avec un calibre de 250 µs/division, on mesure une période de 1 ms. La fréquence de fonctionnement est

donc de 1 kHz.
.......................................................................................................................................................

7.10 e) Le module de la fonction de transfert est 1
RCω

. Avec les valeurs numériques fournies, on trouve G = 3,1.
.......................................................................................................................................................
7.10 f) Le déphasage de vs par rapport à ve est de +π

2 donc la tension de sortie doit être en avance d’un quart
de période sur la tension d’entrée. Les réponses a (tensions en phase) et c (tension de sortie en retard) ne sont
pas compatibles. À la fréquence de fonctionnement, le gain est de 3, ce n’est pas le cas sur la réponse d .
.......................................................................................................................................................
7.11 a) La fonction de transfert fournie se met sous la forme jRCωvs = −ve. Comme une multiplication par jω

en notation complexe correspond à une dérivation, on en déduit l’équation différentielle.
.......................................................................................................................................................
7.11 c) Une tension constante positive E s’intègre en fonction affine de pente négative −At+ b. Ce n’est pas le

cas des réponses c et d .

Pour t ∈
[
0, 500 µs

]
, on lit E = 3 V. Avec les valeurs numériques de R et C, on trouve une pente théorique de

−8,0× 103 V · s−1. Sur la courbe a , on mesure une pente de −6/500× 10−6 = −12× 103 V · s−1 alors qu’on a une
pente de −4/500× 103 = −8,0× 103 V · s−1 sur la courbe b .
.......................................................................................................................................................

7.12 a) On a 1
G2

= R1

R2
+ R2

R1
= α+ 1

α
.

.......................................................................................................................................................

7.12 b) On a 1
G2

= α+ 1
α

= 1 + α2

α
. Donc, G2 = 1

1
G2

= α

1 + α2 .

.......................................................................................................................................................

7.12 c) On a G1 −G2 = 1− R1

R2
. Donc, G1 = G2 ⇐⇒

R1

R2
= 1 ⇐⇒ R1 = R2.

.......................................................................................................................................................

7.12 d) On pose f(α) = α+ 1
α

. On calcule f ′(α) = 1− 1
α2 = α2 − 1

α2 . Ainsi, on f ′(α) = 0 ⇐⇒ α = 1. Comme

f(α) −−−−→
α→0+

+∞ et f(α) −−−−−→
α→+∞

+∞,

on en déduit que α+ 1
α

est mininale quand α = 1.
.......................................................................................................................................................
7.13 a) L’ALI étant idéal, les courants d’entrée sont nuls. Ainsi, la loi des nœuds à l’entrée inverseuse assure

que i1 = i2.
.......................................................................................................................................................
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7.13 b) Les deux résistances étant parcourues par le même courant, elles sont en série. Ainsi, on en déduit que
le circuit équivalent est :

R2

U2

i2

R1U1

i1

vs

La formule du diviseur de tension aux bornes de R1 donne le résultat demandé.
.......................................................................................................................................................
7.13 c) L’ALI fonctionne en régime linéaire donc on a V + = V −.
.......................................................................................................................................................

7.13 d) D’après les questions précédentes, on a ve = R1

R1 +R2
vs, d’où le résultat.

.......................................................................................................................................................
7.14 Le gain de l’amplificateur non inverseur vaut ici 6 : c’est un réel positif. Par conséquent, la tension

de sortie doit être en phase et de plus grande amplitude que la tension d’entrée. Les réponses a (tensions en
opposition de phase) et c (sortie de plus faible amplitude) sont donc exclues.

Sur la réponse b , le gain mesuré est de 16 (8/0,5) alors qu’il est de 6 sur la réponse d : seule cette dernière
convient.
.......................................................................................................................................................
7.15 a) L’ALI fonctionne en régime linéaire donc V + = V −.
.......................................................................................................................................................
7.15 b) Les courants d’entrée de l’ALI idéal étant nuls quels que soient les potentiels des deux entrées, l’ALI se

comporte comme un circuit ouvert en entrée. L’impédance d’entrée tend donc vers +∞.
.......................................................................................................................................................
7.15 c) Les courants d’entrée sont nuls donc ie = 0 A.
.......................................................................................................................................................
7.15 d) L’impédance d’entrée du montage est ici définie par Ze =

ve

ie
. L’intensité d’entrée étant nulle, l’impédance

d’entrée est infinie.
.......................................................................................................................................................

7.16 a) Avec la convention choisie, on a i1 = ve − VA

Z1
. L’ALI fonctionnant en régime linéaire, on a VA = 0.

.......................................................................................................................................................
7.16 b) L’impédance d’entrée du circuit est Ze = ve

i1
. D’après la question précédente, Ze = Z1.

.......................................................................................................................................................
7.16 c) En régime constant, l’impédance du condensateur tend vers +∞.
.......................................................................................................................................................
7.16 d) En régime constant, l’impédance d’une inductance tend vers 0.
.......................................................................................................................................................

7.16 e) Avec le condensateur, le module de l’impédance d’entrée est |Ze| = 1
Cω
≃ 0,16 · 105 Ω ≃ 16 kΩ. Il est

donc légèrement plus grand qu’avec la résistance.
.......................................................................................................................................................
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Fiche no 8. Sources lumineuses et lois de Snell-Descartes

Réponses

8.1 a) . . . . . . . . . . . . π

180 × αdeg

8.1 b). . . . . . . . . . . . . . 60 × αdeg

8.2 a) . . . . . . . . . . . . . . . . . 35°39′

8.2 b) . . . . . . . . . . . . . . 1,715 rad

8.2 c) . . . . . . . . . . . . . . . . . 60°20′

8.3 a) . . . . . . . . . . . . . . . . . . . . . . i

8.3 b) . . . . . . . . . . . . . . . . . π

2 − i

8.3 c) . . . . . arcsin
(
n1
n2

sin(i)
)

8.3 d) . . π

2 − arcsin
(
n1

n2
sin(i)

)

8.4 a) . . . . . . . . . . . . . . . . . . 16,3°

8.4 b) . . . . . . . . . . . . . . . . . . 25,5°

8.4 c) . . . . . . . . . . . . . . . . . . 22,0°

8.5 a) . . . . . . . . . . . . . . . . . . r − i

8.5 b) . . . . . . . . . . . . . . . . . π − 2i

8.6 a) . . . . . . . . . (α1 + α2) − π

8.6 b) . . . . . . . . . . . . . . . . . r + r′

8.7 a) . . . . . . . . . . . . . . . . . . . Non

8.7 b) . . . . . . . . . . . . . . . . . . . . 60°

8.8 a) . . . . . . . . . . . . . . . . . . . 1,25

8.8 b) . . . . . . . . . . . . . . . . . . . 1,18

8.8 c) . . . . . . . . . . . . . . . . . . . Non

8.9 a) . . . . . . . . .

√
1 − sin2(θi)

n2
1

8.9 b) . . . . . . . . . . cos(θr) > n2
n1

8.9 c) . . . . sin(θi) <
√
n2

1 − n2
2

8.10 a) . . . . . . . . . . . . . . 564 THz

8.10 b) . . . . . . . . 3,74 × 10−19 J

8.11 . . . . . . . . . . . . . . . b et d

8.12 a) . . . . 2,26 × 108 m · s−1

8.12 b) . . . . . . . . . . . . . . . 400 nm

Corrigés

8.2 a) On a α = 35° + 0,65× 60′ = 35°39′.
.......................................................................................................................................................
8.2 b) L’angle β vaut 98° et 15 minutes d’angle, c’est-à-dire β = 98 + 15/60 = 98,25°.

En radians, on a β = 98,25°× π

180° = 1,715 rad (on garde 4 chiffres significatifs, comme la donnée de départ).
.......................................................................................................................................................

8.2 c) On a γ = 1,053× 180°
π

= 60,33°. Or, 0,33° correspondent à 0,33× 60 = 20′. Donc γ = 60°20′.
.......................................................................................................................................................
8.3 a) On a α = i. Il s’agit de la loi de Snell-Descartes pour la réflexion.
.......................................................................................................................................................
8.3 b) On a α+ β = π

2 et α = i, donc β = π

2 − i.
.......................................................................................................................................................

8.3 c) La loi de Snell-Descartes pour la réfraction donne : n1 sin(i) = n2 sin(δ). Donc δ = arcsin
(
n1

n2
sin(i)

)
.

.......................................................................................................................................................
8.4 a) La loi de Snell Descartes pour la réfraction donne : n1 sin(i) = n2 sin(r). On obtient pour r :

r = arcsin
(
n1

n2
sin(i)

)
et donc r = arcsin

(
1

1,45 × sin(24,0)
)

= 16,3°.

Attention à bien régler la calculatrice en degrés ou à convertir l’angle en radians.
.......................................................................................................................................................
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8.4 b) Si la calculatrice est réglée en degrés, on a : r = arcsin
(

1
1,45 sin(0,674× 180

π
)
)

= 25,5°.
.......................................................................................................................................................

8.4 c) On a i = arcsin
(
n2

n1
sin(r)

)
donc i = arcsin

(1,45
1 sin 15,0

)
= 22,0°.

.......................................................................................................................................................
8.5 a) On a Dt = r − i. Attention, i et r sont orientés dans le sens trigonométrique, alors que Dt est orienté

dans le sens horaire.
.......................................................................................................................................................
8.5 b) On a Dr − (−i) + i = π donc Dr = π − 2i.
.......................................................................................................................................................
8.6 a) On utilise le fait que la somme des angles d’un quadrilatère est égale à 2π dans OIAJ. Donc, on a :

2π = A+ π

2 + π

2 + (2π − (α1 + α2)).

Ainsi, on a A = (α1 + α2)− π.
.......................................................................................................................................................
8.6 b) On utilise le fait que la somme des angles d’un triangle est égale à π dans IAJ. Donc, on obtient

π = A+ (π2 − r) + (π2 − r
′), et ainsi A = r + r′.

.......................................................................................................................................................

8.7 a) On a n1

n2
sin(i) = 1,5

1,3 sin(44°) = 0,8 < 1. Il existe un rayon réfracté, il n’y a donc pas réflexion totale.
.......................................................................................................................................................

8.7 b) Comme n1 est supérieur à n2, il existe un tel angle limite, qui est iℓ = arcsin
(
n2

n1

)
= arcsin

(
1,3
1,5

)
= 60°.

.......................................................................................................................................................
8.8 a) D’après la loi de Snell-Descartes, on a n1 sin(i) = n2 sin(r). Donc :

n2 = n1
sin(i)
sin(r) = 1,37× sin(20,0°)

sin(22,0°) = 1,25.

.......................................................................................................................................................
8.8 b) On observe une réflexion totale si n1

n2
× sin(i) > 1 donc si n2 < n1 × sin(i) = 1,37× sin(60,0°) = 1,18.

.......................................................................................................................................................

8.8 c) L’angle limite au-delà duquel il y a réflexion totale est iℓ = arcsin
(
n2

n1

)
. Un milieu ne peut pas avoir un

indice plus petit que 1 (cela signifierait que la lumière s’y propage plus rapidement que dans le vide, ce qui n’est
pas possible). Donc, pour n1 = 1,37, le plus petit angle limite de réflexion totale est :

iℓ,min = arcsin
(

1
1,37

)
= 46,9° > 40,0°.

Donc : non, il n’existe aucun milieu 2 qui permette d’observer une réflexion totale dans ces conditions.
.......................................................................................................................................................

8.9 a) On a cos(θr) =
√

1− sin2(θr) =
√

1− sin2(θi)
n2

1
.

.......................................................................................................................................................

8.9 b) Il s’agit d’un triangle rectangle, donc i = π

2 − θr. Donc la relation équivaut à
n1 sin( π

2 − θr)
n2

> 1,

c’est-à-dire à n1 cos(θr)
n2

> 1 et donc à cos(θr) > n2

n1
.

.......................................................................................................................................................
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8.9 c) On a
√

1− sin2(θi)
n2

1
>
n2

n1
donc 1− sin2(θi)

n2
1

>
(
n2

n1

)2
dont on déduit :

sin2(θi) < n2
1

(
1−

(
n2

n1

)2
)

= n2
1 − n2

2.

Ainsi, on a sin(θi) <
√
n2

1 − n2
2.

.......................................................................................................................................................

8.10 a) On a f = c

λ0
= 3,00× 108 m · s−1

532 nm = 5,64× 1014 Hz = 564 THz.
.......................................................................................................................................................
8.10 b) On a E = hf = 6,63× 10−34 J · s× 5,64× 1014 Hz = 3,74× 10−19 J.
.......................................................................................................................................................
8.11 Au passage d’un dioptre, la fréquence et l’énergie d’un photon sont inchangées. En revanche, la vitesse

de propagation de la lumière et la longueur d’onde dépendent de l’indice optique.
.......................................................................................................................................................

8.12 a) On a v = c

n
= 3,00× 108 m · s−1

1,33 = 2,26× 108 m · s−1.
.......................................................................................................................................................

8.12 b) On a λ = v

f
= c

nf
= λ0

n
= 532 nm

1,33 = 400 nm.
.......................................................................................................................................................
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Fiche no 9. Lentilles

Réponses

9.1 a) . . . . . . . . . arctan
(

AB
OA

)

9.1 b). . . arctan
(

AB
OA

)
× 180

π

9.1 c) . . . . . . . . . . . . . . . . . . 0,52°

9.1 d) . . . . . . . . . . . . . . . . . . 0,53°

9.1 e) . . . . . . . . . . . . . . . . . . . . b

9.1 f). . . . . . . . . . . . . . . . . . . . . a

9.2 a) . . . . . . . . . . OA′

OA
= A′B′

AB

9.2 b) . . . . . . . . . . . . . . . . . . . . −2

9.3 a). . . . . . . . . . . . . . . . . . 40 cm

9.3 b). . . . . . . . . . . . . . . . −10 cm

9.3 c) . . . . . . . . . . . . . . . . −50 cm

9.3 d) . . . . . . . . . . . . . . . . . 20 cm

9.4 a) . . . . . . . . . . . . . . . . . A1B1
f ′

1

9.4 b) . . . . . . . . . . . . . . . . . A1B1
f ′

2

9.4 c). . . . . . . . . . . . . . . . . . . . . f ′
1
f ′

2

9.4 d) . . . . . . . . . . . . . . . . . . . . . . 4

9.5 . . . . . . . . . . . . . . . . . . . . . . b

9.6 a) . . . . . . . . . . . . . . . . correct

9.6 b) . . . . . . . . . . . . . . incorrect

9.6 c) . . . . . . . . . . . . . . incorrect

9.6 d) . . . . . . . . . . . . . . . . correct

9.7 a) . . . . . . . . . . . . . . . . . 5,0 cm

9.7 b) . . . . . . . . . . . . . . . . . +20 δ

9.8 . . . . . . . . . . . . . . . . . . . . . . b

9.9 a) . . . . . . . . . . . . . . . . . 0,22 m

9.9 b) . . . . . . . . . . . . . . . . . . . . a

9.10 a) . . . . . . . . . . . OA × OF′

OA + OF′

9.10 b) . . . . . . . . . . . . OA′ × f ′

f ′ − OA′

9.10 c) . . . . . . . . . . . OA × OA′

OA − OA′

9.10 d) . . . . . . . . . . . . . . . . après

9.11 a). . . . . . . . . . . . . . . . . −f ′2

F′A′

9.11 b) . . . . . . . . . . . . . . FA − f ′

9.11 c) . . . . . . . . . . . . . . . . . . réel

9.12 a) . . . . . . . . . . . . . . . . . . . b

9.12 b) . . . . . . . . . . . . . . . . . . . b

9.13 a) . . . . . . OA = −5,02 cm

9.13 b) . . . . . . . 10,8 m × 7,2 m

9.14 a) . . . . . . . . . . . . . . . . . . . a

9.14 b) . . . . . . . . . . . . . . . . . . . b

9.15 a) . . . . . . . OA′ = −15 cm

9.15 b). . . . . . . . . . . . . . virtuelle

9.15 c) . . . . . . . . . . . . . . . . 5,0 cm

9.15 d) . . . . . . . . . . . . . . . . droite

9.16 a) . . . . . . . . . . . . . D2 − d2

4D

9.16 b) . . . . . . . . . . . . . . . . . 15D
64

9.16 c) . . . . . . . . . . . . . . . . . . . . . 0

Corrigés

9.1 a) Dans le triangle rectangle OAB, on a tan(α) = AB
OA. Comme l’angle α est entre −π/2 et π/2, on a

α = arctan
(AB

OA

)
pour un objet lointain.

.......................................................................................................................................................

9.1 b) On effectue une conversion radians-degrés du résultat précédent : α = arctan
(AB

OA

)
× 180

π
.

.......................................................................................................................................................

9.1 c) Dans le triangle rectangle OAB, on a OA≫ AB. Donc, on a : α ≈ tan(α) = 3,5 · 103 km
384 400 km ×

180
π

= 0,52°.
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.......................................................................................................................................................
9.1 d) Dans le triangle rectangle OAB, on a OA≫ AB. Donc, on a :

α ≈ tan(α) = 1,4 · 106 km
150 600 · 103 km ×

180
π

= 0,53°.

.......................................................................................................................................................
9.1 e) Même si les valeurs ne sont pas strictement égales, elles sont proches d’un point de vue physique, l’écart

relatif entre elles valant αS − αL

αL
= 1,9 %.

Les diamètres angulaires de la Lune et du Soleil pour un observateur situé sur Terre sont proches.
.......................................................................................................................................................
9.1 f) La Lune et le Soleil ont la même taille apparente sur le ciel. Si la Lune, plus proche de la Terre, se place

entre la Terre et le Soleil, celle-ci va dissimuler complètement le Soleil : on parle d’éclipse solaire. Les diamètres
apparents n’ont rien à voir avec l’alternance des saisons, liée à l’inclinaison de l’axe de rotation de la Terre, ni avec
l’effet de marée, lié à l’attraction gravitationnelle de la Lune et du Soleil sur les océans et la croûte terrestre.
.......................................................................................................................................................

9.2 a) Par application du théorème de Thalès, on a OA′

OA
= A′B′

AB
.

.......................................................................................................................................................
9.2 b) Par lecture graphique, on constate que OA′ = 8 unités horizontales et OA = −4 unités horizontales.

D’après la relation déterminée dans la question précédente, on a γ = A′B′

AB
= OA′

OA
= 8 carreaux
−4 carreaux = −2.

.......................................................................................................................................................
9.3 a) Le sens positif est le sens de propagation de la lumière. Le point F′

1 est après O1 donc O1F′
1 = 40 cm.

.......................................................................................................................................................
9.3 b) Le point F2 est en avant de O2 donc O2F2 = −10 cm.
.......................................................................................................................................................
9.3 c) Le point O1 est en avant de O2 donc O2O1 = −50 cm.
.......................................................................................................................................................
9.3 d) Le point A1 est en avant de F′

2 donc A1F′
2 = 20 cm.

.......................................................................................................................................................

9.4 a) Dans le triangle rectangle O1A1B1, on a tan(α) = A1B1

O1F′
1

. Comme l’objet est très éloigné, l’angle α est
petit ; comme il est exprimé en radians, on peut effectuer l’approximation α ≈ tan(α).
.......................................................................................................................................................

9.4 b) Dans le triangle rectangle O2A1B1, on a tan(α′) = A1B1

O2F′
2

. Comme l’objet est très éloigné, l’angle α′ est

petit ; comme il est exprimé en radians, on peut effectuer l’approximation α′ ≈ tan(α′).
.......................................................................................................................................................
9.4 c) En utilisant les deux expressions trouvées pour α et α′, on trouve :

G = α′

α
= A1B1

f ′
2
× f ′

1
A1B1

= f ′
1
f ′

2
.

.......................................................................................................................................................

9.4 d) Graphiquement, on lit f ′
1 = 16 carreaux et f ′

2 = 4 carreaux. Donc, on a G = f ′
1
f ′

2
= 4. Un objet lointain

observé à travers cette lunette apparaîtra sous un diamètre 4 fois plus important qu’à l’œil nu.
.......................................................................................................................................................
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9.5 Pour se placer dans les conditions de Gauss (stigmatisme approché et aplanétisme), les rayons lumineux
issus d’un objet doivent passer près du centre optique et être peu inclinés par rapport à l’axe optique principal.
.......................................................................................................................................................
9.6 a) Ce schéma est correct car un rayon parallèle au rayon incident passant par le centre optique de la lentille

sans être dévié couperait le rayon émergent dans le plan focal image de la lentille convergente.
.......................................................................................................................................................
9.6 b) Ce schéma est incorrect car le foyer image F′ d’une lentille convergente est situé au-delà de la lentille

et non en avant (par rapport au sens de propagation de la lumière). Ce schéma serait correct si la lentille était
divergente.
.......................................................................................................................................................
9.6 c) Ce schéma est incorrect car un rayon lumineux qui ressort d’une lentille parallèle à l’axe optique principal,

a une direction incidente passant par le foyer objet F. Ceci n’est pas le cas ici puisque le rayon incident passe par
le foyer image F′.
.......................................................................................................................................................
9.6 d) Ce schéma est correct car un rayon incident dont la direction passe par le foyer objet F ressort parallèle

à l’axe optique de la lentille.
.......................................................................................................................................................
9.7 a) On ajoute un rayon incident issu de B parallèle à l’axe optique principal et émergeant en B′.

On trouve la position du foyer image principal F′ à l’intersection entre l’axe optique principal et le rayon tracé.
En mesurant la distance OF′ sur le schéma et en tenant compte de l’échelle du document (8 carreaux sur le document
correspondent à 10 cm en réalité), on trouve : OF′ = 5,0 cm.
.......................................................................................................................................................

9.7 b) En utilisant la définition de la vergence, on a V = 1
f ′ = 1

0,05 m = +20 δ.
.......................................................................................................................................................
9.8 Pour comparer les lentilles, il faut comparer soit leurs distances focales images f ′, soit leurs distances

focales objets f = −f ′, soit leurs vergences V = 1
f ′ .

Remarquons que le lentille d est exclue d’office, car f ′
d = −8,0 cm < 0 donc il s’agit d’une lentille divergente

(f ′ < 0) et non convergente (f ′ > 0).
Calculons les vergences des trois lentilles qui sont encore à considérer. On a :
• pour la lentille a : Va = +8,0 δ ;

• pour la lentille b : Vb = 1
f ′

b

= 1
0,080 m = +12,5 δ ;

• et pour la lentille c : Vc = 1
f ′ = − 1

f
= − 1
−0,100 m = +10,0 δ.

On a Vb > Vc > Va ; donc, c’est la lentille b qui est la plus convergente.
.......................................................................................................................................................

9.9 a) On a R = 2(n− nair)× f ′ = 2(n− nair)
1
V

= 2× (1,67− 1)× 1
6,0 m−1 = 0,22 m.

.......................................................................................................................................................
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9.9 b) La situation c est exclue d’office car l’équation n’est pas homogène (n et nair sont sans dimension
tandis que R est une longueur).

La situation b permet de déduire que f ′ = R

2 , c’est-à-dire une distance finie à laquelle convergent les rayons.

La situation a conduit à f ′−→+∞ : les rayons convergent à l’infini donc ils ne sont pas déviés.
Une autre approche consiste à voir que si les indices de part et d’autre du dioptre sont identiques, il n’y a pas de
déviation (loi de Snell-Descartes). Réponse : a .
.......................................................................................................................................................

9.10 a) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que OA′ = OA×OF′

OA + OF′
.

.......................................................................................................................................................

9.10 b) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que OA = OA′ ×OF′

OF′ −OA′
. Ainsi, OA = OA′ × f ′

f ′ −OA′
.

.......................................................................................................................................................

9.10 c) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que f ′ = OF′ = OA×OA′

OA−OA′
.

.......................................................................................................................................................

9.10 d) On a montré que OA′ = OA×OF′

OA + OF′
. Or, on a OA = −15 cm et OF′ = 4,0 cm.

L’application numérique donne OA′ = −15 cm× 4,0 cm
−15 cm + 4,0 cm = 5,5 cm.

Comme OA′ > 0, l’image A′B′ se situe après la lentille.
.......................................................................................................................................................

9.11 a) On déduit de la relation F′A′ × FA = −f ′2 que FA = −f
′2

F′A′
.

.......................................................................................................................................................
9.11 b) D’après la relation de Chasles, on a OA = OF + FA = −f ′ + FA.
.......................................................................................................................................................

9.11 c) On a montré d’une part que FA = −f
′2

F′A′
et d’autre part que OA = OF + FA.

Les applications numériques donnent :

FA = −(12,0 cm)2

5,0 mm = −(0,120 m)2

5,0 · 10−3 m = −2,88 m et OA = −0,12 m + (−2,88 m) = −3,00 m.

L’objet se trouve à 3 m en avant de la lentille, il s’agit donc d’un objet réel.
.......................................................................................................................................................
9.12 a) Par définition du grandissement, l’image est agrandie car |γ| > 1.
.......................................................................................................................................................
9.12 b) L’image est renversée car γ < 0.
.......................................................................................................................................................
9.13 a) On a OA′ = 15 m et f ′ = 5,00 · 10−2 m. D’après la relation de conjugaison de Descartes, on a :

1
OA′

− 1
OA

= 1
OF′

.

On en déduit que OA = OA′ ×OF′

OF′ −OA′
. Donc, on a OA = 15,0 m× 5,00 · 10−2 m

5,02 · 10−2 m− 15 m = −5,02 · 10−2 m = −5,02 cm.
.......................................................................................................................................................

248 Réponses et corrigés



9.13 b) Le grandissement γ vaut :

γ = A′B′

AB
= OA′

OA
= 15 m
−0,050 2 m = −299.

Ainsi, la largeur de l’image sur l’écran vaut 299× 36 · 10−3 m = 10,8 m. De plus, la hauteur de l’image sur l’écran
vaut 299× 24 · 10−3 m = 7,18 m.
Finalement, les dimensions de l’image sur l’écran sont : 10,8 m× 7,2 m.
.......................................................................................................................................................

9.14 a) On sait que 1
OA′

− 1
OA

= 1
OF′

. Ici, on a OA−→−∞ donc 1
OA
−→ 0−. Finalement, on a OA′−→OF′.

.......................................................................................................................................................

9.14 b) On sait que 1
OA′

− 1
OA

= 1
OF′

. Ici, on souhaite que OA′−→+∞ ; donc on souhaite que 1
OA′

−→ 0+

et donc que OA−→−OF′ = OF.
.......................................................................................................................................................

9.15 a) On a OA′ = OA×OF′

OA + OF′
. Or, on a OA = −6,0 cm et OF′ = 10,0 cm. Donc, on a :

OA′ = −6,0 cm× 10 cm
−6,0 cm + 10 cm = −15 cm.

.......................................................................................................................................................
9.15 b) L’image se situe en avant de la lentille. On l’observera directement à travers la lentille, en regardant

dans la direction de l’objet.
.......................................................................................................................................................

9.15 c) Sa taille se calcule à l’aide de la formule du grandissement : γ = A′B′

AB
= OA′

OA
. Ici, on a :

A′B′ = OA′

OA
×AB = −15 cm

−6,0 cm × 2,0 cm = 5,0 cm.

.......................................................................................................................................................
9.15 d) Le grandissement est positif : il s’agit d’une image droite.
.......................................................................................................................................................

9.16 a) On transforme l’expression 1
f ′ = 1

D+d
2
− 1

−(D−d)
2

en mettant les fractions sous dénominateur commun

et en isolant f ′. On a :

1
f ′ = 1

D+d
2
− 1

−(D−d)
2

= 2
D + d

+ 2
D − d donc 1

f ′ = 2(D − d) + 2(D + d)
(D + d)(D − d) = 4D

D2 − d2 .

Finalement, on trouve f ′ = D2 − d2

4D .
.......................................................................................................................................................

9.16 b) En remplaçant d par D4 , on arrive à f ′ =
D2 − D2

16
4D = 15D

64 .
.......................................................................................................................................................

9.16 c) En remplaçant f ′ par D4 , on arrive à D

4 = 4D
D2 − d2 et donc à D2 = D2 − d2. Ainsi, on a d = 0.

.......................................................................................................................................................
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Fiche no 10. Cinématique

Réponses

10.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 h 6 min 40 s

10.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 min 20 s

10.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0 × τ1

10.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0 × τ1
2

2

10.2 c) . . . . . . . . . . . . . . . . . . . . a0 × τ1 ×
(τ1

2 + τ2

)
10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

10.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

10.5 a) . . . . . . . . . . . . . . . . . . a(cos(θ) #»ex + sin(θ) #»ey)

10.5 b) . . . . . . . . . a

(
cos(θ) #»ex +

(
sin(θ) + b

a

)
#»ey

)

10.5 c) . . . . . . a

(
2 cos(θ) #»ex +

(
2 sin(θ) + b

a

)
#»ey

)
10.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −b #»ey

10.6 a) . . . . . . . . . . . . . . . . . . r(cos(θ) #»ex + sin(θ) #»ey)

10.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er

10.6 c). . . . . . . . . . . . . r(cos(θ) #»ex + sin(θ) #»ey) + z #»ez

10.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er + z #»ez

10.7 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |r sin(θ)|

10.7 b) . . . . . . . . . . . r sin(θ)(cos(φ) #»ex + sin(φ) #»ey)

10.7 c). . . r sin(θ)(cos(φ) #»ex + sin(φ) #»ey) + r cos(θ) #»ez

10.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er

10.7 e) . . . . . . . . . . . . . . . . . . . . . cos(θ) #»er − sin(θ) #»eθ

10.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49,4 km · h−1

10.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,0 m · s−2

10.9 a) . . . . . . aω(− sin(ωt) #»ex + cos(ωt) #»ey) + b #»ez

10.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

(aω)2 + b2

10.9 c) . . . . . . . . . . . . −aω2(cos(ωt) #»ex + sin(ωt) #»ey)

10.9 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . aω2

10.10 a) . . . . . . . . . . . . . . . . . . . . . . . cos θ #»ex + sin θ #»ey

10.10 b) . . . . . . . . . . . d #»er

dt = θ̇(− sin θ #»ex + cos θ #»ey)

10.10 c) . . . . . . . . . . . . . . . . . . #»ex = cos θ #»er − sin θ #»eθ

10.10 d). . . . . . . . . . . . . . . . . . #»ey = sin θ #»er + cos θ #»eθ

10.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d #»er

dt = θ̇ #»eθ

10.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

T

10.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
T 2

10.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a #»er

10.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2abt2 #»eθ

10.11 e). . . . . . . . . . . . . . . . . . . . . . . . . . a #»er + 2abt2 #»eθ

10.12 a) . . . . . . . . . . . . . . . . r0e−t/τ

(
− 1
τ

#»er + ω #»eθ

)

10.12 b) . . . . r0e−t/τ

((
1
τ2 − ω2

)
#»er −

(
2ω
τ

)
#»eθ

)
10.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . orthoradiale

10.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . décéléré

10.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = r0e−θ

10.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −at+ v0

10.13 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . at

10.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −1
2at

2 + v0t

10.13 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2at

2 + L
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10.13 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 cm

10.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v0xt

10.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . −1
2gt

2 + v0zt

10.14 c) . . . . . . . . . . . . . . . . . . z = − g

2v2
0x

x2 + v0z

v0x
x

10.15 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,7 s

10.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,9 m

Corrigés

10.1 a) La voiture avance à vitesse constante. Pour parcourir 100 km, il lui faudra le temps :

τ = 100 km
90 km · h−1 = 1,11 h = 1 h 6 min 40 s.

.......................................................................................................................................................

10.1 b) Pour parcourir 100 km à 80 km · h−1, il lui faudrait le temps τ ′ = 100 km
80 km · h−1 = 1,25 h. Le temps de

trajet serait donc allongé de ∆t = τ ′ − τ = 0,14 h = 8 min 20 s.
.......................................................................................................................................................
10.2 a) L’accélération est constante durant le temps τ1 et la vitesse initiale est nulle. La vitesse à un instant t

vaut donc v(t) = a0 × t, d’où v1 = v(τ1) = a0 × τ1.
.......................................................................................................................................................
10.2 b) Pour t ∈ [0, τ1], la vitesse est décrite par l’équation : v(t) = a0 × t. La distance parcourue à la date t

s’écrit donc d(t) = 1
2a0 × t2. Ainsi, on a d1 = d(τ1) = a0 × τ1

2

2 .
.......................................................................................................................................................
10.2 c) La distance totale parcourue est dtot = d1 +d2, avec d1 évaluée à la question précédente et d2 la distance

parcourue par le véhicule dans la seconde phase du mouvement où il progresse à vitesse constante.

Or, on a d2 = v1 × τ2. Ainsi, on a dtot = a0 × τ1 ×
(
τ1

2 + τ2

)
.

.......................................................................................................................................................
10.3 À t = 0, l’avion a une vitesse nulle. Sa vitesse au temps t s’écrit alors v(t) = a × t et la distance qu’il

parcourt vaut d(t) = 1
2a× t

2.

D’abord le temps td où l’avion atteint la vitesse vd vaut td = vd

a
.

Pour faire l’application numérique, il nous faut exprimer la vitesse vd en m · s−1. On a :

vd = 180× 103 m
3 600 s = 50 m · s−1 et donc td = 50 m · s−1

2,5 m · s−2 = 20 s.

La longueur de la piste correspond à la distance parcourue pendant cette durée, donc :

L = 1
2a× td

2 = vd
2

2a = (50 m · s−1)2

2× 2,5 m · s−2 = 500 m.

.......................................................................................................................................................

Réponses et corrigés 251



10.4 La vitesse de la voiture à un instant t s’écrit v(t) = vi − a× t avec :

vi = 110 km · h−1 = 110× 103 m
3 600 s = 30,6 m · s−1.

Ainsi, le véhicule s’arrêtera à la date ta telle que vi − a× t = 0 m · s−1. On a ta = vi

a
= 30,6 m · s−1

10 m · s−2 = 3,06 s.

La distance parcourue pendant le freinage vaut d(t) = vi × t−
1
2a× t

2.

La distance d’arrêt da correspond à la distance parcourue pendant la durée ta : c’est da = vi
2

2a = 46,7 m.
.......................................................................................................................................................
10.5 a) On a #    »OA = a(cos(θ) #»ex + sin(θ) #»ey).
.......................................................................................................................................................

10.5 b) On a #   »OB = #    »OA + #   »AB = a
(

cos(θ) #»ex +
(

sin(θ) + b

a

)
#»ey

)
.

.......................................................................................................................................................

10.5 c) On a #    »OA + #   »OB = a
(

2 cos(θ) #»ex +
(

2 sin(θ) + b

a

)
#»ey

)
.

.......................................................................................................................................................
10.5 d) On a #    »OA− #   »OB = #   »BA = −b #»ey.
.......................................................................................................................................................
10.6 a) On a

#      »

OM′ = r(cos(θ) #»ex + sin(θ) #»ey).
.......................................................................................................................................................
10.6 b) On a

#      »

OM′ = r #»er.
.......................................................................................................................................................
10.6 c) On a #     »OM = r(cos(θ) #»ex + sin(θ) #»ey) + z #»ez.
.......................................................................................................................................................
10.6 d) On a #     »OM = r #»er + z #»ez.
.......................................................................................................................................................
10.7 a) On a

∥∥ #      »

OM′∥∥ = |r sin(θ)|.
.......................................................................................................................................................
10.7 b) On a

#      »

OM′ = r sin(θ)(cos(φ) #»ex + sin(φ) #»ey).
.......................................................................................................................................................
10.7 c) On a #     »OM =

#      »

OM′ +
#       »

M′M = r sin(θ)(cos(φ) #»ex + sin(φ) #»ey) + r cos(θ) #»ez.
.......................................................................................................................................................
10.7 d) On a #     »OM = r #»er.
.......................................................................................................................................................
10.7 e) Calculons les projections de #»ez sur les trois vecteurs de la base sphérique. On a :

#»ez · #»er = cos(θ)
#»ez · #»eθ = cos

(
θ + π

2

)
= − sin(θ)

#»ez · # »eφ = 0.

Par conséquent, on a :
#»ez = ( #»ez · #»er) #»er + ( #»ez · #»eθ) #»eθ + ( #»ez · # »eφ) # »eφ = cos(θ) #»er − sin(θ) #»eθ.

.......................................................................................................................................................
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10.8 a) La vitesse de la balle à l’instant t1 s’écrit #»v (M, t1) = vx(t1) #»ex + vy(t1) #»ey, avec :

vx(t1) ≃ x(t1 + ∆t)− x(t1)
∆t , vy(t1) ≃ y(t1 + ∆t)− y(t1)

∆t et ∆t = 0,05 s.

Nous obtenons le tableau suivant :
t (en s) 0 0,05 0,10 0,15

vx (en m · s−1) 7 7 7 7
vy (en m · s−1) 11,8 11,4 11,0 10,6

À l’instant initial, nous pouvons écrire : v0 ≃
√(

7 m · s−1)2 +
(
11,8 m · s−1)2 = 13,72 m · s−1 = 49,4 km · h−1.

.......................................................................................................................................................
10.8 b) L’accélération de la balle à l’instant t1 s’écrit #»a (M, t1) = ax(t1) #»ex + ay(t1) #»ey, avec :

ax(t1) ≃ vx(t1 + ∆t)− vx(t1)
∆t , ay(t1) ≃ vy(t1 + ∆t)− vy(t1)

∆t et ∆t = 0,05 s.

Ceci donne :

ax(0) ≃ 7 m · s−1 − 7 m · s−1

0,05 s = 0 m · s−2 et ay(0) ≃ 11,4 m · s−1 − 11,8 m · s−1

0,05 s = −8 m · s−2.

L’accélération initiale vaut donc a0 ≃
√(

0 m · s−2)2 +
(
−8 m · s−2)2 = 8,0 m · s−2.

.......................................................................................................................................................
10.9 a) On a #»v (M) = ẋ #»ex + ẏ #»ey + ż #»ez = aω

(
− sin(ωt) #»ex + cos(ωt) #»ey

)
+ b #»ez.

.......................................................................................................................................................

10.9 b) On a
∥∥ #»v (M)

∥∥ =
√
ẋ2 + ẏ2 + ż2 =

√
(aω)2( sin(ωt)2 + cos(ωt)2

)
+ b2 =

√
(aω)2 + b2.

.......................................................................................................................................................
10.9 c) On a #»a (M) = ẍ #»ex + ÿ #»ey + z̈ #»ez = −aω2( cos(ωt) #»ex + sin(ωt) #»ey

)
.

.......................................................................................................................................................
10.9 d) On a

∥∥ #»a (M)
∥∥ =

√
ẍ2 + ÿ2 + z̈2 = aω2.

.......................................................................................................................................................
10.11 a) On a a = r

t
. Ainsi, a est homogène à une longueur sur un temps.

.......................................................................................................................................................

10.11 b) On a b = θ

t2
. Ainsi, b est homogène à un angle sur un temps au carré. Comme un angle est une grandeur

sans dimension, on a bien le résultat donné.
.......................................................................................................................................................
10.11 c) La vitesse radiale est #»v (M)r = ṙ #»er = a #»er.
.......................................................................................................................................................
10.11 d) La vitesse orthoradiale est #»v (M)θ = rθ̇ #»eθ = 2abt2 #»eθ.
.......................................................................................................................................................
10.11 e) On a #»v (M) = a #»er + 2abt2 #»eθ.
.......................................................................................................................................................

10.12 a) On a #»v (M) = ṙ #»er + rθ̇ #»eθ = r0e−t/τ
(
− 1
τ

#»er + ω #»eθ

)
.

.......................................................................................................................................................

10.12 b) On a #»a (M) = r0e−t/τ
(( 1

τ2 − ω
2
)

#»er −
(

2ω
τ

)
#»eθ

)
.

.......................................................................................................................................................
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10.12 c) On a ω = 4,78 tour ·min−1 = 4,78× 2π rad
60 s = 0,5 rad · s−1 et 1

τ2 − ω
2 =

( 1
22 − ω

2
)

= 0 s−2.

Ainsi, on a #»a (M, t) = −2r0ω

τ
e−t/τ #»eθ. L’accélération est donc orthoradiale.

.......................................................................................................................................................

10.12 d) On a #»a (M, t) · #»v (M, t) = r0
2e−2t/τ

(
− 1
τ

( 1
τ2 − ω

2
)
− 2ω

2

τ

)
= r0

2e−2t/τ

(
− 1
τ3 −

ω2

τ

)
< 0. Le mouve-

ment est donc décéléré.
.......................................................................................................................................................

10.12 e) On a r = r0e
−t/τ et t = θ

ω
. Donc, on a r = r0e−θ/(ω×τ) = r0e−θ car ωτ = 1.

.......................................................................................................................................................

10.13 a) On a #»a (A) = d #»v (A)
dt . En projetant sur l’axe (0, #  »ex′ ), on obtient −a = dvA

dt . Puis, en calculant

ˆ vA(t)

v0

dvA =
ˆ t

0
−adt,

on obtient vA(t) = −at+ v0.
.......................................................................................................................................................

10.13 b) On a #»a (B) = d #»v (B)
dt . En projetant sur l’axe (0, #  »ex′ ), on obtient a = dvB

dt . Puis, en calculant

ˆ vB(t)

0
dvB =

ˆ t

0
adt,

on obtient vB(t) = at.
.......................................................................................................................................................

10.13 c) Sur l’axe (0, #  »ex′ ), on a vA(t) = dx′
A

dt . Donc, on a
ˆ x′

A(t)

0
dx′

A =
ˆ t

0
vA dt =

ˆ t

0
(−at+ v0) dt.

Donc, on a x′
A(t) = −1

2at
2 + v0t.

.......................................................................................................................................................

10.13 d) Sur l’axe (0, #  »ex′ ), on a vB(t) = dx′
B

dt . Donc, on a
ˆ xB(t)

L

dx′
B =

ˆ t

0
vB dt =

ˆ t

0
atdt.

Donc, on a x′
B(t) = 1

2at
2 + L.

.......................................................................................................................................................

10.13 e) Nous observerons une collision à la date t1 si x′
A(t1) = x′

B(t1) donc si −1
2at

2
1 + v0t1 = 1

2at
2
1 + L.

Donc, t1 doit être une solution réelle positive de l’équation suivante :

t21 −
v0

a
t1 + L

a
= 0,

ce qui impose une valeur positive pour son discriminant ∆ =
(
v0

a

)2
− 4L

a
⩾ 0. Donc, on doit avoir L ⩽

v2
0

4a .

Après application numérique, on trouve que la distance L doit vérifier L ⩽ 67 cm.
.......................................................................................................................................................
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10.14 a) On a #»a = d #»v

dt = #»g . En projetant, nous obtenons :
dvx

dt = 0
dvz

dt = −g.

Donc, on a vx = Cte = v0x. En intégrant une deuxième fois, vu que M est initialement en O, on obtient : x(t) = v0xt.
.......................................................................................................................................................

10.14 b) On a #»a = d #»v

dt = #»g . En projetant, nous obtenons :
dvx

dt = 0
dvz

dt = −g.

Donc, en intégrant, on a
ˆ vz(t)

v0z

dvz =
ˆ t

0
−g · dt donc vz = −gt + v0z. En intégrant une deuxième fois, vu que M

est initialement en O, on obtient :
z(t) = −1

2gt
2 + v0zt.

.......................................................................................................................................................
10.14 c) À partir de l’expression de x(t), on peut écrire t = x/v0x. On remplace t par cette expression dans z :

z = −1
2g(x/v0x)2 + v0zx/v0x.

Finalement, on trouve l’équation z = − g

2v2
0x

x2 + v0z

v0x
x.

.......................................................................................................................................................
10.15 a) On suppose que le lion et la gazelle se déplacent en ligne droite sur l’axe (Ox). On prend l’origine des

temps au moment où la gazelle aperçoit le lion et l’origine de l’axe (Ox) à la position du lion quand la gazelle
l’aperçoit.
On intègre deux fois pour avoir la position du lion xL puis celle de la gazelle xG en fonction de temps :xL(t) = v0t+ 1

2aLt
2

xG(t) = d0 + 1
2aGt

2,

avec v0 = 5,0 m · s−1, aL = 3,0 m · s−2, aG = 2,0 m · s−2 et d0 = 10 m.
Puis, on égalise ces deux positions pour déterminer le temps t1 où le lion attrape la gazelle. On obtient une équation
du second degré sur t1 :

aL − aG

2 t21 + v0t1 − d0 = 0. (∗)

On résout cette équation du second degré qui admet deux racines réelles dont l’une est négative. Le temps cherché

est la racine positive : c’est t1 = −v0 +
√

∆
aL − aG

où ∆ = v2
0 + 2d0(aL − aG) est le discriminant de l’équation (∗).

On trouve finalement t1 = 1,7 s.
.......................................................................................................................................................

10.15 b) La gazelle aura parcouru la distance d = 1
2aGt

2
1, avec aG = 2,0 m · s−2 et t1 = 1,7 s le temps mis par le

lion pour rattraper la gazelle. Finalement, on trouve d = 2,9 m.
.......................................................................................................................................................
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Fiche no 11. Principe fondamental de la dynamique

Réponses

11.1 . . . . . . . . . . . . . . . . . . . . . . . . . p+m1v1 +m2v2
m1 +m2

11.2 a). . . . . . . . . . . . . . . .
√

(mRω2 − T )2 + (mg)2

11.2 b) . . . . . . . . . . . . . . . . . . . arctan
(
mRω2 − T

mg

)
11.3 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0(t− t0)

11.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

11.3 c) . . . . . . . . . . . . . . . . . . . . . . . a0
k

[
1 − e−k(t−t0)

]
11.4 a). . . . . . . . . . . . . . . . . . . . . cos(α) #»ex + sin(α) #»ey

11.4 b) . . . . . . . . . . . . . . . . . . − sin(α) #»ex + cos(α) #»ey

11.4 c) . . . . . . . . . . . . . . . . . . . . . cos(α) #»ex + sin(α) #»ey

11.4 d) . . . . . . . . . . . . . . . . . . − sin(α) #»ex + cos(α) #»ey

11.5 a). . . . . . . . . . . . . . . −P sin(α) #»ex − P cos(α) #»ey

11.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N #»ey

11.6 a) . . . . . . . . . . . . . . . . . P cos(θ) #»er − P sin(θ) #»eθ

11.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −T #»er

11.6 c) . . . . . . . . . . . (P cos(θ) − T ) #»er − P sin(θ) #»eθ

11.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P #»ex

11.7 b) . . . . . . . . . . . . . . . −T cos(θ) #»ex − T sin(θ) #»ey

11.7 c) . . . . . . . . . . . (P − T cos(θ)) #»ex − T sin(θ) #»ey

11.8 a) . . . . . . . . .
(

1
2a0t

2 + x0

)
#»ex − v0t

#»ey + z0
#»ez

11.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . a0t
#»ex − v0

#»ey

11.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0
#»ex

11.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g #»ez

11.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v0
#»ex + gt #»ez

11.9 c). . . . . . . . . . . . (v0t+ x0) #»ex + y0
#»ey + 1

2gt
2 #»ez

11.10 a) . . . . . . . . . . . . . . . . . . . . cos(θ) #»ex + sin(θ) #»ey

11.10 b) . . . . . . . . . . . . . . . . . . − sin(θ) #»ex + cos(θ) #»ey

11.10 c) . . . . . . . . . . . . . . . −θ̇ sin(θ) #»ex + θ̇ cos(θ) #»ey

11.10 d) . . . . . . . . . . . . . . . −θ̇ cos(θ) #»ex − θ̇ sin(θ) #»ey

11.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ̇ #»eθ

11.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −θ̇ #»er

11.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

11.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . ṙ #»er + rθ̇ #»eθ

11.12 b) . . . . . . . . . . . .
(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ

11.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 N

11.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,46 rad

11.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . (T ′ − T ) cos θ

11.14 b) . . . . . . . . . . . . . . . . . . . . . (T ′ + T ) sin θ − F

11.14 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,17 kN

11.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6 N

11.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 N

11.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P cosα

11.17 b) . . . . . . . . . . . . . . . . . . . . . . −mdv
dt + P sinα

11.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1
2m

11.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g − T2
m

11.18 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g

3
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Corrigés

11.2 a) Pour obtenir F , il faut pouvoir éliminer α. L’astuce consiste à utiliser l’identité suivante :

sin2 α+ cos2 α = 1.

On a
{
F sinα = mRω2 − T
F cosα = mg

, soit F 2(sin2 α + cos2 α) = F 2 =
(
mRω2 − T

)2 + (mg)2. Finalement, l’intensité

d’une force étant positive, on trouve F =
√

(mRω2 − T )2 + (mg)2.
.......................................................................................................................................................

11.2 b) Quand on écrit le système sous la forme
{
F sinα = mRω2 − T
F cosα = mg

, on s’aperçoit qu’il suffit de faire le

rapport des deux équations pour éliminer F . On obtient :

tanα = mRω2 − T
mg

, d’où α = arctan
(
mRω2 − T

mg

)
.

.......................................................................................................................................................
11.3 a) La solution générale s’écrit v(t) = a0t+C1, où C1 est une constante d’intégration que l’on détermine à

l’aide de la condition v(t0) = 0. Cette condition donne C1 = −a0t0, d’où la solution v(t) = a0(t− t0).
.......................................................................................................................................................
11.3 b) La solution générale s’écrit v(t) = Ae−kt. La condition initiale v(t0) = 0 implique A = 0 puisque e−kt > 0

pour tout t. Ainsi la solution est v(t) = 0.
.......................................................................................................................................................
11.3 c) La solution de l’équation homogène est v(t) = Ae−kt. Une solution particulière (constante) est v = a0

k
.

Les solutions sont v(t) = Ae−kt + a0

k
. La condition initiale v(t0) = 0 donne A = −a0

k
ekt0 . Il en découle la solution

générale : v(t) = a0

k

[
1− e−k(t−t0)].

.......................................................................................................................................................
11.4 a)

La composante suivant #»ex correspond au produit scalaire :
#»a · #»ex = 1× cos(α).

De même, la composante suivant #»ey est le produit scalaire
#»a · #»ey = 1× cos(π/2− α) = a sin(α). On peut retrouver ces ré-
sultats géométriquement (cf. ci-contre).

#»ex

#»ey

#»a

α

cosα #»ex

sinα #»ey

.......................................................................................................................................................
11.4 b)

Sur le schéma proposé, −π/2 < α < 0. On peut introduire β tel
que β − α = π/2. La composante suivant #»ex vaut :

bx = #»

b · #»ex = cos(β) = cos(π/2 + α) = − sin(α).

De même, la composante suivant #»ey vaut :

by = #»

b · #»ey = sin(β) = cos(α).

On peut vérifier le résultat pour quelques situations : α = 0, où
#»

b = #»ey ; ou bien α = −π/2, où #»

b = #»ex.

#»ex

#»ey #»

b

α
β

cosβ #»ex

sin β #»ey

.......................................................................................................................................................

Réponses et corrigés 257



11.4 c)

Il s’agit de la même situation que pour le vecteur #»a mais avec
un angle α orienté comme sur le schéma proposé et donc tel que
−π/2 < α < 0. On a :

cx = #»c · #»ex = cos(α) et cy = #»c · #»ey = sin(α).

On retrouve ces projections à l’aide de la construction ci-contre.

#»ex

#»ey

#»c

α

cosα #»ex

sinα #»ey

.......................................................................................................................................................
11.4 d)

On trouve :

dx = #»

d · #»ex = cos(π/2 + α) = − sin(α)

et
dy = #»

d · #»ey = cos(α).
La construction ci-contre confirme ces projections.

#»ex

#»ey#»

d

α

− sinα #»ex

cosα #»ey

.......................................................................................................................................................
11.5 a) La composante suivant #»ex du poids est Px = #»

P · #»ex = P cos(α + π/2) = −P sin(α). De même, sa
composante suivant #»ey s’écrit Py = #»

P · #»ey = P cos(α+ π) = −P cos(α). Ainsi, le poids s’écrit :
#»
P = −P sin(α) #»ex − P cos(α) #»ey.

.......................................................................................................................................................
11.5 b) Le vecteur #»

N est colinéaire au vecteur unitaire #»ey et de même sens ; on a donc #»
N = N #»ey.

.......................................................................................................................................................
11.6 a) La composante suivant #»er du poids est Pr = #»

P · #»er = P cos(θ). De même, sa composante suivant #»eθ

s’écrit Pθ = #»
P · #»eθ = P cos(α+ π/2) = −P sin(θ). Ainsi, le poids s’écrit :

#»
P = P cos(θ) #»er − P sin(θ) #»eθ.

.......................................................................................................................................................
11.6 b) Le vecteur #»

T est colinéaire au vecteur unitaire #»er et de sens opposé ; on a donc #»
T = −T #»er.

.......................................................................................................................................................
11.7 a) Le poids #»

P est colinéaire et de même sens que le vecteur unitaire #»ex ; on a donc #»
P = P #»ex.

.......................................................................................................................................................
11.7 b) La composante suivant #»ex de la tension du fil #»

T est Tx = #»
T · #»ex = T cos(π − θ) = −T cos(θ).

De même, sa composante suivant #»ey vaut Ty = #»
T · #»ey = T cos(π/2 + θ) = −T sin(θ). Finalement, on trouve :

#»
T = −T cos(θ) #»ex − T sin(θ) #»ey.

.......................................................................................................................................................
11.8 a) Le vecteur position est le vecteur #     »OM = x #»ex + y #»ey + z #»ez, d’où :

#     »OM =
(1

2a0t
2 + x0

)
#»ex − v0t

#»ey + z0
#»ez.

.......................................................................................................................................................
11.8 b) Dans le système de coordonnées cartésiennes, le vecteur vitesse s’écrit :

#»v = ẋ #»ex + ẏ #»ey + ż #»ez = a0t
#»ex − v0

#»ey.

.......................................................................................................................................................
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11.8 c) Dans le système de coordonnées cartésiennes, le vecteur accélération s’exprime en fonction des dérivées
secondes des coordonnées : #»a = ẍ #»ex + ÿ #»ey + z̈ #»ez = a0

#»ex.
.......................................................................................................................................................
11.9 a) D’après le principe fondamental de la dynamique, on a mg #»ez = m #»a , d’où #»a = g #»ez.
.......................................................................................................................................................
11.9 b) L’accélération s’écrit #»a = v̇x

#»ex + v̇y
#»ey + v̇z

#»ez. On en déduit :{
v̇x = 0
v̇y = 0
v̇z = g

donc

{
vx = C1
vy = C2
vz = gt+ C3.

Les conditions initiales imposent C1 = v0, C2 = 0 et C3 = 0. Finalement, on trouve #»v = v0
#»ex + gt #»ez.

.......................................................................................................................................................
11.9 c) Le vecteur vitesse s’écrit #»v = ẋ #»ex + ẏ #»ey + ż #»ez.

Par identification avec l’expression obtenue précédemment, on a :{
ẋ = v0
ẏ = 0
ż = gt

donc


x = v0t+ C4
y = C5

z = 1
2gt

2 + C6.

Les conditions initiales imposent C4 = x0, C5 = y0 et C6 = 0. Finalement, on trouve :

#     »OM = (v0t+ x0) #»ex + y0
#»ey + 1

2gt
2 #»ez.

.......................................................................................................................................................
11.10 a) On a #»er · #»ex = cos(θ) et #»er · #»ey = cos(π/2− θ) = sin(θ), d’où #»er = cos(θ) #»ex + sin(θ) #»ey.
.......................................................................................................................................................
11.10 b) On a #»eθ · #»ex = cos(π/2 + θ) = − sin(θ) et #»eθ · #»ey = cos(θ), d’où #»eθ = − sin(θ) #»ex + cos(θ) #»ey.
.......................................................................................................................................................
11.10 c) Il suffit de dériver le vecteur #»er = cos(θ) #»ex +sin(θ) #»ey, en utilisant le fait que #»ex et #»ey sont des constantes

(vectorielles). On a donc d #»er

dt = d cos(θ)
dt

#»ex + d sin(θ)
dt

#»ey. Ici, θ dépend du temps, par conséquent on a :

d cos(θ)
dt = dθ

dt ×
d cos(θ)

dθ = −θ̇ sin(θ).

De même, on a d sin(θ)
dt = θ̇ cos(θ). Finalement, on trouve :

d #»er

dt = −θ̇ sin(θ) #»ex + θ̇ cos(θ) #»ey.

.......................................................................................................................................................
11.10 d) En partant de #»eθ = − sin(θ) #»ex + cos(θ) #»ey, on trouve :

d #»eθ

dt = −d sin(θ)
dt

#»ex + d cos(θ)
dt

#»ey = −θ̇ cos(θ) #»ex − θ̇ sin(θ) #»ey.

.......................................................................................................................................................
11.11 Le vecteur #     »OM est colinéaire et de même sens que #»er. Sa norme étant égale à r, on a #     »OM = r #»er.
.......................................................................................................................................................
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11.12 a) Il suffit de dériver le vecteur position en utilisant les résultats des exercices précédents. On trouve :

#»v = d #     »OM
dt = dr

dt
#»er + r

d #»er

dt = ṙ #»er + rθ̇ #»eθ.

.......................................................................................................................................................
11.12 b) Dérivons le vecteur vitesse :

#»a = d #»v

dt = dṙ
dt

#»er + ṙ
d #»er

dt + d(rθ̇)
dt

#»eθ + rθ̇
d #»eθ

dt =
(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ.

.......................................................................................................................................................
11.13 a) Calculons le carré scalaire :

#»
T 2 = (− #»

F − #»
P )2 = F 2 + P 2 + 2 #»

F · #»
P = 5,

car #»
F · #»

P = 0. Par conséquent, T =
√

5 N2 ≃ 2,2 N.
.......................................................................................................................................................
11.13 b) Une construction géométrique permet de trouver immédiatement l’angle α :

#»
F

#»
P − #»

T

α
tanα = F/P soit α = 0,46 rad.

On peut aussi utiliser les produits scalaires. Par exemple :
#»
T · #»

F = T × F cos(π/2 + α) = −TF sinα.

De plus, compte tenu de l’équilibre des forces, on a :
#»
T · #»

F = (− #»
F − #»

P ) · #»
F = −F 2 − #»

P · #»
F = −F 2.

Il en découle sinα = F/T , soit α = 0,46 rad (c’est-à-dire α = 26°).
.......................................................................................................................................................
11.14 a) On a #»

R = #»
T +

# »

T ′ + #»
F . La composante horizontale de #»

R vaut :

Rx = #»
R · #»ex = #»

T · #»ex︸ ︷︷ ︸
−T cos θ

+
# »

T ′ · #»ex︸ ︷︷ ︸
T ′ cos θ

+ #»
F · #»ex︸ ︷︷ ︸

0

= (T ′ − T ) cos θ.

.......................................................................................................................................................
11.14 b) La composante verticale de #»

R s’écrit :

Ry = #»
R · #»ey = #»

T · #»ey︸ ︷︷ ︸
T sin θ

+
# »

T ′ · #»ey︸ ︷︷ ︸
T ′ sin θ

+ #»
F · #»ey︸ ︷︷ ︸

−F

= (T ′ + T ) sin θ − F.

.......................................................................................................................................................
11.14 c) Résoudre l’équation vectorielle #»

R = #»0 , c’est résoudre le système d’équations suivant :{
(T ′ − T ) cos θ = 0

(T ′ + T ) sin θ − F = 0 soit

{
T ′ = T

T = F

2 sin θ .

Sachant que F = 800 N et θ = 20°, on obtient T = 1,17 kN.
.......................................................................................................................................................
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11.15 Le principe fondamental de la dynamique impose m #»g + #»
F = m #»a . En projetant la relation précédente

suivant la verticale descendante, on obtient mg − F = ma, ce qui donne F = m(g − a) = 1,6 N.
.......................................................................................................................................................
11.16 L’homme subit son poids #»

P = m #»g et la force de contact due à l’ascenseur − #»
F (principe des actions

réciproques). Le principe fondamental de la dynamique donne m #»g − #»
F = m #»a . En projetant sur la verticale

ascendante, on obtient ma = −mg + F , soit F = m(a+ g) = 80 kg × 10,8 m · s−2 = 864 N.
.......................................................................................................................................................

11.17 a) Le principe fondamental de la dynamique donne #»
P + #»

fn + #»

ft = m #»a , avec #»a = dv
dt

#»et ( #»et est le vecteur
unitaire orienté suivant le vecteur vitesse ; c’est le vecteur tangent au vecteur vitesse dans la base de Frenet). Si
l’on projette la relation suivant la normale #»en au support, on aboutit à :

#»
P · #»en︸ ︷︷ ︸

P cos(π−α)

+ #»

fn · #»en︸ ︷︷ ︸
fn

+ #»

ft · #»en︸ ︷︷ ︸
0

= m
dv
dt

#»et · #»en︸ ︷︷ ︸
0

,

ce qui donne fn = −P cos(π − α) = P cosα.
.......................................................................................................................................................
11.17 b) En projetant la relation fondamentale de la dynamique suivant la direction tangentielle au support, on

obtient :
#»
P · #»et︸ ︷︷ ︸

P cos(π/2−α)

+ #»

fn · #»et︸ ︷︷ ︸
0

+ #»

ft · #»et︸ ︷︷ ︸
−ft

= m
dv
dt

#»et · #»et︸ ︷︷ ︸
1

,

c’est-à-dire ft = −mdv
dt + P sinα.

.......................................................................................................................................................
11.18 a) Le principe fondamental appliqué au bloc B1 donne 2m #»g + #»

R+ # »
T1 = 2m #»a1. En projetant cette relation

suivant le sens du mouvement, on obtient :

2m #»g · #»ex︸ ︷︷ ︸
0

+ #»
R · #»ex︸ ︷︷ ︸

0

+ # »
T1 · #»ex︸ ︷︷ ︸

T1

= 2m #»a1 · #»ex︸ ︷︷ ︸
a1

soit a1 = T1

2m.

.......................................................................................................................................................
11.18 b) Le principe fondamental appliqué au bloc B2 donne m #»g + # »

T2 = m #»a2. En projetant cette relation suivant
le sens du mouvement, on obtient :

m #»g · #»ey︸ ︷︷ ︸
g

+ # »
T2 · #»ey︸ ︷︷ ︸

−T2

= m #»a2 · #»ey︸ ︷︷ ︸
a2

soit a2 = g − T2

m
.

.......................................................................................................................................................
11.18 c) On a les relations :

a1 = T1

2m et a2 = g − T2

m
.

Multiplions la première relation par 2m, et la deuxième par m, puis additionnons-les. On trouve :

2ma1 +ma2 = T1 +mg − T2.

Comme a1 = a2 et T1 = T2, on obtient 3ma1 = mg, soit a1 = a2 = g/3.
.......................................................................................................................................................
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Fiche no 12. Approche énergétique en mécanique

Réponses

12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mg(ℓ− y)

12.2 b) . . . . . . . . . . . . . . . . . . . . . . mg(x sin(α) −H)

12.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −mgR cos(θ)

12.2 d) . . . . . . . . . . . . . . . . . mgr
(

cos(ψ) − 1
)

+ E0

12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.4 a) . . . . . . . . . . . . . . . . . . . . . 1
2k(y − ℓ0)2 − kℓ0

2

2

12.4 b) . . 1
2k
(

x

cos(β) − ℓ0

)2

− 1
2k
(

L

sin(β) − ℓ0

)2

12.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . E0 + k(x− ℓ0)2

12.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −hℓ

12.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −hRα

12.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . −(2a+ 2b)h

12.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . −(a+ b+ c)h

12.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 − v0
2

2gℓ

12.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . 0,65 rad = 37°

12.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,8 m · s−1

12.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,11 m

12.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,0 m

12.9 a) . . . . . . . . . . . . . . . z̈ + α

m
ż + k

m
z = g + kℓ0

m

12.9 b). . . . . . . . . . . . . . . . . . . . . . ζ + α

m
ζ̇ + k

m
ζ = 0

12.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

12.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

12.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

12.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
12.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

12.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

12.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

12.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33,6 m/s
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Corrigés

12.2 a) L’axe est ici orienté vers le bas, on a donc Epp(y) = −mgy +K1. On veut Epp(ℓ) = 0, d’où K1 = mgℓ.
Finalement, on a Epp(y) = mg(ℓ− y).
.......................................................................................................................................................
12.2 b) On peut raisonner de deux manières :

• La coordonnée verticale (axe de #»g ) z est liée à x par z = x sin(α). On a donc Epp = mgx sin(α) +K2.
L’énergie potentielle étant nulle en z = H, on a Epp(x) = mg(x sin(α)−H).

• Dans le repère (O, #»ex,
#»ey), on a #»g = −g sin(α) #»ex − g cosα #»ey.

On en déduit le travail élémentaire pour un déplacement selon x :

δW = −mg sin(α) dx = −d(mgx sin(α) +K2) = −dEpp.

On en déduit que Epp(x) = mgx sin(α) +K2.

L’énergie potentielle devant être nulle en S, qui correspond à x = H

sin(α) , on a K2 = −mgH, d’où le résultat.
.......................................................................................................................................................
12.2 c) Dans la base polaire, l’accélération de la pesanteur s’écrit #»g = g cos(θ) #»er − g sin(θ) #»eθ. Donc, le travail

élémentaire pour un déplacement sur le cercle (selon #»eθ) est :

δW = m #»g · d #     »OM = −mg sin(θ)R dθ = −d(−mgR cos(θ) +K3) = −dEpp.

On a donc Epp(θ) = −mgR cos(θ) +K3 et, comme on veut Epp(π/2) = 0, on a K3 = 0. Ainsi, on a :

Epp(θ) = −mgR cos(θ).

.......................................................................................................................................................
12.2 d) Fixons un axe (Oz) vertical ascendant avec O au centre du cercle. L’énergie potentielle de pesanteur

s’écrit alors Epp = mgz +K4. Or, on a z = r cos(ψ), d’où Epp = mgr cos(ψ) +K4.
La convention choisie (Epp(ψ = 0) = E0) entraîne que :

mgr cos(0) +K4 = E0, d’où K4 = E0 −mgr.

Finalement, on trouve :
Epp = mgr

(
cos(ψ)− 1

)
+ E0.

.......................................................................................................................................................
12.4 a) L’axe est orienté vers le bas, la longueur du ressort s’identifie donc directement à la coordonnée y.

La force de rappel s’écrit #»
F = −k(y−ℓ0) #»ey. On en déduit donc (en calculant le travail élémentaire ou par intégration

directe) que :
Epe(y) = 1

2k(y − ℓ0)2 + Cte.

Or, on veut Epe(y = 0) = 0, d’où Cte = −1
2kℓ0

2. Ainsi, on a :

Epe(y) = 1
2k(y − ℓ0)2 − 1

2kℓ0
2.

.......................................................................................................................................................
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12.4 b) On calcule d’abord la longueur ℓ du ressort en fonction de la coordonnée x. Un peu de trigonométrie

donne cos(β) = x

ℓ
, d’où ℓ = x

cos(β) . Par rapport à la coordonnée ℓ (mesurée le long de l’axe (OA)), l’énergie
potentielle vaut donc :

Epe(ℓ) = 1
2k(ℓ− ℓ0)2 + Cte.

On a donc :

Epe(x) = 1
2k
(

x

cos(β) − ℓ0

)2

+ Cte.

On détermine alors la constante afin d’avoir Epe(A) = 0. Lorsque le point M est en A, la longueur du ressort vaut
ℓ(A) = L

sin(β) . On résout donc :

Epe(ℓ(A)) = 1
2k
(

L

sin(β) − ℓ0

)2

+ Cte = 0 ce qui donne Cte = −1
2k
(

L

sin(β) − ℓ0

)2

.

Finalement, on trouve :

Epe(x) = 1
2k
(

x

cos(β) − ℓ0

)2

− 1
2k
(

L

sin(β) − ℓ0

)2

.

.......................................................................................................................................................
12.4 c) La masse centrale est soumise aux forces de rappel des deux ressorts :

• La longueur du ressort de gauche vaut x. La force exercée par celui-ci sur la masse s’exprime donc comme
# »
Fg = −k(x− ℓ0) #»ex, d’où une énergie potentielle (à une constante près) Ep,g = 1

2k(x− ℓ0)2.

• La longueur du ressort de droite vaut 2ℓ0−x. La force exercée par celui-ci sur la masse s’exprime donc comme
# »
Fd = k(2ℓ0 − x − ℓ0) #»ex = k(ℓ0 − x) #»ex (attention au signe devant k qui doit être cohérent), d’où une énergie
potentielle (à une constante près) Ep,d = 1

2k(ℓ0 − x)2.

En additionnant les deux contributions, et en demandant que Epe(ℓ0) = E0, on obtient alors Epe(x) = E0+k(x−ℓ0)2.
.......................................................................................................................................................
12.5 a) Déterminons le travail élémentaire. On a :

δW = #»
F · d #     »OM = − h

|| #»v ||
#»v · d #     »OM.

Or, par construction, les vecteurs vitesse et déplacement élémentaire sont colinéaires, d’où :

δW = −h dOM.

Par intégration, on a donc :
W =

ˆ
AB
−hdOM = −h

ˆ
AB

dOM = −hℓ.

Les autres cas se calculent semblablement.
.......................................................................................................................................................
12.5 e) Si la force était conservative, son travail ne dépendrait que des points de départ et d’arrivée, et serait

donc nul sur un chemin fermé (points de départ et d’arrivée confondus). Ce n’est pas le cas pour les chemins c) et
d), la force n’est donc pas conservative.
.......................................................................................................................................................
12.6 On applique le théorème de l’énergie cinétique entre le point de départ et le point d’arrêt. L’entraînement

précédent permet d’affirmer que le travail de la force de frottement vaut −hd. On a donc :

∆Ec = 0− 1
2mv0

2 = −hd donc d = mv0
2

2h .

.......................................................................................................................................................
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12.7 a) La masse n’est soumise qu’au poids, force conservative, et à la tension du fil qui ne travaille pas car
elle reste orthogonale au mouvement. L’énergie mécanique se conserve donc entre le point de départ et le point de
rebroussement.
• Au départ, Em = Ec = 1

2mv0
2 (on pose z = 0 pour la position initiale de la masse, et on prend Ep(0) = 0).

• Au moment du rebroussement, Em = Ep = mgz(θ0) = mgℓ(1− cos(θ0)), car on a alors z(θ) = ℓ− ℓ cos(θ).
Ainsi, on a :

1
2mv0

2 = mgℓ(1− cos(θ0)) donc cos(θ0) = 1− v0
2

2gℓ .

.......................................................................................................................................................
12.8 a) En appliquant le théorème de l’énergie mécanique entre le début et la fin de la chute libre, on a :

Em(tfin chute)− Em(tdébut chute) = 1
2mv0

2 −mg(H − ℓ0).

Les forces étant conservatives, l’énergie mécanique est conservée et on a donc :

v0 =
√

2g(H − ℓ0) =
√

2× 9,81 m · s−2 × (2,0 m− 0,30 m) = 5,8 m · s−1.

.......................................................................................................................................................
12.8 b) La masse n’est soumise qu’à des forces conservatives : son poids, ainsi que la force de rappel du ressort.

On peut donc appliquer la conservation de l’énergie mécanique entre la position d’arrivée sur le ressort (z = ℓ0) et
la position d’altitude minimale (z = zm), pour laquelle la vitesse s’annule. On a donc :

1
2mv0

2 +mgℓ0 = mgzm + 1
2k(zm − ℓ0)2.

Ainsi, après calcul, on trouve 1
2kz

2
m + (mg − kℓ0)zm + 1

2kℓ0
2 − 1

2mv0
2 −mgℓ0 = 0.

On ne demande qu’une réponse numérique, on peut donc passer aux valeurs numériques pour simplifier la résolution :

500z2
m − 290,2zm + 25,4 = 0.

Cette équation possède deux solutions, z1 ≈ 0,47 m et z2 ≈ 0,11 m. La première solution correspond à une position
supérieure en altitude à la position initiale, et n’est donc pas celle qui nous intéresse. On retient donc zm = 0,11 m.
.......................................................................................................................................................
12.8 c) La masse n’étant soumise qu’à des forces conservatives, elle revient en x = ℓ0 avec la même vitesse

qu’elle avait en arrivant, à savoir v0. Elle atteint donc une altitude maximale quand sa vitesse s’annule en z = H.
.......................................................................................................................................................
12.9 a) On choisit un axe vertical descendant de manière à pouvoir identifier z à la distance OM, qui est la

longueur du ressort.
Afin de déterminer l’équation différentielle, on souhaite appliquer le théorème de la puissance cinétique. Or :
• la puissance du poids vaut m #»g · #»v = mgż (axe descendant) ;
• la puissance de la force de rappel vaut −k(z − ℓ0) #»ez · #»v = −k(z − ℓ0)ż ;
• la puissance de la force de frottements fluides vaut −α #»v · #»v = −αż2.

Le théorème de la puissance cinétique donne alors :

dEc

dt = d
dt

(1
2mż

2
)

= mżz̈ = mgż − k(z − ℓ0)ż − αż2.

D’où finalement : z̈ + α

m
ż + k

m
z = g + kℓ0

m
.

.......................................................................................................................................................
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12.9 b) On détermine la position d’équilibre en projetant la première loi de Newton sur l’axe vertical descendant :

mg − k(zeq − ℓ0) = 0 donc zeq = ℓ0 + mg

k
.

On obtient zeq > ℓ0, ce qui est physiquement cohérent.
On pose donc ζ = z − zeq. En réinjectant dans l’équation différentielle obtenue précédemment, on obtient :

ζ̈ + α

m
ζ̇ + k

m

(
ζ + ℓ0 + mg

k

)
= g + kℓ0

m
donc ζ̈ + α

m
ζ̇ + k

m
ζ = 0.

On peut également obtenir cette équation en écrivant la force de rappel par rapport à la variable ζ et en en déduisant
l’énergie potentielle associée.
.......................................................................................................................................................
12.10 a) Au voisinage de x = 0+, la fonction énergie potentielle est équivalente à β/x2. Ici, la fonction représentée

par le graphe tend vers −∞ en 0, on a donc nécessairement β < 0.
Pour x→ +∞, la fonction énergie potentielle est équivalente à α/x. Ici, la fonction représentée par le graphe tend
vers 0+ en +∞, on a donc nécessairement α > 0.
Ce potentiel est physiquement impossible car Ep(x → 0+)−→−∞ : l’énergie potentielle n’est pas bornée inférieu-
rement, on pourrait donc théoriquement utiliser ce potentiel pour extraire une quantité infinie d’énergie.
.......................................................................................................................................................
12.11 a) La position d’équilibre stable correspond à l’état qui minimise l’énergie potentielle.

• Déterminons le minimum de l’énergie potentielle Ep(θ) = mgℓ(1− cos(θ)) en cherchant la valeur θeq telle que :

dEp

dθ (θeq) = 0 et d2Ep

dθ2 (θeq) > 0.

La première égalité donne dEp

dθ (θeq) = mgℓ sin(θeq) = 0 et donc θeq ≡ 0 [π].

Finalement, en tenant compte de d2Ep

dθ2 (θeq) > 0, on trouve θeq ≡ 0 [2π].

• On aurait pu remarquer que les minima de mgℓ(1− cos(θ)) correspondent aux maxima de cos(θ), qui sont bien
les θeq ≡ 0 [2π].

.......................................................................................................................................................
12.11 b) On dérive l’énergie potentielle, en écrivant :

dEp

dz = κz + λz3.

L’équation dEp

dz = 0 a alors trois solutions : z1 = 0, z2 =
√
−κ
λ

et z3 = −
√
−κ
λ

.

Il s’agit des positions d’équilibre de ce potentiel.

On dérive une seconde fois afin d’étudier la stabilité. On a d2Ep

dz2 = κ+ 3λz2.

Finalement, on obtient : d2Ep

dz2 (z = z1) = κ > 0

d2Ep

dz2 (z = z2) = κ+ 3λ
(
−κ
λ

)
= −2κ < 0

d2Ep

dz2 (z = z3) = κ+ 3λ
(
−κ
λ

)
= −2κ < 0.

Seule z1 = 0 est une position d’équilibre stable.
.......................................................................................................................................................
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12.11 c) On calcule la dérivée de l’énergie potentielle :

dEp

dx = 2U0βxeβx2
,

qui montre que dEp

dx s’annule pour x = 0, qui est donc une position d’équilibre.

Pour étudier sa stabilité, on dérive une seconde fois :

d2Ep

dx2 = 2U0β(1 + 2βx2)eβx2
,

qui, en x = 0, vaut 2U0β > 0. Cette position d’équilibre est donc bien stable.
.......................................................................................................................................................
12.11 d) On calcule la dérivée de l’énergie potentielle :

dEp

dϕ = 2E0 sin(ϕ− a) cos(ϕ− a).

Ainsi, dEp

dϕ s’annule pour ϕ = a et ϕ = a+ π

2 , qui sont les positions d’équilibre dans l’intervalle [0, π[.

Afin d’étudier leur stabilité, on dérive une seconde fois :

d2Ep

dϕ2 = 2E0(cos2(ϕ− a)− sin2(ϕ− a)).

• On calcule ensuite d2Ep

dϕ2 (ϕ = a) = 2E0. Ce dernier terme étant positif, la position d’équilibre ϕ = a est donc
stable.

• Pour l’autre position d’équilibre, on a d2Ep

dϕ2 (ϕ = a + π/2) = −2E0. Cette dérivée seconde étant négative, la
position d’équilibre ϕ = a+ π/2 est instable.

.......................................................................................................................................................
12.13 d) Le mouvement entre x2 et x3 correspond à un état lié : c’est un mouvement dans un puits de potentiel.

Comme le mouvement est à un degré de liberté, il est également périodique. Cependant, les positions extrêmes
étant éloignées de la position moyenne (d’équilibre x∗

3), ce mouvement n’est pas harmonique.
.......................................................................................................................................................
12.14 On a vu précédemment que les trajectoires correspondant à l’énergie mécanique E3 sont des états de

diffusion, le point matériel peut donc bien s’échapper à l’infini.
Le mouvement du point étant conservatif, on applique la conservation de l’énergie mécanique entre le départ et
« l’arrivée » à l’infini. On a :

E3 = 1
2mv

2
∞ donc v∞ =

√
2E3

m
=
√

2× 1 300 kg ·m2 · s−2

2,3 kg = 33,6 m · s−1.

.......................................................................................................................................................
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Fiche no 13. Moment cinétique

Réponses

13.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

P ∥ cos θ

13.1 b). . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(γ + β)

13.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

R∥ sin(θ + α)

13.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ cos(γ)

13.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(β)

13.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ sin(β)

13.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . #»

P = −∥ #»

P ∥ #»ey

13.2 b). . . . . . . . . . . . . ∥ #»

P ∥(− sin(θ) #»er − cos(θ) #»eθ)

13.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ #»ey

13.2 d) . . . . . . . #»

T = ∥ #»

T ∥(− cos(γ) #»er + sin(γ) #»eθ)

13.2 e) . . . . . . ∥ #»

R∥(cos(θ + α) #»ex + sin(θ + α) #»ey)

13.2 f) . . . . . . . . . . . . . . ∥ #»

R∥(cos(α) #»er + sin(α) #»eθ)

13.2 g). . . . ∥ #»

N∥(− sin(β + γ) #»ex + cos(β + γ) #»ey)

13.2 h) . . . . . . . . . . . . . . ∥ #»

N∥(cos(β) #»er + sin(β) #»eθ)

13.3 a) . . . . . . . . . . . . . . . . . . ∥ #»

P ∥ ∥ #»

R∥ cos(θ + α) #»ez

13.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ sin(γ) #»ez

13.3 c) . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(γ + β) #»ez

13.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(−7

14
−7

)

13.4 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( 7
−14

7

)

13.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7

13.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7

13.4 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( −6
−33
24

)

13.4 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( −6
−33
24

)

13.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . la Terre

13.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . mr v sin(α) #»ez

13.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 M L2

13.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
12 M L2

13.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5 M R2

13.10 a) . . . . . . . . . . . . . . . . . . . . . . . . −ℓF sinα cosα

13.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

13.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . mgL

2 cosα #»ez

13.11 b) . . . . . . . . . . . . . . . . . . . −mg
(
ℓ− L

2 cosα
)

#»ez

13.11 c) . . . . . . . . . . . . . . . . . . . −mg
(
ℓ− L

2 cosα
)

#»ez

13.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . a

2
#  »eX + a # »eY

13.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . a

2
#  »eX + a

3
# »eY

13.12 c) . . . . . . . . . . . . . . . P (− sinα #  »eX − cosα # »eY )

13.12 d) . . . . . . . . . . . . . . F (− cosα #  »eX + sinα # »eY )

13.12 e) . . . . . . . . . . . . . . . . . . . aF
( sinα

2 + cosα
)

#»ez

13.12 f) . . . . . . . . . . . . . . . . . aP
(
−cosα

2 + sinα
3

)
#»ez

13.12 g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3P − 6F
3F + 2P
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Corrigés

13.1 a) On calcule #»
P · #»eθ = ∥ #»

P ∥ × ∥ #»eθ∥ × cos(π + θ) = −∥ #»
P ∥ cos θ.

.......................................................................................................................................................

13.1 c) On calcule #»
R · #»ey = ∥ #»

R∥ × ∥ #»ey∥ × cos
(
π

2 − (θ + α)
)

= ∥ #»
R∥ sin(θ + α).

.......................................................................................................................................................
13.1 d) On calcule #»

T · #»er = ∥ #»
T ∥ × ∥ #»er∥ × cos(π + γ) = −∥ #»

T ∥ cos(γ).
.......................................................................................................................................................

13.1 f) On calcule #»
N · #»eθ = ∥ #»

N∥ × ∥ #»eθ∥ × cos
(
β − π

2

)
= ∥ #»

N∥ sin(β).
.......................................................................................................................................................
13.3 a) On calcule #»

P ∧ #»
R = −∥ #»

P ∥ #»ey ∧ ∥
#»
R∥(cos(θ + α) #»ex + sin(θ + α) #»ey) = −∥ #»

P ∥ ∥ #»
R∥ cos(θ + α) #»ey ∧ #»ex + #»0 .

.......................................................................................................................................................
13.3 b) On calcule #»

T ∧ #»er = ∥ #»
T ∥(− cos(γ) #»er + sin(γ) #»eθ) ∧ #»er = ∥ #»

T ∥ sin(γ) #»eθ ∧ #»er = −∥ #»
T ∥ sin(γ) #»ez.

.......................................................................................................................................................
13.3 c) On calcule #»ex ∧

#»
N = #»ex ∧ ∥

#»
N∥(− sin(β + γ) #»ex + cos(γ + β) #»ey) = ∥ #»

N∥ cos(γ + β) #»ex ∧ #»ey.
.......................................................................................................................................................

13.4 a) On calcule

(1
2
3

)
∧

(6
5
4

)
=

(2× 4− 3× 5
3× 6− 1× 4
1× 5− 2× 6

)
=

(−7
14
−7

)
.

.......................................................................................................................................................

13.4 b) On calcule

[(6
5
4

)
+

(1
2
3

)]
∧

(1
2
3

)
=

(7
7
7

)
∧

(1
2
3

)
=

(7× 3− 7× 2
7× 1− 7× 3
7× 2− 7× 1

)
=

( 7
−14

7

)
.

On aurait aussi pu voir que, comme on a #»
A ∧ #»

A = #»0 , cela revient à #»
B ∧ #»

A = − #»
A ∧ #»

B.
.......................................................................................................................................................
13.4 c) On a déjà calculé #»

A ∧ #»
B et il suffit de prendre la première coordonnée pour avoir le produit scalaire sur

#»ex, qui vaut alors −7.
.......................................................................................................................................................

13.4 d) On calcule d’abord #»
B ∧ #»ex =

(6
5
4

)
∧

(1
0
0

)
=

(5× 0− 4× 0
4× 1− 6× 0
6× 0− 5× 1

)
=

( 0
4
−5

)
, d’où :

#»
A · ( #»

B ∧ #»ex) =

(1
2
3

)
·

( 0
4
−5

)
= 1× 0 + 2× 4 + 3× (−5) = 8− 15 = −7.

On retrouve le même résultat que précédemment, ce qui correspond à la propriété du produit mixte : si #»a , #»

b et #»c
sont trois vecteurs de R3, alors on a les permutations circulaires #»a · ( #»

b ∧ #»c ) = #»

b · ( #»c ∧ #»a ) = #»c · ( #»a ∧ #»

b ).
.......................................................................................................................................................

13.4 e) On calcule d’abord #»
B ∧ #»

C =

(6
5
4

)
∧

( 0
1
−1

)
=

(5× (−1)− 4× 1
4× 0− 6× (−1)

6× 1− 5× 0

)
=

(−9
6
6

)
. On calcule ensuite :

#»
A ∧ ( #»

B ∧ #»
C) =

(1
2
3

)
∧

(−9
6
6

)
=

( 2× 6− 3× 6
3× (−9)− 1× 6
1× 6− 2× (−9)

)
=

( −6
−33
24

)
.

.......................................................................................................................................................
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13.4 f) On calcule séparément #»
A · #»

C =

( 1
2
3

)
·

( 0
1
−1

)
= 1× 0 + 2× 1 + 3× (−1) = −1 et :

#»
A · #»

B =

( 1
2
3

)
·

(6
5
4

)
= 1× 6 + 2× 5 + 3× 4 = 28.

On a alors :

( #»
A · #»

C) #»
B − ( #»

A · #»
B) #»

C = (−1)×

(6
5
4

)
− 28×

( 0
1
−1

)
=

( −6
−33
24

)
.

On retrouve le même résultat que précédemment, ce qui correspond à la propriété du double produit vectoriel : si
#»a , #»

b et #»c sont trois vecteurs de R3, alors on a #»a ∧ ( #»

b ∧ #»c ) = ( #»a · #»c ) #»

b − ( #»a · #»

b ) #»c .
.......................................................................................................................................................
13.5 Commençons par tout remettre dans les bonnes unités pour pouvoir calculer le produit m× r × v, qui

correspond au moment cinétique puisque le rayon vecteur est bien perpendiculaire à la vitesse pour une orbite
circulaire.

Masse en kg Distance en m Vitesse en m · s−1 Moment cinétique en kg ·m2 · s−1

Mercure 3× 1023 6× 1010 5× 104 3× 6× 5× 1037 = 9× 1038

Vénus 5× 1024 1,1× 1011 3,5× 104 5× 1,1× 1039 × 7
2 ≈ 2× 1040

Terre 6× 1024 1,5× 1011 3× 104 6× 3
2 × 3× 1039 = 2,7× 1040

Mars 6× 1023 2,3× 1011 2,4× 104 ⩽ 6× 1038 × 5
2 ×

5
2 ≈ 3,7× 1039

C’est bien la Terre qui gagne finalement le concours du plus grand moment cinétique.
.......................................................................................................................................................
13.6 Le vecteur vitesse s’écrit dans la base ( #»er,

#»eθ) comme #»v = v(cosα #»er + sinα #»eθ). Le produit vectoriel
avec #     »OM s’écrit alors :

#     »OM ∧m #»v = r #»er ∧mv(cosα #»er + sinα #»eθ) = mr v sinα #»er ∧ #»eθ.

.......................................................................................................................................................
13.7 On calcule :

I∆ = ρ

ˆ L

0
x2 dx×

ˆ e

0
dy ×

ˆ h

0
dz

= M

Lhe

ˆ L

0
x2 dx× e× h

= M

L

ˆ L

0
x2 dx

=
[
M

L

x3

3

]L

0
= 1

3 ML2.

.......................................................................................................................................................

13.8 On calcule I∆ =
ˆ L/2

−L/2

M

L
x2 dx =

[
M

L

x3

3

]L/2

−L/2
= M

L
× 2 L

3/8
3 = 1

12 ML2.

.......................................................................................................................................................
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13.9 On calcule les trois intégrales indépendamment. On a bien sûr
ˆ 2π

0
dφ = 2π et

ˆ R

0
r4 dr = R5

5 . Reste

l’intégrale sur θ qui peut se résoudre avec un changement de variable en u = cos θ (qui donne du = − sin θ dθ) :
ˆ π

0
sin3 θ dθ =

ˆ π

0
sin θ (1− cos2 θ) dθ =

ˆ −1

1
−(1− u2) du =

[
u− u3

3

]1

−1
= 4

3 .

Finalement, on obtient I∆ = M
4
3π R

3 ×
R5

5 ×
4
3 × 2π = 2

5 M R2.
.......................................................................................................................................................
13.10 a) D’une part, on commence par déterminer l’expression du vecteur #»

F dans la base ( #»ex,
#»ey). On a ici, en

notant F la norme du vecteur : #»
F = F (cosα #»ex − sinα #»ey).

D’autre part, en notant M le point d’action de #»
F , on a #     »OM = ℓ sinα #»ey. On peut alors calculer :

#      »MO( #»
F ) = #     »OM ∧ #»

F = ℓ sinα #»ey ∧ F (cosα #»ex − sinα #»ey) = ℓF sinα cosα (− #»ez).

.......................................................................................................................................................

13.11 a) Dans cette configuration, le bras de levier vaut L2 cosα et le point fait tourner dans le sens trigonomé-

trique autour de A, de sorte que #     »MA( #»
P ) = mgL

2 cosα #»ez.
.......................................................................................................................................................
13.11 b) Cette fois-ci, le poids fait tourner dans le sens horaire autour de O avec un bras de levier complémentaire

du précédent de ℓ− L

2 cosα, d’où le résultat.
.......................................................................................................................................................
13.11 c) Même chose que précédemment, I et O étant à la verticale l’un de l’autre.
.......................................................................................................................................................
13.12 a) On décompose #   »OB = # »OI + # »IB = a

2
#  »eX + a # »eY .

.......................................................................................................................................................
13.12 b) On décompose #    »OG = # »OI + # »IG = a

2
#  »eX + a

3
# »eY .

.......................................................................................................................................................

13.12 c) On a #»
P = ( #»

P · #  »eX) #  »eX + ( #»
P · # »eY ) # »eY = P

[
cos
(
π

2 + α
)

#  »eX + cos(π + α) # »eY

]
= P (− sinα #  »eX − cosα # »eY ).

.......................................................................................................................................................

13.12 d) On a #»
F = ( #»

F · #  »eX) #  »eX + ( #»
F · # »eY ) # »eY = F

[
cos(π + α) #  »eX + cos

(3π
2 + α

)
# »eY

]
= F (− cosα #  »eX + sinα # »eY ).

.......................................................................................................................................................
13.12 g) Pour qu’il y ait équilibre, la somme des deux moments doit s’annuler. Les deux étant suivant #»ez, on doit

avoir :
aF
( sinα

2 + cosα
)

+ aP
(
−cosα

2 + sinα
3

)
= 0.

En divisant par a cosα, il vient :
F tanα

2 + F − P

2 + P tanα
3 = 0.

On obtient donc :
tanα =

P
2 − F
F
2 + P

3
= 3P − 6F

3F + 2P .

.......................................................................................................................................................
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Fiche no 14. Champ électrique

Réponses

14.1 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
a2 + y2

14.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a√
a2 + y2

14.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y√
a2 + y2

14.1 d) . . . . . . . . . . . . . . . . . ∥ #»

F ∥√
a2 + y2

(−a #»ex + y #»ey)

14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

14.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»ey

14.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ex

14.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»ex

14.3 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ey

14.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

14.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . qV0

14.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

2qV0
m

14.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
qV0
2m

14.4 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v(a)
2

14.5 a) . . . . . . . . . . . . . . . . . . . . . . . . .
√

(x− a)2 + y2

14.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x2 + y2

14.5 c) . . . . . . . . . . . . . . . . . . . . . . . .
√
r2 − 2ax+ a2

14.5 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r cos(θ)

14.5 e) . . . . . . . . . . . . . . . . . .
√
r2 − 2ar cos(θ) + a2

14.5 f) . . . . . . . . . . . . . 1
4πε0

q√
r2 − 2ar cos(θ) + a2

14.5 g) . . . . . . . . . . . . . . . . . . . . . . . . .
√

(x+ a)2 + y2

14.5 h) . . . . . . . . . . . . . . . . . . . . . . . .
√
r2 + 2ax+ a2

14.5 i) . . . . . . . . . . . . . . . . . . .
√
r2 + 2ar cos(θ) + a2

14.5 j) . . . . . . . . . . . − 1
4πε0

q√
r2 + 2ar cos(θ) + a2

14.5 k) . . . .

1
4πε0

q
( 1√

r2 − 2ar cos(θ) + a2

− 1√
r2 + 2ar cos(θ) + a2

)

14.6 a) . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

r

(
1 − 2a

r

)

14.6 b). . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa cos(θ)
r2

14.6 c) . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa

r2

(
1 − 1

2θ
2
)

14.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa

r2

14.6 e) . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

r
ln
(

1 + r2

a2

)

14.7 a) . . . . . . . . 1
4πε0

q

r2 (sin(2θ) #»er − 2 cos(2θ) #»eθ)

14.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 8
4πε0

q

a2
#»eθ

14.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . 2,7 · 105 V.m−1

14.8 a) . . . . . . . . . . 1
4πε0

qa

r3 (2 cos(θ) #»er + sin(θ) #»eθ)

14.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

a2
#»eθ

14.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . 3,4 · 104 V.m−1

14.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2E0d
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14.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3E0d

14.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3πE0d

14.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E0de
−1

14.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3πR

3ρ0

14.10 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5πR

3ρ0

14.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 R

3ρ0

14.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3πR2h

14.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5πR

2h

14.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
15R

2h

Corrigés

14.1 a) Dans le triangle rectangle OAB, on a BA =
√
a2 + y2.

.......................................................................................................................................................
14.1 b) Dans le triangle rectangle OAB, on a cos(α) = a

BA = a√
a2 + y2

.

.......................................................................................................................................................
14.1 c) Dans le triangle rectangle OAB, on a sin(α) = y

BA = y√
a2 + y2

.

.......................................................................................................................................................
14.1 d) La composante suivant #»ex correspond au produit scalaire :

Fx = #»
F · #»ex = ∥ #»

F ∥ cos(α+ π) = −∥ #»
F ∥ cos(α).

De même, la composante suivant #»ey correspond à :

Fy = #»
F · #»ey = ∥ #»

F ∥ cos
(
−π2 + α

)
= ∥ #»

F ∥ sinα.

Ainsi, on a :
Fx = −∥ #»

F ∥ a√
a2 + y2

et Fy = ∥ #»
F ∥ y√

a2 + y2
.

Finalement, on a :
#»
F = Fx

#»ex + Fy
#»ey = ∥ #»

F ∥√
a2 + y2

(−a #»ex + y #»ey).

.......................................................................................................................................................
14.2 Une force attractive a une valeur négative, la charge qui attire le plus est donc la charge avec la force

négative la plus importante en valeur absolue, soit la réponse c . En effet, on a :

a F/C = 2,00 C
(4,00 · 10−3 m)2 = 1,25 · 105 C.m−2

b F/C = −5,0 · 103 C
(0,4 m)2 = −3,1 · 104 C.m−2

c F/C = −3,0 · 10−3 C
(200 · 10−6 m)2 = −7,5 · 104 C.m−2

d F/C = 100 C
(20 · 10−2 m)2 = 2,5 · 103 C.m−2

.......................................................................................................................................................
14.3 a) On a q0q1 = q2 et q0q2 = q2 donc #»

F 1/0 = −Fx
#»ex + Fy

#»ey et #»
F 2/0 = Fx

#»ex + Fy
#»ey. Ainsi, la somme des

deux forces est #»
F = 2Fy

#»ey.
.......................................................................................................................................................
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14.3 b) On a q0q1 = q2 et q0q2 = −q2 donc #»
F 1/0 = −Fx

#»ex + Fy
#»ey et #»

F 2/0 = −Fx
#»ex − Fy

#»ey. Ainsi, la somme
des deux forces est #»

F = −2Fx
#»ex.

.......................................................................................................................................................
14.3 c) On a q0q1 = −q2 et q0q2 = q2 donc #»

F 1/0 = Fx
#»ex − Fy

#»ey et #»
F 2/0 = Fx

#»ex + Fy
#»ey. Ainsi, la somme des

deux forces est #»
F = 2Fx

#»ex.
.......................................................................................................................................................
14.3 d) On a q0q1 = −2q2 et q0q2 = −2q2 donc #»

F 1/0 = Fx
#»ex − Fy

#»ey et #»
F 2/0 = −Fx

#»ex − Fy
#»ey. Ainsi, la somme

des deux forces est #»
F = −2Fy

#»ey.
.......................................................................................................................................................
14.4 a) Comme V0 est homogène à un potentiel électrique, l’argument entre parenthèses doit être sans dimension,

ce qui est le cas dans l’expression :

V (x) = V0

(
1−

(
x

a

)2
)
.

.......................................................................................................................................................

14.4 b) En x = 0, la vitesse est nulle donc : Cte = 1
2mv

2(0) + qV (0) = qV

(
1−

(0
a

)2
)

= qV0.
.......................................................................................................................................................
14.4 c) On a :

qV0 = 1
2mv

2(a) + qV (a) = 1
2mv

2(a) + qV

(
1−

(
a

a

)2
)

= 1
2mv

2(a).

Donc on a v(a) =
√

2qV0

m
.

.......................................................................................................................................................
14.4 d) On a :

qV0 = 1
2mv

2
(
a

2

)
+ qV0

(
a

2

)
= 1

2mv
2
(
a

2

)
+ qV0

(
1−

(
a

2a

)2
)

= 1
2mv

2
(
a

2

)
+ 3

4qV0.

Donc, on a :
1
2mv

2
(
a

2

)
= 1

4qV0 et donc v
(
a

2

)
=
√
qV0

2m .

.......................................................................................................................................................
14.4 e) On a :

v
(
a

2

)
=
√
qV0

2m =
√

2qV0

4m = 1
2

√
2qV0

m
= v(a)

2 .

.......................................................................................................................................................

14.5 a) Dans le triangle xBM, on a BM =
√

(x− a)2 + y2.
.......................................................................................................................................................
14.5 b) Dans le triangle xOM, on a r2 = x2 + y2.
.......................................................................................................................................................
14.5 c) En utilisant l’expression de r2 en fonction de x, y, on a :

BM =
√

(x− a)2 + y2 =
√
x2 + y2 − 2ax+ a2 =

√
r2 − 2ax+ a2.

.......................................................................................................................................................
14.5 d) Dans le triangle xOM, on a cos(θ) = x

r
et donc x = r cos(θ).

.......................................................................................................................................................
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14.5 e) En utilisant l’expression de x en fonction de r, θ, on peut écrire :

BM =
√
r2 − 2ax+ a2 =

√
r2 − 2ar cos(θ) + a2.

.......................................................................................................................................................
14.5 f) En utilisant les expressions de V1(M) et de BM en fonction de r, a, θ, on a :

V1(M) = 1
4πε0

q1

BM = 1
4πε0

q√
r2 − 2ar cos(θ) + a2

.

.......................................................................................................................................................

14.5 g) Dans le triangle xCM, on a CM =
√

(x+ a)2 + y2.
.......................................................................................................................................................
14.5 h) En utilisant l’expression de r2 en fonction de x, y, on a :

CM =
√

(x+ a)2 + y2 =
√
x2 + y2 + 2ax+ a2 =

√
r2 + 2ax+ a2.

.......................................................................................................................................................
14.5 i) En utilisant l’expression de x en fonction de r, θ, on a CM =

√
r2 + 2ax+ a2 =

√
r2 + 2ar cos(θ) + a2.

.......................................................................................................................................................
14.5 j) En utilisant les expressions de V2(M) et CM en fonction de r, a, θ, on a :

V2(M) = 1
4πε0

q2

CM = − 1
4πε0

q√
r2 + 2ar cos(θ) + a2

.

.......................................................................................................................................................
14.5 k) En utilisant les expressions de V1(M) et V2(M), on trouve :

V (M) = V1(M) + V2(M) = 1
4πε0

q

(
1√

r2 − 2ar cos(θ) + a2
− 1√

r2 + 2ar cos(θ) + a2

)
.

.......................................................................................................................................................

14.6 a) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a V
(
a

r

)
≈ 1

4πε0

q

r

(
1− 4a

2r

)
= 1

4πε0

q

r

(
1− 2a

r

)
.

.......................................................................................................................................................
14.6 b) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a :

V
(
a

r

)
≈ 1

4πε0

q

r

(
1 + a

2r cos(θ)−
(

1− a

2r cos(θ)
))

= 1
4πε0

qa cos(θ)
r2 .

.......................................................................................................................................................

14.6 c) À l’ordre 2, on a cos(θ) ≈ 1− 1
2θ

2. Ainsi, on a V (θ) ≈ 1
4πε0

qa

r2

(
1− 1

2θ
2
)

.
.......................................................................................................................................................

14.6 d) À l’ordre 1, on a ln(1 + x) ≈ x. Ainsi, on a V
(
a

r

)
≈ 1

4πε0

q

r

a

r
= 1

4πε0

qa

r2 .
.......................................................................................................................................................
14.6 e) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a :

V
(
a

r

)
≈ 1

4πε0

q

r
ln

(
1 + 2a2

r2 + 1
1 + 2a2

r2 − 1

)
= 1

4πε0

q

r
ln

(
2 + 2a2

r2

2a2
r2

)
= 1

4πε0

q

r
ln
(

1 + r2

a2

)
.

.......................................................................................................................................................
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14.7 a) On calcule :

#»
E(M) = − ∂

∂r

(
1

4πε0

q sin(2θ)
r

)
#»er −

1
r

∂

∂θ

(
1

4πε0

q sin(2θ)
r

)
#»eθ

= − 1
4πε0

q

(
sin(2θ) ∂

∂r

(1
r

)
#»er + 1

r2
∂ sin(2θ)

∂θ
#»eθ

)
= 1

4πε0

q

r2 (sin(2θ) #»er − 2 cos(2θ) #»eθ).

.......................................................................................................................................................

14.7 b) Pour M
(
r = a

2 , θ = π
)

, le champ est #»
E(M) = 1

4πε0

q(
a
2

)2 (sin(2π) #»er − 2 cos(2π) #»eθ) = − 8
4πε0

q

a2
#»eθ.

.......................................................................................................................................................
14.7 c) On a :

∥ #»
E(M)∥ = 8

4πε0

q

a2 = 8
4π × 8,85 · 10−12 C.V−1.m−1

6,0 · 10−11 C
(4,0 · 10−3 m)2 = 2,7 · 105 V.m−1.

.......................................................................................................................................................
14.8 a) On calcule :

#»
E(M) = − ∂

∂r

(
1

4πε0

qa cos(θ)
r2

)
#»er −

1
r

∂

∂θ

(
1

4πε0

qa cos(θ)
r2

)
#»eθ

= − 1
4πε0

qa

(
cos(θ) ∂

∂r

( 1
r2

)
#»er + 1

r3
∂ cos(θ)
∂θ

#»eθ

)
= 1

4πε0

qa

r3 (2 cos(θ) #»er + sin(θ) #»eθ).

.......................................................................................................................................................

14.8 b) Pour M
(
r = a, θ = π

2

)
, le champ est :

#»
E(M) = 1

4πε0

qa

a3

(
2 cos

(
π

2

)
#»er + sin

(
π

2

)
#»eθ

)
= 1

4πε0

q

a2
#»eθ.

.......................................................................................................................................................
14.8 c) On a :

∥ #»
E(M)∥ = 1

4πε0

q

a2 = 1
4π × 8,85 · 10−12 C.V−1.m−1

6,0 · 10−11 C
(4,0 · 10−3 m)2 = 3,4 · 104 V.m−1.

.......................................................................................................................................................

14.9 a) On a V (0) =
ˆ d

0
E0

(
1− x

d

)
dx = E0

[
−d2

(
1− x

d

)2
]d

0
= 1

2E0d.

.......................................................................................................................................................

14.9 b) On a V (0) =
ˆ d

0
E0

(
1− x

d

)2
dx = E0

[
−d3

(
1− x

d

)3
]d

0
= 1

3E0d.

.......................................................................................................................................................

14.9 c) On a V (0) =
ˆ d

0
E0 sin

(3π
2
x

d

)
dx = E0

[
− 2d

3π cos
(3π

2
x

d

)]d

0
= 2

3πE0d.
.......................................................................................................................................................

14.9 d) On a V (0) =
ˆ d

0
E0
(
1− e−x/d

)
dx = E0

[
x
]d

0
− E0

[
− de−x/d

]d

0
= E0de−1.

.......................................................................................................................................................
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14.10 a) On calcule :

Q =
ˆ 2π

0

ˆ π

0

ˆ R

0
2ρ0r

2 sin(θ) dr dθ dφ

= 2ρ0

ˆ 2π

0
dφ
ˆ π

0
sin(θ) dθ

ˆ R

0
r2 dr = 2ρ0

[
φ
]2π

0
×
[
− cos(θ)

]π

0
×
[
r3

3

]R

0

= 2ρ0(2π − 0)(− cosπ + cos 0)
(
R3

3 −
0
3

)
= 2ρ0 × 2π × 2× R3

3 = 8
3πR

3ρ0.

.......................................................................................................................................................
14.10 b) On calcule :

Q = 2
ˆ 2π

0
dφ
ˆ π

0
sin(θ) dθ

ˆ R

0

(
r

R

)2
ρ0r

2 dr = 2ρ0 × 2π × 2×
ˆ R

0

r4

R2 dr

= 8ρ0π

[
1
5
r5

R2

]R

0
= 8π

(
1
5
R5

R2 −
1
5

0
R2

)
ρ0 = 8

5πR
3ρ0.

.......................................................................................................................................................
14.10 c) On calcule :

Q = 2
ˆ 2π

0
sin
(
φ

2

)
ρ0 dφ

ˆ π

0
sin(θ) dθ

ˆ R

0

(
r

R

)2
r2 dr = 2ρ0 ×

[
−2 cos φ2

]2π

0
× 2× 1

5R
3

= 4
5R

3(−2 cosπ + 2 cos 0)ρ0 = 4
5R

3(2 + 2)ρ0 = 16
5 R

3ρ0.

.......................................................................................................................................................
14.11 a) On calcule :

Q =
ˆ h

0

ˆ 2π

0

ˆ R

0
3r dr dθ dz = 3

ˆ h

0
dz
ˆ 2π

0
dθ
ˆ R

0
r dr = 3

[
z
]h

0
×
[
θ
]2π

0
×
[
r2

2

]R

0

= 3(h− 0)(2π − 0)
(
R2

2 − 0
)

= 3πR2h.

.......................................................................................................................................................
14.11 b) On calcule :

Q = 2
ˆ h

0
dz
ˆ 2π

0
dθ
ˆ R

0

(
r

R

)3
r dr = 2× h× 2π

ˆ R

0

r4

R3 dr

= 4πh
[

1
5
r5

R3

]R

0
= 4πh

(
1
5
R5

R3 −
1
5

0
R3

)
= 4

5πR
2h.

.......................................................................................................................................................
14.11 c) On calcule :

Q = 2
ˆ h

0

(
z

h

)2
dz
ˆ 2π

0
sin
(
θ

2

)
dθ
ˆ R

0

(
r

R

)3
r dr = 2× 1

5R
2
[

1
3
z3

h2

]h

0

[
−2 cos θ2

]2π

0

= 2
5R

2
(

1
3
h3

h2 −
1
3

0
h2

)
(−2 cosπ + 2 cos 0) = 2

5R
2 × 1

3h× 4 = 8
15R

2h.

.......................................................................................................................................................
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Fiche no 15. Particule dans un champ électromagnétique

Réponses

15.1 a) . . . . . . . . . 6,3 × 1018 eV

15.1 b) . . . . . . . . . . . . . . . 1,55 eV

15.1 c) . . . . . . . . . 5,0 × 10−19 J

15.1 d) . . . . . . . . . . . . . . . . violet

15.2 . . . . . . . . . . . . . . . . . . . . . tau

15.3 a) . . . . . . . . . . . . . . . . . . . b

15.3 b) . . . . . . . . . . . . . . . . . . . a

15.4 a) . . . . . . . . . . . . −Ex+ C

15.4 b) . . . . . . . . . . . . . . . α

r
+ C

15.4 c) . . . . . . . . . −β ln(r) + C

15.4 d). . . . . . . . . . . . −γxy + C

15.5 a) . . . . . . . . . . . . . . . . . qE #»ey

15.5 b) . . . . . . . . . . . . . . . |qE| #»ex

15.5 c) . qE
(

cos(β) #»ey

− sin(β) #»ex

)

15.6 a) . . . . . . . . . . . . . . |q|vB #»ey

15.6 b) . . . . . . . . . qvB cos(α) #»ez

15.6 c) . −qvB
(

cos(α) #»ex

+ sin(α) #»ey

)
15.7 a) . . . . . . . . . . . . . . . . . . . . . 0

15.7 b). . . . . . . . . . . . . . . . . . qEv

15.7 c) . . . . . . . . . . . . . 3
√

2
2 qEv

15.7 d) . . . . . . . . . . . . . . . −qEv

2

15.8 a) . . . . . . . . . . . . . .
√

3mv0
qE

15.8 b) . . . . . . . . . . . . . .
√

3mv0
qE

15.8 c) . . . . . . . . . . . . . . . . . . . . π

3

15.9 a) . . . . . . . . . . . . . . . 1,5 MV

15.9 b). . . . . . . . . . . . b et c

15.9 c) . . . . . . . . . . . . . . . . . . . a

15.9 d) . . . . . . . . . . . . . . . . . nqU

15.9 e) . . . . . . . . . . . . . . . . . . . . . 5

15.10 a). . . . . . . . . . . . q

m
#»v ∧ #»

B

15.10 b) . . . . . . . . . . . . . . . Rθ̇ #»eθ

15.10 c) . . . . . . . . . . . . . qRBθ̇ #»er

15.10 d) . . . . . . . Rθ̈ #»eθ −Rθ̇2 #»er

15.10 e) . . . . . . . . . . . . . . . . mv0
|q|B

15.10 f) . . . . . . . . . . . . . . 2π m

|q|B

15.11 a) . . . . . . . q(E − v0B) #»ey

15.11 b) . . . . . . . . . . . . . v0 = E

B

Corrigés

15.1 a) On a 1 eV = 1,6× 10−19 J donc 1 J = 1/1,6× 10−19eV = 6,3× 1018 eV.
.......................................................................................................................................................
15.1 b) On a 2,48× 10−19 J = 2,48× 10−19 J× 6,3× 1018 eV/J = 1,55 eV.
.......................................................................................................................................................
15.1 c) On a 3,1 eV = 3,1 eV× 1,6× 10−19 J/eV = 5,0× 10−19 J.
.......................................................................................................................................................
15.1 d) On peut comparer les énergies en eV : Eviolet = 3,1 eV > 1,55 eV = Erouge.
.......................................................................................................................................................
15.2 On a 1 erg = 1 g · cm2 · s−2 = 10−3 ×

(
10−2)2kg ·m2 · s−2 = 1× 10−7 J.

Avec c = 3,00× 108 m · s−1, la masse de kaon peut s’écrire, en kg :

mkaon = 7,90× 10−11 J(
3,00× 108 m · s−1)2 = 8,78× 10−28 kg.

278 Réponses et corrigés



Comme 1 eV = 1,6× 10−19 J, on a :

mtau = 1 777× 106 × 1,6× 10−19 J(
3,00× 108 m · s−1)2 = 3,16× 10−27 kg.

C’est donc la particule tau la plus massique.
.......................................................................................................................................................
15.3 a) Le champ est d’autant plus intense en norme que les équipotentielles sont proches : pour un même

déplacement #»dℓ, la variation du potentiel électrique est plus importante.
.......................................................................................................................................................
15.3 b) Le champ électrique est orienté dans le sens des potentiels décroissants et orthogonal aux équipotentielles.

Le champ est donc orienté vers le haut à droite.
.......................................................................................................................................................
15.4 a) En effet, on commence par trouver dV (M) = −E dx = d(−Ex+ C).
.......................................................................................................................................................

15.4 b) En effet, on commence par trouver dV (M) = −αdr
r2 = d

(
α

r
+ C

)
.

.......................................................................................................................................................

15.4 c) En effet, on commence par trouver dV (M) = −β dr
r

= d(−β ln(r) + C).
.......................................................................................................................................................
15.4 d) En effet, on commence par trouver dV (M) = −γ(y dx+ xdy) = d(−γxy + C).
.......................................................................................................................................................
15.5 a) La force est indépendante de la vitesse. On trouve #»

F L,électrique = q
#»
E = qE #»ey.

.......................................................................................................................................................
15.5 b) On trouve #»

F L,électrique = q
#»
E = |qE| #»ex.

.......................................................................................................................................................
15.5 c) On trouve #»

F L,électrique = q
#»
E = qE(cosβ #»ey − sin β #»ex) avec β l’angle orienté (β < 0).

.......................................................................................................................................................

15.6 b) On trouve qvB sin
(
π

2 − α
)

#»ez = qvB cos(α) #»ez.
.......................................................................................................................................................
15.7 a) La puissance est P = #»

F · #»v = q
#»
E · #»v = qEvx avec vx la composante de la vitesse suivant #»ex (vx = #»v · #»ex).

On a donc PA = 0.
.......................................................................................................................................................

15.7 b) De même, on calcule PB = 2 sin
(
π

6

)
qEv = qEv.

.......................................................................................................................................................

15.7 c) De même, on calcule PC = 3 cos
(
π

4

)
qEv = 3

√
2

2 qEv.
.......................................................................................................................................................

15.7 d) De même, on calcule PD = − cos
(
π

3

)
qEv = −qEv2 .

.......................................................................................................................................................

15.8 a) Comme t0 est l’instant où la norme de la vitesse est double, on a 4v2
0 = v2

0 +
(
qE

m
t0

)2
, donc t0 =

√
3mv0

qE
.

.......................................................................................................................................................
15.8 b) L’énergie cinétique quadruple lorsque la vitesse double. On a donc t0 = t1.
.......................................................................................................................................................

Réponses et corrigés 279



15.8 c) À l’instant t = t0 = t1, la vitesse peut s’écrire :

#»v = v0
#»ex +

√
3v0

#»ey = 2v0

(
1
2

#»ex +
√

3
2

#»ey

)
= 2v0

(
cos
(
π

3

)
#»ex + sin

(
π

3

)
#»ey

)
.

.......................................................................................................................................................
15.9 a) On a Umax = Emaxd = 3× 107 V ·m−1 × 5,0× 10−2 m = 1,5 MV.
.......................................................................................................................................................
15.9 b) L’énergie en sortie est Ec(S) = qUmax = 1,5 MeV = 2,4× 10−13 J.
.......................................................................................................................................................
15.9 c) La récurrence de la suite est de la forme Ec,n = Ec,n−1 + qU . C’est une suite arithmétique.
.......................................................................................................................................................

15.9 e) Déjà, on a : nqU ⩾
1
2m
(
c

10

)2
⇐⇒ n ⩾

mc2

200qU . Comme
⌈
mc2

200qU

⌉
= 5, on en déduit qu’il faut au

moins 5 condensateurs.
.......................................................................................................................................................
15.10 a) Les forces s’appliquant à la particule sont le poids et la force de Lorentz, mais on néglige le poids. Par

ailleurs, il n’y a pas de champ électrique, donc m #»a = q #»v ∧ #»
B d’où #»a = q

m
#»v ∧ #»

B.
.......................................................................................................................................................
15.10 b) Le mouvement est circulaire. Donc, en coordonnées polaires, on a #    »CM = R #»er. Donc, #»v = Rθ̇ #»eθ.
.......................................................................................................................................................
15.10 c) On peut maintenant calculer le produit vectoriel #»

F L = q #»v ∧ #»
B = qRθ̇ #»eθ ∧B #»ez = qRBθ̇ #»er.

.......................................................................................................................................................
15.10 d) On déduit de la vitesse #»a = Rθ̈ #»eθ −Rθ̇2 #»er.
.......................................................................................................................................................
15.10 e) On résout la question et on représente la situation.

En utilisant le principe fondamental de la dynamique et en projetant sur
les axes #»er et #»eθ : {

−Rθ̇2 = q

m
RBθ̇

Rθ̈ = 0.

En utilisant le fait que Rθ̇2 = v2
0
R

et Rθ̇ = v0, on obtient, d’après la première

ligne, −v
2
0
R

= q

m
Bv0. Ainsi, on trouve R = −mv0

qB
. Comme q < 0, on a

|q| = −q et on a donc R = mv0

|q|B .

#»er#»eθ

#»v 0

⊙ #»
B

C

.......................................................................................................................................................

15.10 f) Le périmètre du cercle parcouru vaut L = 2πR et donc T = 2πR
v0

= 2πmv0

|q|B
1
v0

= 2π m

|q|B .
.......................................................................................................................................................
15.11 a) L’expression générale de la force de Lorentz est #»

F L = q( #»
E + #»v ∧ #»

B), soit ici :

#»
F L = q(E #»ey + v0

#»ex ∧B #»ez) = q(E − v0B) #»ey.

.......................................................................................................................................................
15.11 b) Pour que le mouvement soit rectiligne uniforme, il faut que le vecteur accélération soit nul. D’après le

principe fondamental de la dynamique, il faut donc que la force exercée soit nulle, soit q(E−v0B) #»ey = #»0 ⇒ v0 = E

B
.

.......................................................................................................................................................
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Fiche no 16. Champ magnétique

Réponses

16.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

16.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

16.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

16.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0I

2πd tan(α)

16.3 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,8 µT

16.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2B0R
2

16.6 a) . . . . . . . . . . . . . . . . . . . . µ0Ia

2π ln
(
D + a/2
D − a/2

)

16.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ϕ ≈ µIa2

2πD

16.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nul

16.7 a) . . . . . . . . . B0(1 + cos(α)) #»ex +B0 sin(α) #»ey

16.7 b) . . . . . . . . . . . . . . . . . . . . . . B0
√

2(1 + cos(α))

16.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34,6 mT

16.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

cos(θ)

16.8 b) . . . . . . . . . . . . . . . . . . . − sin(θ) #»ex + cos(θ) #»ey

16.8 c) . . . . . . . . . . . . . . . . . . . − sin(θ) #»ex − cos(θ) #»ey

16.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . −2B0 sin(θ) #»ex

16.8 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − y

a2 + y2

16.8 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . en y = ±a

16.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

16.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . R√
R2 + z2

16.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . R3

(
√
R2 + z2)3

16.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0I

4
√

2R

16.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . R
√

25/3 − 1

16.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

16.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.14 a) . . .

µ0nI

2

(
z + ℓ

2√
R2 +

(
z + ℓ

2

)2

−
z − ℓ

2√
R2 +

(
z − ℓ

2

)2

)

16.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0nIℓ√
4R2 + ℓ2

16.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2

√
4R2 + ℓ2

√
R2 + ℓ2

16.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0nI

16.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . B0
cosh

(z
δ

)
cosh

(e
δ

)
16.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B(0)

B0
≈ 1
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16.15 c) . . . . . . . . . . . . . . . . . . . . . . B(0)
B0

≈ 9 × 10−5

16.16 a) . . . . . . . . . . . . . . . . . . . . r2 + ω0r

Q
+ ω2

0 = 0

16.16 b). . . . . . . . . . . . . . . . . . . . . .
(
ω0
Q

)2
(1 − 4Q2)

16.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆ < 0

16.16 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B0

16.16 e) . .
B0 + e− ω0

2Q
t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))

16.16 f) . .
B0

(
1− e− ω0

Q
t
(

cos
(ω0

Q

√
4Q2 − 1 · t

)
+ 1√

4Q2 − 1
sin
(ω0

Q

√
4Q2 − 1 · t

))
16.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1,−1, 1)

Corrigés

16.2 La force cherchée s’écrit #»
F = −ev0B0( #»ex ∧ #»ey + #»ex ∧ #»ez) = ev0B0( #»ey − #»ez).

.......................................................................................................................................................
16.3 a) À l’équilibre, la boussole s’oriente dans la direction du champ résultant #»

B(O) = #    »
BH + #   »

Bfil(O). On a

alors tan(α) = Bfil

BH
, d’où BH = µ0I

2πd tan(α) .
.......................................................................................................................................................
16.3 b) On calcule :

BH = 4π × 10−7 T ·m ·A−1 × 1,2 A
2π × 2× 10−2 m× tan(30°)

= 10−7 T ·m ·A−1 × 1,2 A
1× 10−2 m× 1√

3

=
√

3× 1,2× 10−5 T = 20,8× 10−6 T.

.......................................................................................................................................................
16.4 Au lieu d’exprimer le flux de #»

B à travers la demi-sphère, il est plus simple de le calculer sur le disque
qui s’appuie, comme la demi-sphère, sur la même circonférence de rayon R (on utilise ici le fait que #»

B est un champ
vectoriel à flux conservatif). Sur le disque, on a #  »dS = dS #»ex. Ainsi ϕ = B × Sdisque = BπR2.
.......................................................................................................................................................
16.5 On calcule :

ϕ =
R̂

r=0

2πˆ

θ=0

#»
B · #»ex dr × r dθ = B0 ×

[
πR2 − 2πR4

4r2

]
= π

2R
2B0.

.......................................................................................................................................................
16.6 a) On calcule :

ϕ =
¨

cadre

µ0I

2πr
#»eθ · dS #»eθ = µ0I

2π

aˆ

0

dz ×
D+a/2ˆ

D−a/2

dr
r

= µ0Ia

2π ln
(
D + a/2
D − a/2

)
.

.......................................................................................................................................................

16.6 b) On réécrit ϕ = µ0Ia

2π

(
ln
(

1 + a

2D

)
− ln

(
1− a

2D

))
. Un développement limité de ln(1± ε) à l’ordre 1

en ε avec |ε| ≪ 1 donne alors : ln(1± ε) ≈ ±ε. D’où ϕ ≈ µIa2

2πD .
.......................................................................................................................................................
16.6 c) Si le cadre est situé dans un plan perpendiculaire à (Oz), on a #  »dS = dS #»ez et #»

B · #  »dS = 0 : le flux est nul.
.......................................................................................................................................................
16.7 a) Le champ résultant en O s’écrit : #»

B(O) = #  »
B1 + #  »

B2, soit #»
B(O) = B0(1 + cos(α)) #»ex +B0 sin(α) #»ey.

.......................................................................................................................................................
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16.7 b) On a B(O) = B0
√

(1 + cos(α))2 + sin2(α). Donc, B(O) = B0
√

2(1 + cos(α)).
.......................................................................................................................................................
16.7 c) On a B(O) = 20

√
3 mT et donc B(O) = 34,6 mT.

.......................................................................................................................................................
16.8 a) On a cos(θ) = a

d
d’où le résultat.

.......................................................................................................................................................
16.8 b) L’angle orienté θ, entre l’horizontale (Ox) et la demi-droite [O1D) se retrouve entre la verticale (Oy) et

la perpendiculaire à [O1D), c’est-à-dire la direction du vecteur #»e1. On a donc #»e1 = − sin(θ) #»ex + cos(θ) #»ey.
.......................................................................................................................................................
16.8 c) Si on note β l’angle que fait #»e2 avec la verticale descendante (−Oy), on a β + π

2 − θ = π

2 , donc β = θ.
On a donc #»e2 = − sin(θ) #»ex − cos(θ) #»ey.
.......................................................................................................................................................
16.8 d) Le champ résultant en D s’écrit #     »

Btot = B0( #»e1 + #»e2). En utilisant les résultats précédents, on trouve
#     »
Btot = −2B0 sin(θ) #»ex.
.......................................................................................................................................................
16.8 e) On a sin(θ) = y

d
. De plus, dans le triangle rectangle (O O1 D), on a d2 = a2 + y2.

Ainsi, #     »
Btot = −µ0I

π

y

a2 + y2 ,
#»ex. Par conséquent, on a f(y) = − y

a2 + y2 .
.......................................................................................................................................................

16.8 f) On calcule f ′(y) = −(a2 + y2) + y × 2y
(a2 + y2)2 = y2 − a2

(a2 + y2)2 . La fonction f ′ s’annule pour |y| → ∞, qui renvoie

lim
|y|→∞

f(y) = 0 et, pour |y| = a, qui donne
∣∣f(±a)

∣∣ = 1
2a : c’est le maximum recherché.

.......................................................................................................................................................
16.9 a) Le plan (M, #»er,

#»ez) est un plan de symétrie qui laisse M invariant ainsi que la distribution des courants
car, si N ≫ 1, chaque fil aura son symétrique, le courant circulant dans le même sens dans les deux fils symétriques.
.......................................................................................................................................................
16.9 b) Le vecteur #»

B, vecteur axial, est perpendiculaire à tout plan de symétrie de ses sources, donc #»
B(M) est

dirigé selon #»eθ.
.......................................................................................................................................................
16.10 a) Dans une symétrie par rapport au plan (xOy), les fils restent inchangés mais les courants sont inversés :

c’est donc un plan d’antisymétrie.
Dans une symétrie par rapport au plan (yOz), on permute les fils de gauche et de droite, les courants circulant
dans le sens inverse de la situation initiale : il s’agit, ici encore, d’un plan d’antisymétrie.
Seul, le plan (xOz) laisse les fils inchangés ainsi que les sens des courants : c’est donc bien un plan de symétrie pour
la distribution des courants.
.......................................................................................................................................................
16.10 b) Pour le point A sur l’axe (Ox), le plan (xOy) est un plan de symétrie pour la distribution des courants

et laisse A invariant. Le vecteur champ magnétique, vecteur axial, est perpendiculaire à tout plan de symétrie, donc
on a #»

B(A) ⊥ (xOz). Donc, #»
B(A) est parallèle à (Oy).

.......................................................................................................................................................
16.10 c) Pour le point D sur l’axe (Oy), les plans (xOy) et (yOz) sont des plans d’antisymétrie pour la distribution

des courants et laissent D invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan
d’antisymétrie, donc #     »

Btot ∈ (xOy) ∩ (yOz), soit #     »
Btot est parallèle à (Oy).

.......................................................................................................................................................
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16.11 a) Tout plan qui contient le point M et l’axe (Oz) est plan d’antisymétrie pour la distribution des courants
et laisse M invariant. Le vecteur #»

B(M), vecteur axial, est contenu dans tous ces plans d’antisymétrie. Par conséquent,
#»
B(M) est colinéaire à (Oz).
.......................................................................................................................................................
16.11 b) Le plan (M, #»er,

#»ez) est un plan d’antisymétrie pour la distribution des courants et laisse le point N
invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan d’antisymétrie, donc on a
#»
B(N) ∈ (M, #»er,

#»ez).
.......................................................................................................................................................

16.12 b) On a B0f(z) = B0 sin3(α), ce qui donne f(z) = R3(√
R2 + z2

)3 .

.......................................................................................................................................................

16.12 c) Remplaçons z par R dans l’expression de Baxe. On trouve B1 = µ0I

2R f(R) = µ0I

2R
R3(√
2R2

)3 = µ0I

4
√

2R
.

.......................................................................................................................................................

16.12 d) On cherche z tel que Baxe(z) = 1
2B1, c’est-à-dire tel que :

µ0I

2R
R3(√

R2 + z2
)3 = 1

2
µ0I

4
√

2R
donc, après simplifications, tel que R3

(R2 + z2)3/2 = 1
4
√

2
.

Élevons à la puissance 2/3 chaque terme de l’égalité. On obtient :

R2

R2 + z2 = 1(
4
√

2
)2/3 = 1

(25/2)2/3 = 1
(2)5/3 d’où (2)5/3R2 = R2 + z2.

Finalement, on trouve z = R
√

25/3 − 1.
.......................................................................................................................................................
16.13 a) Tout plan qui contient l’axe (Oz) est plan d’antisymétrie pour la distribution des courants à condition

de considérer que le symétrique de chaque spire par rapport à un plan qui contient (Oz) se superpose à la spire de
départ, ce qui n’est possible qu’en négligeant l’hélicité de l’enroulement.
.......................................................................................................................................................
16.13 b) En négligeant l’hélicité de l’enroulement des spires, tout plan qui contient (Oz) est un plan d’antisymétrie

pour la distribution des courants et laisse le point M invariant. Le vecteur champ magnétique, vecteur axial, est
contenu dans tout plan d’antisymétrie, donc #»

B(M) est dirigé selon #»ez.
.......................................................................................................................................................

16.14 a) On a B(z) = µ0nI

2

 z + ℓ
2√

R2 +
(
z + ℓ

2

)2
−

z − ℓ
2√

R2 +
(
z − ℓ

2

)2

.

.......................................................................................................................................................
16.14 b) Au point O, on a αmax = π − αmin. Or cos(π − αmin) = − cos(αmin), ce qui donne en O :

cos(αmin) = ℓ/2√
R2 + ℓ2/4

.

Ainsi, on a B(O) = µ0nI cos(αmin) = µ0nI
ℓ√

4R2 + ℓ2
.

.......................................................................................................................................................
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16.14 c) Remarquons déjà que la fonction B(z) est une fonction paire de z. On aura donc B
(
− ℓ2

)
= B

(
+ ℓ

2

)
.

En z = ℓ

2 , on a αmax = π

2 , donc cos(αmax) = 0 et cos(αmin) = ℓ√
R2 + ℓ2

. Ainsi, on a
B
(
± ℓ2

)
B(O) = 1

2

√
4R2 + ℓ2
√
R2 + ℓ2

.
.......................................................................................................................................................

16.14 d) On a B(O) = µ0nI
ℓ√

4R2 + ℓ2
= µ0nI√

1 + 4R2
ℓ2

. Si ℓ

R
→ +∞, alors 4R2

ℓ2 −→ 0 et B(O)−→µ0nI.

.......................................................................................................................................................

16.15 a) La solution de l’équation différentielle s’écrit B(z) = C exp
(
z

δ

)
+D exp

(
−z
δ

)
. La fonction B(z) étant

paire, on a C = D. D’où B(z) = 2C cosh
(
z

δ

)
.

La condition aux limites en z = e permet d’exprimer la constante C par continuité de B (forcément continu car

défini en volume) : on trouve C = B0

2 cosh
(
e

δ

) . Ainsi, on a B(z) = B0

cosh
(
z

δ

)
cosh

(
e

δ

) .

.......................................................................................................................................................

16.15 b) Pour e = δ/10, on a B(0)
B0

= 1
cosh(1/10) ≈ 1.

.......................................................................................................................................................

16.15 c) Pour e = 10δ, on a B(0)
B0

= 1
cosh(10) ≈ 9× 10−5.

.......................................................................................................................................................

16.16 b) On calcule ∆ =
(
ω0

Q

)2

− 4ω0
2 = ω0

2
(

1
Q2 − 4

)
= ω0

2 1− 4Q2

Q2 =
(
ω0

Q

)2

(1− 4Q2).
.......................................................................................................................................................
16.16 c) En effet, on a Q > 1/2.
.......................................................................................................................................................
16.16 d) La fonction constante B0 est solution de (∗).
.......................................................................................................................................................
16.16 e) Les racines de l’équation caractéristique sont − ω0

2Q ± i ω0

2Q
√

4Q2 − 1.

Donc, la solution générale de l’équation sans second membre associée à (∗) est :

e− ω0
2Q

t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))
.

Donc, la solution générale de l’équation (∗) est B0 + e− ω0
2Q

t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))

.
.......................................................................................................................................................

16.16 f) La condition initiale B(0) = 0 donne λ = −B0. La condition initiale B′(0) = 0 donne µ = −B0√
4Q2 − 1

.

.......................................................................................................................................................
16.17 On a [µB ] =

[
eα ·mβ

e · hγ
]

= Qα ·Mβ · [h]γ .
La constante de Planck h est homogène au produit d’une énergie par un temps (la fréquence est homogène à l’inverse
d’un temps). De plus, une énergie est homogène au produit d’une masse par une vitesse au carré. Nous obtenons

donc : [h] = M · L2

T
. Ainsi, on a [µB ] = Qα ·Mβ+γ · L2γ

T γ
.

Le magnéton de Bohr s’exprime en A ·m2. Il est donc homogène à [µB ] = [I] · [S] = Q · L2

T
.

Finalement, en comparant les équations obtenues, on obtient α = 1, β = −1 et γ = 1.
.......................................................................................................................................................
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Fiche no 17. Induction

Réponses

17.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×1/2

17.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et b

17.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui

17.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

17.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Bac

17.3 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bac

17.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ba2

17.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.4 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Bab

17.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

17.5 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba(b− a)

17.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

17.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.8 a) . . . . . . . . . . . . . . . . . . . . . . . . Le flux diminue

17.8 b) . . . . . . . . . . . . . . . . . . . . Le flux ne varie pas

17.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . Le flux diminue

17.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.8 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i = 0

17.8 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.9 a) . . . . . . . . . . . . . . . . . . . . . . B0S0ω sin(ωt+ φ)

17.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . B0S0
t

τ2 e
−t/τ

17.9 c) . . . . . . . . . . . . . . . −8B0S0ω cos(ωt) sin3(ωt)

17.9 d) . . . . . . . . . −B0S0ω[2 cos(4ωt) + cos(2ωt)]

17.10 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IBd #»ex

17.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . −IBd

m
t+ v0

17.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mv2
0

2IBd

17.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IaB #»ey

17.11 b) . . . . . . . . . . . . . . . . . . . IaB

(√
3

2
#»ex + 1

2
#»ey

)

17.11 c) . . . . . . . . . . . . . . . . . IaB

(
−

√
3

2
#»ex + 1

2
#»ey

)
17.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IaB #»ez
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17.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IaB #»ez

17.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ia2B #»ex

17.12 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ia2 #»ez

17.12 h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ia2B #»ex

17.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iab #»eθ

17.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iabB cos θ

17.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −a

2mg sin θ

17.13 d) . . . . . . . . . . . . . . . . . . . . . . . . arctan
(

2ibB
mg

)

Corrigés

17.1 a) Le flux du champ magnétique à travers une spire est φ1 = BS = πR2B. Le flux total à travers la bobine
est donc :

φtot = Nφ1 = µ0πR
2N2

ℓ
i.

On retrouve l’expression de l’inductance L de la bobine en fonction de ses caractéristiques géométriques :

φtot = Li ⇐⇒ L = µ0πR
2N2

ℓ
.

Si on double le courant, on double donc le flux.
.......................................................................................................................................................
17.1 b) En doublant la longueur du solénoïde, en gardant les spires jointives et le fil de même épaisseur, on

double alors la longueur ℓ et le nombre de spires N : on double alors le flux.
.......................................................................................................................................................
17.1 c) Le fil est deux fois plus épais mais de même longueur : on a toujours N spires mais réparties sur une

longueur 2ℓ au lieu de ℓ. Le flux propre est donc divisé par deux.
.......................................................................................................................................................
17.1 d) Si on double le rayon des spires en gardant la longueur de fil identique, le nombre de spires dans la

bobine diminue. En effet, en notant ℓfil la longueur du fil, on trouve : ℓfil = 2πNR = 2πN ′(2R) ⇐⇒ N ′ = N/2 en
notant N ′ le nouveau nombre de spires. La longueur de la bobine est également divisée par 2.
Le flux total devient alors :

φ′
tot = µ0π(2R)2(N/2)2

(ℓ/2) i = 2µ0πR
2N2

ℓ
i = 2φtot.

Le flux total est donc multiplié par deux.
.......................................................................................................................................................
17.2 a) D’après la règle de la main droite, le pouce étant dans le sens du courant, en enroulant la main on trouve

que le champ magnétique sort de la feuille au niveau des circuits. De plus, en enroulant la main droite dans le sens
de l’orientation de chaque circuit, on peut déterminer le sens du vecteur surface par le sens du pouce, ainsi les spires
A et B ont un vecteur surface vers la feuille et les spires C et D ont un vecteur surface qui sort de la feuille. Comme
le flux est donné par ϕ

( #»
B
)

=
¨

S

#»
B · #  »dS, celui-ci sera négatif si le vecteur surface et le vecteur champ magnétique

présentent des sens opposés.
.......................................................................................................................................................
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17.2 b) On rappelle que le flux du champ magnétique à travers une surface orientée S vaut ϕ
( #»
B
)

=
¨

S

#»
B · #  »dS.

Sans tenir compte de l’orientation des surfaces, le flux sera d’autant plus important dans le circuit que celui-ci est
proche du fil car le champ magnétique produit par un fil infini est une fonction décroissante de la distance au fil.
On a donc |ϕA| > |ϕB|.
.......................................................................................................................................................
17.2 c) D’après la même justification que la question précédente, on a |ϕD| > |ϕC|.
.......................................................................................................................................................
17.3 a) On oriente toutes les surfaces vers l’extérieur du volume. Ainsi, pour la surface AA′B′B, le vecteur normal

s’écrit #»
SAA′B′B = −ab #»ex. On rappelle que le flux du champ magnétique à travers une surface est : ϕ =

¨
S

#»
B · #  »dS.

Le flux à travers la surface ABC est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 b) Le flux à travers la surface A′C′B′ est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 c) Le flux à travers la surface AA′B′B est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 d) Le flux au travers de ACC′A′ vaut −Bac.
.......................................................................................................................................................
17.3 e) Le flux au travers de BB′C′C vaut Bac car le champ magnétique est à flux conservatif : la somme des

flux sortant d’une surface fermée est nulle.
.......................................................................................................................................................
17.4 a) Le flux sortant de la surface ABCD vaut −Ba2 car le champ est uniforme sur cette surface.
.......................................................................................................................................................
17.4 b) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul.
.......................................................................................................................................................
17.4 c) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 d) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 e) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 f) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.5 a) Le champ #»

B étant orthogonal à la surface ABCD, son flux y vaut −Bab.
.......................................................................................................................................................
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17.5 b) Le flux du champ magnétique est nul sur la surface BAA′B′ car #»
B est inclus dans ce plan.

.......................................................................................................................................................
17.5 c) Le flux du champ magnétique est nul sur la surface CC′D′D car #»

B est inclus dans ce plan.
.......................................................................................................................................................
17.5 d) Le flux du champ magnétique est nul sur la surface ADD′A′ car #»

B est inclus dans ce plan.
.......................................................................................................................................................
17.5 e) Le champ #»

B étant orthogonal à la surface A′D′C′B′, son flux y vaut Ba2.
.......................................................................................................................................................
17.5 f) En exploitant la conservation du flux magnétique, on en déduit donc que le flux sortant de la surface

CBB′C′ vaut Bab−Ba2 = Ba(b− a).
.......................................................................................................................................................
17.6 Avec un courant positif, le champ magnétique produit par la boucle externe est sortant de la feuille.

Comme le courant augmente, le flux également. Le champ magnétique induit par les effets inductifs est opposé aux
causes qui lui ont donné naissance : il sera rentrant dans la feuille. Le courant est donc dans le sens horaire.
.......................................................................................................................................................
17.7 a) Rappelons que, pour un aimant droit, le champ sort par le Nord : les lignes de champ sont orientées du

Nord vers le Sud.
La première étape consiste à déterminer le sens de variation du champ magnétique vu par la spire au cours du
déplacement. On déduit alors de la loi de Lenz le sens du champ magnétique induit #»

Bind, qui tend à atténuer les
variations de #»

B. On détermine ensuite par la règle de la main droite le sens réel du courant dans la spire. Enfin,
par comparaison entre le sens réel du courant et le sens i > 0 indiqué sur la figure, on en déduit le signe de i.
Le champ magnétique créé par l’aimant droit est orienté vers la gauche au niveau de la spire. Il augmente dans la
spire avec le déplacement de l’aimant. Le champ induit va s’opposer à cette augmentation : il sera orienté vers la
droite. On a donc ia > 0.
.......................................................................................................................................................
17.7 b) La physique est identique à la situation précédente, seule change la convention sur le sens positif du

courant : on en déduit immédiatement ib < 0.
.......................................................................................................................................................
17.7 c) Le champ magnétique est orienté vers la droite au niveau de la spire. Il diminue avec le déplacement de

l’aimant. Le champ induit va s’opposer à cette variation : il sera orienté vers la droite également. Ainsi, on a ic > 0.
.......................................................................................................................................................
17.7 d) Les variations de champ vues par la spire sont les mêmes qu’à la question a), le sens réel du courant

induit est donc le même. Comme le sens choisi positif du courant est opposé, alors id < 0.
.......................................................................................................................................................
17.7 e) Les variations de champ vues par la spire sont les mêmes qu’à la question c), le sens réel du courant

induit est donc le même. Comme le sens choisi positif du courant est opposé, alors ie < 0.
.......................................................................................................................................................
17.7 f) Le déplacement de la spire renforce l’effet du déplacement de l’aimant. Cette fois, le champ vu par la

spire diminue au cours du mouvement, le champ induit a donc tendance à le renforcer. On a donc if < 0.
.......................................................................................................................................................
17.8 a) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal. Dans la configuration finale, le flux du champ magnétique dans la spire est
nul. Le flux diminue donc.
.......................................................................................................................................................
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17.8 b) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens opposé
au champ magnétique : le flux est minimal.
La configuration finale est identique à la configuration initiale : le flux est le même.
.......................................................................................................................................................
17.8 c) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal.
La configuration finale est similaire à la configuration initiale mais le flux est moins grand car le nombre de lignes
de champ interceptées est inférieur. Le flux diminue donc.
.......................................................................................................................................................
17.8 d) Le courant circulant dans la spire va produire un champ magnétique tel qu’il s’oppose à la diminution

du flux : le courant sera donc positif. On a i(A) > 0.
.......................................................................................................................................................
17.8 e) Il n’y a pas de variation de flux, donc pas d’induction : on a i(B) = 0.
.......................................................................................................................................................
17.8 f) Le courant circulant dans la spire va produire un champ magnétique afin de compenser la diminution

du flux : le courant sera donc positif. On a i(C) > 0.
.......................................................................................................................................................
17.9 c) On peut réécrire le flux sous la forme suivante : Φ3 = 2B0S0 sin4(ωt) ; d’où e3 = −8B0S0ω cos(ωt) sin3(ωt).
.......................................................................................................................................................

17.9 d) De même, on commence par linéariser l’expression. On a Φ4 = B0S0

2 [sin(4ωt) + sin(2ωt)]. Puis, on
dérive et on trouve : e4 = −B0S0ω[2 cos(4ωt) + cos(2ωt)].
.......................................................................................................................................................

17.10 a) La force de Laplace se calcule par #»
F =

ˆ N

M
I

#»dℓ ∧ #»
B, soit #»

F =
ˆ N

M
−I dz #»ez ∧ −B #»ey = −IBd #»ex.

.......................................................................................................................................................
17.10 b) La force de Laplace est constante. Par application du principe fondamental de la dynamique en projection

sur #»ex, on a :
m

dv(t)
dt = −IBd.

En intégrant (avec la condition initiale), on trouve v(t) = −IBd
m

t+ v0.
.......................................................................................................................................................
17.10 c) Par application du théorème de l’énergie cinétique entre le point x = 0 et le point d’arrêt x = D, on a :

∆Ec = 0− 1
2mv

2
0 =
ˆ x=D

x=0

#»
F · #»dℓ =

ˆ x=D

x=0
−IBd #»ex · dx #»ex = −IBdD.

On en déduit : D = mv2
0

2IBd .
.......................................................................................................................................................
17.11 a) Il s’agit de calculer le produit vectoriel sur chaque segment, le vecteur #»dℓ étant le long du segment.

Chaque force de Laplace s’exerce au milieu de chaque segment et la règle de la main droite indique qu’elle est
orthogonale au segment dirigé vers l’extérieur du triangle. Le triangle est équilatéral et comporte donc trois angles
de 60 °, ce qui amène aux projections sur #»ex et #»ey. D’où les résultats.
.......................................................................................................................................................
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17.11 d) Le champ magnétique étant uniforme, la résultante des forces de Laplace sur le circuit fermé est nulle :

#»
F L,tot =

˛
C

(
I

#»dℓ ∧ #»
B
)

= I

(˛
C

#»dℓ
)
∧ #»
B = #»0 .

.......................................................................................................................................................
17.12 h) Dans ce cas, les forces de Laplace sont nulles sur les segments BC et DA ( #»dℓ et #»

B sont colinéaires). Les
seules forces sont alors :

#»
FAB = IaB #»ez et #»

FCD = −IaB #»ez.

Le couple est alors #»Γ = −Ia2B #»ex.
.......................................................................................................................................................
17.13 a) Dans la base cylindrique telle que #»ez = #  »e∆, le moment magnétique est porté par #»eθ et sa norme est
m = iS = iab.
.......................................................................................................................................................
17.13 b) Par définition, le couple magnétique se calcule par #»Γ = #»m ∧ #»

B. Le calcul du produit vectoriel amène à
#»Γ = iabB cos θ #»ez. Comme #»ez = #  »e∆, la projection sur l’axe ∆ donne donc Γ∆ = iabB cos θ.
.......................................................................................................................................................
17.13 c) Dans la base cylindrique, le poids s’exprime #»

P = mg(cos θ #»er − sin θ #»eθ). On considère qu’il s’applique au
barycentre des masses du cadre, soit en son plein centre que l’on notera G. Son moment par rapport à l’axe ∆ se
calcule parM∆( #»

P ) =
( #    »OG ∧ #»

P
)
· #  »e∆ avec O un point sur l’axe ∆. D’où,M∆( #»

P ) =
(
a/2 #»er ∧

#»
P
)
· #  »e∆ = −a2mg sin θ.

.......................................................................................................................................................
17.13 d) À l’équilibre, la somme des moments des forces par rapport à l’axe ∆ est nulle. Ainsi, on a :

Γ∆ +M∆( #»
P ) = 0.

D’où iabB cos θeq −
a

2mg sin θeq = 0, ce qui amène à isoler tan θeq = 2ibB
mg

, soit finalement θeq = arctan
(

2ibB
mg

)
.

.......................................................................................................................................................
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Fiche no 18. Gaz parfaits

Réponses

18.1 a) . . . . . . . . . . . . . . . . . . 62 L

18.1 b). . . . . . . . . . . . . . . . . . 25 L

18.1 c) . . . . . . . . . . . 6,8 × 102 L

18.2 a) . . . . . . . . . . 58 g · mol−1

18.2 b) . . . . . . . . . 1,8 × 102 bar

18.2 c) . . . . . . . . . . . . . . . . 5,5 m3

18.3 a) . . . . . . . . 24,8 L · mol−1

18.3 b) . . . . . . . . 13,4 L · mol−1

18.4 . . . . . . . . . . . . . . . . . . . 64 °C

18.5 a) . . . . . . . . . . . . . . 1,00 bar

18.5 b) . . . . . . . . . . . . . . 1,24 bar

18.6 a) . . . . . . . . . . . . . . . . . . . a

18.6 b) . . . . . . . . . . . . . . . . . . . d

18.7 a) . . . . . . . . . . . . . . . . . MP

RT

18.7 b) . . . . . . . . . . . . . . . . . . non

18.8 a) . . . . . . . . . . . . . . . . . . 4ρ1

18.8 b). . . . . . . . . . . . . . . . . 3,7ρ1

18.9 a) . . . . . . . . . . . . . n2
n1

= P2
P1

18.9 b). . . . . . . . . . . . 2P1
P1 + P2

V

18.10 . . . . . . . . . . . . . . . . . . MA
Mair

18.11 a) . . . . . . . . . . . . . . . 4
3πr

3

18.11 b) . . . 4πP0r
3 + 16πγr2

3RT0

18.12 a) . . . . . . . 18,2 g · mol−1

18.12 b) . . . . . . . . . . . . . . 4,79 %

18.13 a) . . . . . . . 30,6 g · mol−1

18.13 b) . . . . . . . . . . . . . . 65,6 %

18.14 . . . . . . . . . . . . . . . . . 5,5 kg

18.15 a) . . . . . . . . . . . . . 400 hPa

18.15 b) . . . . . . . . . . . . . 400 hPa

Corrigés

18.1 a) On a PV = nRT avec n = m

M
. Ainsi, on a V = m

M
× RT

P
. Notez que l’on peut laisser les masses en g

si l’on exprime la masse molaire en g ·mol−1.

Ainsi, on a V = 100 g
40 g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 62× 10−3 m3 = 62 L.
.......................................................................................................................................................

18.1 b) On a V = 32 g
2× 16 g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 24,8× 10−3 m3 = 25 L.
.......................................................................................................................................................

18.1 c) On a V = 1 200 g
(12 + 2× 16)g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 0,676 m3 = 6,8× 102 L.
.......................................................................................................................................................
18.2 a) On a MC4H10 = 4×MC + 10×MH = 4× 12 g ·mol−1 + 10× 1 g ·mol−1 = 58 g ·mol−1.
.......................................................................................................................................................
18.2 b) Si tout le butane était à l’état gazeux dans la bouteille et en admettant qu’il se comporte comme un

gaz parfait, la pression qui y règnerait serait de :

P = nRT

V
= m

M
× RT

V
= 13× 103 g

58 g ·mol−1 ×
8,314 J ·K−1 ·mol−1 × 293,15 K

30,6× 10−3 m3 = 179× 105 Pa = 1,8× 102 bar,

et la bouteille exploserait... Heureusement qu’une grande partie est à l’état liquide !
.......................................................................................................................................................
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18.2 c) En considérant le butane comme gaz parfait, on a :

V = nRT

P
= m

M

RT

P
= 13× 103 g

58 g ·mol−1 ×
8,314 J ·K−1 ·mol−1 × 293,15 K

1× 105 Pa
= 5,5 m3.

.......................................................................................................................................................

18.3 a) Le volume molaire est le volume occupé par une mole de gaz : c’est Vm = V

n
= RT

P
.

En exprimant la pression en pascals et la température en kelvins, on obtient :

Vm = 8,314 J ·K−1 ·mol−1 × 298,15 K
1,00× 105 Pa

= 24,8× 10−3 m3 ·mol−1 = 24,8 L ·mol−1.

.......................................................................................................................................................
18.3 b) On applique la même formule. On trouve :

Vm = 8,314 J ·K−1 ·mol−1 × (273,15 + 50)K
2,00× 105 Pa

= 13,4× 10−3 m3 ·mol−1 = 13,4 L ·mol−1.

Remarquez que le volume molaire ne dépend pas de la nature du gaz mais seulement des conditions de pression et
de température.
.......................................................................................................................................................
18.4 D’après la loi des gaz parfaits : P1V = nRT1 et P2V = nRT2, ce qui donne à volume constant :

T2 = T1
P2

P1
= (273, 15 + 20)K× 2,3 bar

2,0 bar = 337 K = 64 °C.

.......................................................................................................................................................
18.5 a) À température constante, le produit PV reste constant, d’où :

P1V1 = P2V2 avec V2 = 1,2V1 d’où P2 = P1

1,2 = 1,0 bar.

.......................................................................................................................................................
18.5 b) À volume constant, le quotient P/T reste constant, d’où :

P1

T1
= P2

T2
d’où P2 = P1

T2

T1
= 1,2× 303, 15

293, 15 = 1,24 bar.

.......................................................................................................................................................

18.6 a) La loi des gaz parfaits permet d’exprimer P en fonction de T : P = nR

V
T = Cte × T , car nR/V est

constant. On prévoit donc une relation linéaire dont la courbe représentative est une droite passant par l’origine.
.......................................................................................................................................................

18.6 b) En vertu de la loi des gaz parfaits, on a P = nRT

V
= Cte

V
, car nRT est fixé. On prévoit donc une relation

inverse dont la courbe représentative est une hyperbole.
.......................................................................................................................................................
18.7 a) Par définition, la masse volumique vaut :

ρ = m

V
= nM

nRT
P

= MP

RT
.

.......................................................................................................................................................
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18.7 b) Assimilons la vapeur d’eau à un gaz parfait. On a alors :

ρ = 18× 10−3 kg ·mol−1 × 1,013× 105 Pa
8,314 J ·K−1 ·mol−1 × 373,15 K

= 0,588 kg ·m−3.

Ce résultat est en désaccord avec la mesure.
Au voisinage d’un changement d’état (comme ici, où l’eau est à l’état de vapeur saturante), le modèle du gaz parfait
n’est pas valide.
.......................................................................................................................................................

18.8 a) La masse volumique d’un gaz parfait s’écrit ρ = MP

RT
. On a donc ici :

ρ1 = MP1

RT1
et ρ2 = MP2

RT1
.

Ceci donne ρ2 = ρ1
P2

P1
= 4ρ1.

.......................................................................................................................................................

18.8 b) Le même raisonnement mène à ρ2 = ρ1
T1P2

T2P1
= 3,7ρ1.

On fera attention au fait que, dans un rapport de températures, celles-ci sont à exprimer en kelvins.
.......................................................................................................................................................

18.9 a) D’après la loi des gaz parfaits, on a n1 = P1V

RT
et n2 = P2V

RT
, d’où la relation n2

n1
= P2

P1
.

.......................................................................................................................................................
18.9 b) Appliquons la loi des gaz parfaits dans chaque compartiment. On a :

P ′V1 = n1RT et P ′V2 = n2RT,

dont on déduit V2/V1 = n2/n1.
Par ailleurs, la conservation du volume total donne :

2V = V1 + V2 = V1

(
1 + n2

n1

)
.

Ainsi, il découle :
V1 = 2V

1 + n2/n1
= 2V

1 + P2/P1
= 2P1

P1 + P2
V.

.......................................................................................................................................................
18.10 Exprimons la masse volumique en fonction de la masse molaire pour un gaz parfait :

V = nRT

P
= mRT

MP
donc ρ = m

V
= PM

RT
.

Ainsi, sous la même pression et la même température, on a :

d = ρA

ρair
= PMA

PMair
= MA

Mair
.

.......................................................................................................................................................

18.11 a) Le volume de la bulle vaut V = 4
3πr

3.
.......................................................................................................................................................

18.11 b) La pression de l’air intérieure vaut P = P0 + 4γ
r

. La loi des gaz parfaits donne alors :

PV =
(
P0 + 4γ

r

)
× 4

3πr
3 = nRT0 d’où n = 4πP0r

3 + 16πγr2

3RT0
.

.......................................................................................................................................................

294 Réponses et corrigés



18.12 a) La masse molaire du mélange est la moyenne pondérée des masses molaires : M =
∑

i

xiMi.

Ceci donne ici :

M =
(
0,813× 16 + 0,029× 30 + 0,004× 44 + 0,002× 58 + 0,143× 28

)
g.mol−1 = 18,2 g ·mol−1.

.......................................................................................................................................................
18.12 b) Faisons un bilan avec une mole de mélange :
• le mélange a une masse totale m = 18,2 g ;
• ce mélange contient 0,029 mol d’éthane, soit mC2H6 = 0,029× 30 = 0,87 g.

On en déduit que le titre massique vaut :

wC2H6 = mC2H6/m = 4,79 %.

.......................................................................................................................................................
18.13 a) Le mélange étant considéré parfait, on peut appliquer la loi des gaz parfaits :

PV = nRT d’où ρ = m

V
= MP

RT
.

On en déduit la masse molaire :

M = ρRT

P
= 1 kg ·m−3 × 8,314 J ·K−1 ·mol−1 × 373,15 K

1,013× 105 Pa
= 30,6× 10−3 kg ·mol−1.

.......................................................................................................................................................
18.13 b) La masse molaire du mélange est la moyenne pondérée des masses molaires. Si l’on note x la fraction

molaire en dioxygène et y celle en diazote, on a M = xMO2 + yMN2 , avec x+ y = 1. On en déduit :

x = M −MN2

MO2 −MN2
= 30,626 g ·mol−1 − 28 g ·mol−1

32 g ·mol−1 − 28 g ·mol−1 = 65,6 %.

.......................................................................................................................................................
18.14 Calculons la pression partielle en vapeur d’eau : elle vaut PH2O = 60 %psat = 1,90× 103 Pa.

Dans un volume de 400 m3, cela correspond à une quantité de matière :

nH20 = PH2OV

RT
= 1,90× 103 Pa × 400 m3

8,314 J ·K−1 ·mol−1 × 298,15 K
= 307 mol.

Ceci représente une masse m = nH2O ×MH2O = 18× 10−3 kg ·mol−1 × 307 mol = 5,5 kg.
.......................................................................................................................................................
18.15 a) La loi de Dalton impose P = PA + PB, d’où PB = 400 hPa.
.......................................................................................................................................................
18.15 b) La pression partielle d’une espèce dépend de sa quantité de matière, de sa température et du volume

total. En effet :

P =

(∑
i

ni

)
×RT

V
=
∑

i

Pi avec Pi = niRT

V
.

Puisque ces quantités n’ont pas changé pour l’espèce B, sa pression partielle est restée la même.
.......................................................................................................................................................
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Fiche no 19. Premier principe

Réponses

19.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 J

19.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0,5 J

19.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 J

19.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 J

19.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 J

19.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B

19.4 a) . . . . . . . . . . . . . . . . . . . . −P0(Vfinal − Vinitial)

19.4 b). . . . . . . . . . . . . −(P2 + P1)(Vfinal − Vinitial)
2

19.5 a) . . . . . . . . . . . . . . . . . . . . . . . . −nRT0 ln
(
Vf

Vi

)

19.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . PfVf − PiVi

k − 1

19.6 a) . . . . . . . . . . . . . . . . . . . . . . . 76 J · K−1 · mol−1

19.6 b) . . . . . . . . . . . . 18 × 10−3 kcal · K−1 · mol−1

19.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . mc(Tf − Ti)

19.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,2 kJ

19.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR

γ − 1

19.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,2 × 102 J

19.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nRγ

γ − 1

19.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,7 × 102 J

19.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . CV (Tf − Ti)

19.9 b) . . . . . . . . . . . . . A

2 (Tf
2 − Ti

2) +B(Tf − Ti)

19.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . D

4 (Tf
4 − Ti

4)

19.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −268 kJ

19.11 . . . . . . . . . . . . . . . . . . . Ti + n2a

CV

(
1
Vf

− 1
Vi

)

19.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ti + Q

C

19.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ti e
Q
A

19.12 c) . . . . . . . . . . . . . . . . . . . . . . .
(
Ti

3 + 3Q
B

)1/3

19.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . nRTi ln
(
Vf

Vi

)

19.13 b) . . . . . . . . . . . . . . . . . . . . . . . . nR

γ − 1(Tf − Ti)

19.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

19.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W1 −Q1

19.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q1 −Q2

19.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W1 −Q2

19.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 J · K−1

19.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

h

19.16 b) . . . . . . . . . . . . . . . . . . . Ta + (T0 − Ta)e− ht
C

19.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

19.18 a) . . . . . . . . . . . . . . . . . . . . . . . . m1T1 +m2T2
m1 +m2

19.18 b) . . . . . . . . . m1T1 +m2T2
m1 +m2

+ Q

(m1 +m2)c
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Corrigés

19.1 a) On a W = −
(
1,5× 105 Pa

)(
3× 10−3 m3 − 5× 10−3 m3) = 300 J.

.......................................................................................................................................................
19.1 b) On a P0 = 50 mbar = 50× 10−3 bar =

(
50× 10−3)× 105 Pa = 50× 102 Pa.

On a Vi = 2 cL = 2× 10−2 L =
(
2× 10−2)× 10−3 m3 = 2× 10−5 m3.

On a Vf = 120 mL = 120× 10−3 L =
(
120× 10−3)× 10−3 m3 = 12× 10−5 m3.

On a W = −
(
50× 102 Pa

)
×
(
12× 10−5 m3 − 2× 10−5 m3) = −0,5 J.

.......................................................................................................................................................
19.1 c) On a Vi = 20 cm3 = 20× 10−6 m3 et Vf = 10 cm3 = 10× 10−6 m3.

On a W = −
(
150× 105 Pa

)
×
(
10× 10−6 m3 − 20× 10−6 m3) = 150 J.

.......................................................................................................................................................

19.2 a) Le volume ne variant pas, on a dV = 0. Le travail des forces de pression s’écrit W = −
ˆ Vfinal

Vinitial

Pext dV .

Il est donc nul.
.......................................................................................................................................................
19.2 b) Le travail des forces de pression s’écrit :

W = −
ˆ Vfinal

Vinitial

Pext dV = −Pext

ˆ Vfinal

Vinitial

dV = −Pext(Vfinal − Vinitial).

Nous pouvons donc faire l’application numérique : W = −1× 105 Pa × (2× 10−3 m3 − 1× 10−3 m3) = −100 J.
.......................................................................................................................................................
19.3 Le système A a reçu du milieu extérieur un travail Wa = 50 W× 30 s = 1 500 J.

Le système B a reçu du milieu extérieur un travail Wb = 400 W× 5 s = 2 000 J.
Le système B a donc reçu la plus grande quantité d’énergie.
.......................................................................................................................................................
19.4 a) Le travail correspond à l’opposé de l’aire sous la courbe, et donc à l’opposé de l’aire du rectangle :

W = −P0(Vfinal − Vinitial).

.......................................................................................................................................................
19.4 b) On décompose l’aire sous la courbe en un rectangle et en un triangle :

W = −
(
P1(Vfinal − Vinitial) + (P2 − P1)(Vfinal − Vinitial)

2

)
= −(P2 + P1)(Vfinal − Vinitial)

2 .

.......................................................................................................................................................
19.5 a) Le système est un gaz parfait, nous avons donc PV = nRT . De plus, la température reste constante et

vaut T0. Le travail s’écrit alors : W = −nRT0

ˆ Vf

Vi

1
V

dV = −nRT0 ln
(
Vf

Vi

)
.

.......................................................................................................................................................
19.5 b) La transformation étant polytropique, on a alors PiVi

k = PfVf
k = PV k. Le travail s’exprime alors :

W = −
ˆ Vf

Vi

PiVi
k

V k
dV = −PiVi

k

1− k

(
1

Vf
k−1 −

1
Vi

k−1

)
= PfVf − PiVi

k − 1 .

.......................................................................................................................................................
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19.6 a) Par définition, on a c = C

m
= n

Cm

m
. Et donc Cm = MH2O × c = 76 J ·K−1 ·mol−1.

.......................................................................................................................................................

19.6 b) On a Cm = 76 J ·K−1 ·mol−1

4184 = 18× 10−3 kcal ·K−1 ·mol−1.
.......................................................................................................................................................
19.7 a) La masse m d’eau liquide de capacité thermique massique c = 4,2 kJ ·K−1 · kg−1 aura une capacité

thermique C = mc. Ainsi, on a ∆U = mc(Tf − Ti).
.......................................................................................................................................................
19.7 b) Notons que la température doit être exprimée en kelvins. Ici, on a Ti = 293 K et Tf = 303 K. Nous

obtenons donc ∆T = 10 K. Ainsi, on a ∆U = 100× 10−3 kg × 4,2 kJ ·K−1 · kg−1 × 10 K = 4,2 kJ.
.......................................................................................................................................................
19.8 a) On commence par exprimer la capacité thermique à volume constant CV du gaz parfait, à partir de la

relation de Mayer CP − CV = nR et du rapport des capacités thermiques γ = CP

CV
. On obtient CV = nR

γ − 1 .
.......................................................................................................................................................
19.8 b) La grandeur CV étant constante, la variation d’énergie interne d’un gaz parfait peut être écrite :

∆U = CV ∆T = CV (Tf − Ti) = nR

γ − 1(Tf − Ti).

On passe alors à l’application numérique : on a ∆U = 1 mol× 8,314 J ·K−1 ·mol−1 × 30 K
1,4− 1 = 6,2× 102 J.

.......................................................................................................................................................
19.8 c) On commence par exprimer la capacité thermique à volume constant CP du gaz parfait, à partir de la

relation de Mayer CP − CV = nR et du rapport des capacités thermiques γ = CP

CV
. On obtient CP = nRγ

γ − 1 .
.......................................................................................................................................................
19.8 d) La grandeur CP étant constante, la variation d’enthalpie d’un gaz parfait s’exprime :

∆H = CP ∆T = CP (Tf − Ti) = nRγ

γ − 1(Tf − Ti).

On passe alors à l’application numérique : on a ∆H = 1 mol× 8,314 J ·K−1 ·mol−1 × 1,4
1,4− 1 × 30 K = 8,7× 102 J.

.......................................................................................................................................................
19.9 a) On a ∆U = CV ∆T = CV (Tf − Ti).
.......................................................................................................................................................

19.9 b) On a ∆U = A

2 (Tf
2 − Ti

2) +B(Tf − Ti).
.......................................................................................................................................................

19.9 c) On a ∆U = D

4 (Tf
4 − Ti

4).
.......................................................................................................................................................
19.10 Pour cette transformation, nous avons une masse ml = 800 g d’eau qui est transformée de l’état liquide

à l’état solide, et qui subit donc une solidification (transformation inverse d’une fusion).
La variation d’enthalpie s’exprime : ∆H = −ml × Lfus = 0,800 kg ×−335 kJ · kg−1 = −268 kJ.
.......................................................................................................................................................

19.11 On a Tf = Ti + n2a

CV

(
1
Vf
− 1
Vi

)
.

.......................................................................................................................................................
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19.12 a) On a alors C(Tf − Ti) = Q, et donc Tf = Ti + Q

C
.

.......................................................................................................................................................

19.12 b) On a alors A ln
(
Tf

Ti

)
= Q, et donc Tf = Tie

Q
A .

.......................................................................................................................................................

19.12 c) On a alors B
(
Tf

3

3 − Ti
3

3

)
= Q, et donc Tf =

(
Ti

3 + 3Q
B

)1/3
.

.......................................................................................................................................................
19.13 a) Le système est un gaz parfait, et nous avons donc PV = nRT , avec T la température qui est constante

et qui vaut donc Ti. L’expression du travail est donc :

W = −nRTi

ˆ Vf

Vi

dV
V

= −nRTi ln
(
Vf

Vi

)
.

D’après la première loi de Joule, pour un gaz parfait, la variation d’énergie interne s’écrit ∆U = Cv∆T = 0.

On obtient finalement : Q = −W = nRTi ln
(
Vf

Vi

)
.

.......................................................................................................................................................

19.13 b) Pour une transformation isochore, le travail est nul : W = −
ˆ Vf

Vi

P dV = 0.

On obtient alors : Q = ∆U = nR

γ − 1(Tf − Ti).
.......................................................................................................................................................
19.13 c) Pour une transformation adiabatique, le transfert thermique reçu de l’extérieur est nul, et donc Q = 0.
.......................................................................................................................................................
19.14 a) On a ∆UA = WA +QA avec WA = W1 et QA = −Q1. Ainsi, on a ∆U1 = W1 −Q1.
.......................................................................................................................................................
19.14 b) On a ∆UB = WB +QB avec WB = 0 et QB = Q1 −Q2. Ainsi, on a ∆U2 = Q1 −Q2.
.......................................................................................................................................................
19.14 c) On a ∆Utot = ∆UA + ∆UB = W1 −Q1 +Q1 −Q2 = W1 −Q2.
.......................................................................................................................................................
19.15 La capacité thermique du calorimètre vaut donc C = m× ceau. On obtient C = 42 J ·K−1.
.......................................................................................................................................................

19.16 a) Le temps caractéristique pour l’équation différentielle obtenue est τ = C

h
.

.......................................................................................................................................................
19.16 b) On obtient T = Ta + (T0− Ta)e− ht

C en sommant solutions particulière et homogène, et en appliquant la
condition initiale T (0) = T0.
.......................................................................................................................................................
19.17 La température initiale est Ta, donc la courbe doit commencer en Ta. Les courbes a et c sont donc

exclues. La courbe d correspond à une exponentielle croissante et ne convient donc pas. La réponse est b .
.......................................................................................................................................................

19.18 a) On trouve Teq = m1T1 +m2T2

m1 +m2
.

.......................................................................................................................................................

19.18 b) On trouve Teq = m1T1 +m2T2

m1 +m2
+ Q

(m1 +m2)c .
.......................................................................................................................................................
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Fiche no 20. Second principe et machines thermiques

Réponses

20.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −94,8 J

20.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

20.3 a) . . . . . . . . . . . . . . . . . . . . . dH = T dS + V dP

20.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dU = 0

20.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = nR
dV
V

20.4 a) . . . . . . . . . . . . . . . . . . dU = δW = −Pext dV

20.4 b) . . . . . . . . . . . . . . . . . . . . dU = δW = −P dV

20.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dU = δQ

20.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = δSc

20.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = 0

20.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . dS = δQ

T
+ δSc

20.6 a) . . . . . . . . . . . . . . . . . . . . . TfVf
γ−1 = TiVi

γ−1

20.6 b) . . . . . . . . . . . . . . . . . . Tf
γPf

1−γ = Ti
γPi

1−γ

20.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . PfVf
γ = PiVi

γ

20.7 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ − 1

20.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ

(1 − γ)

20.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = (1 − γ)
γ

20.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ2

(1 − γ)

20.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = 1 − γ

20.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,03 bar

20.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,31 J · K−1

20.9 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,98 J · K−1

20.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,89 J · K−1

20.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

20.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR ln(2)

20.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

20.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

20.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.11 e). . . . . . . . . . . . . . . . . . . . . . . . . . . 6 390 J · K−1

20.12 a) . . . . . . . . . . . . . . . . . . . . . 393 J · K−1 · kg−1

20.12 b) . . . . . . . . . . . . . . . . . . . . . 447 J · K−1 · kg−1

20.12 c) . . . . . . . . . . . . . . . . . . . . . m1c1T1 +m2c2T2
m1c1 +m2c2

20.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 K

20.12 e) . . . . . . . . . . . . . . . . . . . . . . ∆S =7,54 J · K−1

20.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

20.13 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . W × COP

20.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,4 MJ

20.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −37,4 MJ

20.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . η = 33 %

20.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −QC

COP

20.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 GJ

20.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,6 MJ

20.15 d) . . . . . . . . . . . . . . . . . . . . . . . . 1,2 × 103 euros

20.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 %

20.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ηQF

(1 − η)
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20.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −295 J

20.16 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13,4 cv

20.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
P

20.17 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
T

20.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −1

Corrigés

20.1 Le premier principe donne ∆U = W +Q donc Q = ∆U −W . De plus, la première loi de Joule donne :

∆U = CV ∆T = CV (Tf − Ti).

Finalement, on a Q = CV (Tf − Ti)−W = 1,04 J ·K−1 × (298 K− 293 K)− 100 J = −94,8 J.
.......................................................................................................................................................
20.2 On effectue un bilan d’énergie à l’aide du premier principe. La variation élémentaire d’énergie interne

du liquide est :
dU = mc× dT soit, en puissance, P = dU

dt = mc
dT
dt ,

où P est la puissance de chauffe apportée. En supposant cette puissance constante, il vient ∆t = mc∆T
P

.

On a donc :
∆teau

∆thuile
= ceau

chuile
= 4 180 J ·K−1 · kg−1

2 000 J ·K−1 · kg−1 = 2,09 > 1.

Ainsi, l’huile chauffe plus de deux fois plus vite que l’eau.
.......................................................................................................................................................
20.3 a) Par définition, on a H = U + PV . Ainsi, on a dH = dU + P dV + V dP . On en déduit :

dH = T dS − P dV + P dV + V dP = T dS + V dP.
.......................................................................................................................................................
20.3 b) Le gaz parfait suit la première loi de Joule : son énergie interne ne dépend que de la température. Ainsi,

pour une transformation isotherme, on a dU = 0.
.......................................................................................................................................................
20.3 c) On a dU = 0. Ainsi, la première identité thermodynamique devient :

0 = T dS − P dV.

On en déduit T dS = P dV . Ainsi, grâce à l’équation d’état PV = nRT , on en déduit :

dS = P

T
dV = nR

dV
V
.

.......................................................................................................................................................
20.6 a) Utilisons la relation ∆S = 0 qui fait intervenir les volumes et les températures. On a :

∆S = 0 = nR

γ − 1 ln
(
Tf

Ti

)
+ nR ln

(
Vf

Vi

)
donc nR

γ − 1

[
ln
(
Tf

Ti

)
+ (γ − 1) ln

(
Vf

Vi

)]
= 0.

En utilisant les propriétés de la fonction logarithme, on obtient :

∆S = nR

γ − 1 ln
[(

Tf

Ti

)(
Vf

Vi

)γ−1
]
.

On en déduit Tf

Ti

(
Vf

Vi

)γ−1
= 1, c’est-à-dire TfVf

γ−1 = TiVi
γ−1.

.......................................................................................................................................................
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20.6 b) On procède de la même manière à partir de l’expression qui fait intervenir les températures et les
pressions. On a :

∆S = nRγ

γ − 1 ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
= 0 = nR

γ − 1

[
γ ln
(
Tf

Ti

)
− (γ − 1) ln

(
Pf

Pi

)]
.

En utilisant les propriétés de la fonction logarithme, on obtient :

nR

γ − 1 ln
[(

Tf

Ti

)γ(Pf

Pi

)1−γ
]

= 0.

On aboutit à : (
Tf

Ti

)γ(Pf

Pi

)1−γ

= 1 c’est-à-dire Tf
γPf

1−γ = Ti
γPi

1−γ .

.......................................................................................................................................................
20.6 c) Utilisons l’expression qui fait intervenir les pressions et les volumes. On a :

∆S = 0 = nR

γ − 1 ln
(
Pf

Pi

)
+ nRγ

γ − 1 ln
(
Vf

Vi

)
= nR

γ − 1

[
ln
(
Pf

Pi

)
+ γ ln

(
Vf

Vi

)]
.

En simplifiant, on trouve :
nR

γ − 1 ln
[(
Pf

Pi

)(
Vf

Vi

)γ]
= 0.

Finalement, on aboutit à : (
Pf

Pi

)(
Vf

Vi

)γ

= 1 c’est-à-dire PfVf
γ = PiVi

γ .

.......................................................................................................................................................
20.7 a) On a PV γ = Cte. Avec l’équation d’état du gaz parfait, on obtient :

nRT

V
V γ = Cte et donc TV γ−1 = Cte

nR
= Cte.

.......................................................................................................................................................
20.8 a) On travaille sur un gaz parfait de manière isochore. Ainsi, on a :

V

nR
= Cte = T

P
= Ti

Pi
= Tf

Pf
.

On en déduit :
Pf = Tf

Ti
Pi = (130 °C + 273)

(120 °C + 273) × 1.

Finalement, on trouve Pf = 1,03 bar.
.......................................................................................................................................................
20.8 b) On a dH = T dS + V dP . Ainsi, on a :

dS = dH
T
− nRdP

P
.

En intégrant cette relation, on obtient :

∆S = CP ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
= 5

2nR ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
.

Comme PV = nRT , on a Tf

Ti
= Pf

Pi
et donc ∆S = 3

2nR ln
(
Tf

Ti

)
.

L’application numérique donne ∆S = 0,31 J ·K−1.
.......................................................................................................................................................
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20.9 a) On a Se = 1,00 mol× 8,314 J ·K−1 ·mol−1

1,4− 1 ln
(550 K

500 K

)
= 1,98 J ·K−1.

.......................................................................................................................................................
20.9 b) Le premier principe s’écrit : ∆U = W︸︷︷︸

=0

+Q.

Le gaz étant supposé parfait, la première loi de Joule s’applique : on a ∆U = Cv∆T .

De plus, sa capacité thermique satisfait la relation de Mayer : on a Cp − Cv = nR donc Cv = nR

γ − 1 par définition

du coefficient adiabatique γ = Cp

Cv
.

Par conséquent, l’entropie échangée s’exprime :

Se = ∆U
T0

=
nR

γ−1 (Tf − Ti)
T0

.

L’application numérique donne :

Se =

1,00 mol× 8,314 J ·K−1 ·mol−1

1,4− 1 (550 K− 500 K)

550 K = 1,89 J ·K−1.

.......................................................................................................................................................
20.9 c) Le second principe s’écrit ∆S = Se + Sc. L’entropie créée au cours de la transformation étudiée vaut
Sc = ∆S − Se =1,98 J ·K−1 - 1,89 J ·K−1 = 0,09 J ·K−1. Puisque Sc > 0, on peut conclure que la transformation
n’est pas réversible.
.......................................................................................................................................................
20.10 La détente étant isoénergétique, on a ∆U = 0 = W +Q. Comme il s’agit d’une détente dans le vide, on

a W = 0 et ainsi Q = 0 : cette détente brutale et rapide est adiabatique. Le second principe s’écrit :

∆S = Q

T0︸︷︷︸
=0

+Sc.

De plus, la détente du gaz parfait étant isoénergétique, on a Ti = Tf (en utilisant la première loi de Joule). Ainsi,
on peut écrire ∆S = nR ln

(
Vf

Vi

)
. Finalement, on a Sc = nR ln(2).

.......................................................................................................................................................
20.11 a) L’expression comporte trois termes : la variation d’enthalpie liée au changement de température de

l’eau à l’état liquide, la variation d’enthalpie liée à la vaporisation de l’eau et enfin la variation d’enthalpie liée au
changement de température de l’eau à l’état gazeux. Le premier terme décrit la variation de température de l’eau
à l’état liquide, qui est chauffée de T2 à T1 (car la différence T1 − T2 correspond au bilan entre l’état final et l’état
initial), autrement dit de T2 = Ti (température initiale) à T1 = T0 (changement d’état). Le résultat est cohérent
car T0−Ti > 0 : la variation d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
.......................................................................................................................................................
20.11 b) Voir corrigé précédent.
.......................................................................................................................................................
20.11 c) Le troisième terme décrit la variation de température de l’eau à l’état gazeux, qui est chauffée de T4

à T3 (car la différence T3 − T4 correspond au bilan entre l’état final et l’état initial), autrement dit de T4 = T0
(changement d’état) à T3 = Tf (température finale). Le résultat est cohérent car Tf − T0 > 0 et donc la variation
d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
.......................................................................................................................................................
20.11 d) Voir corrigé précédent.
.......................................................................................................................................................
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20.11 e) De manière analogue à l’expression de la variation d’enthalpie fournie par l’énoncé, la variation d’entropie
s’exprime en trois termes. Après intégration entre l’état initial et l’état final, on obtient :

∆S = mceau ln
(
T0

Ti

)
+m

∆vapH
o

T0
+mcP,vapeur ln

(
Tf

T0

)
.

L’application numérique donne :

∆S = 1,00 kg × 4 180 J ·K−1 · kg−1 × ln
(373 K

353 K

)
+ 1,00 kg × 2 257 kJkg−1

373 K

+ 1,00 kg × 2 010 J ·K−1 · kg−1 × ln
(393 K

373 K

)
= 6 390 J ·K−1.

.......................................................................................................................................................
20.12 a) La capacité thermique molaire est Cm, qu’on peut exprimer en J ·K−1 ·mol−1. La capacité thermique

massique c est donnée par c = Cm

M
. L’application numérique pour le cuivre donne c1 = 393 J ·K−1 · kg−1.

.......................................................................................................................................................

20.12 b) De même, en utilisant c = Cm

M
, l’application numérique pour le fer donne c2 = 447 J ·K−1 · kg−1.

.......................................................................................................................................................
20.12 c) Les phases condensées sont de volume constant donc W = 0, et le système est supposé isolé donc Q = 0.

L’application du premier principe au système donne ∆U = 0. L’additivité de l’énergie interne permet d’écrire :

∆U = ∆U1 + ∆U2 = 0.

On a donc :
m1c1(Tf − T1) +m2c2(Tf − T2) = 0.

On isole Tf pour obtenir :
Tf = m1c1T1 +m2c2T2

m1c1 +m2c2
.

.......................................................................................................................................................
20.12 d) L’application numérique donne Tf = 361 K.
.......................................................................................................................................................

20.12 e) Pour une phase condensée, on a CV = CP = Cm et dU = dH = mcdT . Ainsi, on a dS = mcdT
T

.

Par additivité de l’entropie, puis par intégration, on peut écrire que la variation d’entropie du système est :

∆S = ∆S1 + ∆S2 = m1c1 ln
(
Tf

T1

)
+m2c2 ln

(
Tf

T2

)
.

L’application numérique donne ∆S = 7,54 J ·K−1.
.......................................................................................................................................................
20.12 f) Appliquons le second principe sur le système formé par l’ensemble des deux solides. On a :

∆S =
ˆ

δQ

T ext + Sc = Sc,

où l’entropie d’échange
ˆ

δQ

T ext = 0 car le système est isolé ; il n’échange donc pas de transfert thermique avec
l’extérieur.
Par conséquent, l’entropie créée vaut Sc = ∆S = 7,49 J ·K−1 > 0. Cette valeur est strictement positive : ainsi, la
transformation est irréversible.
.......................................................................................................................................................
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20.13 a) L’efficacité d’une machine frigorifique (ou COP) est : COP = QF

W
. Ainsi, on a QF = W × COP.

.......................................................................................................................................................
20.13 b) L’application numérique donne QF = 20,4 MJ.

Attention : pour une machine frigorifique, on a QF > 0, QC < 0 et W > 0.
.......................................................................................................................................................
20.13 c) Sur un cycle, on a ∆U = W +QC +QF = 0. Donc, QC = −W −QF .

L’application numérique donne QC =−37,4 MJ.
.......................................................................................................................................................
20.14 a) Le premier principe sur le cycle donne ∆U = W +QC +QF = 0. Ainsi, on a QF = −W −QC .

Attention : il faut bien identifier que, pour un moteur, W = −500 J et QC = 1 500 J.
L’application numérique donne QF = −1 000 J.
.......................................................................................................................................................

20.14 b) L’efficacité du moteur est η = −W
QC

, avec ici W = −500 J et QC = 1 500 J. On arrive à η = 33 %.

Il est important d’identifier le signe des transferts ici.
.......................................................................................................................................................

20.15 a) L’efficacité d’une pompe à chaleur (ou COP) est : COP = −QC

W
. Ainsi, W = −QC

COP .
.......................................................................................................................................................

20.15 b) L’application numérique donne W = −QC

COP = −(−3 GJ)
3 = 1 GJ.

Attention : pour une pompe à chaleur, on a QF > 0, QC < 0 et W > 0.
.......................................................................................................................................................
20.15 c) On a 1 kWh = 1 000 Wh = 1 000 W× 3 600 s = 3,6 MJ.
.......................................................................................................................................................
20.15 d) La pompe utilise une énergie W = 1 GJ par semaine, soit 1× 109/(3,6× 106) kWh. En multipliant par

le coût de 17 centimes d’euro du kilowatt-heure et en considérant la moitié des 52 semaines annuelles, on obtient
un coût annuel de :

1× 109

3,6× 106 × 0,17 euro× 52
2 = 1 228 euros = 1,2× 103 euros

(en prenant le bon nombre de chiffres significatifs).
.......................................................................................................................................................

20.16 a) Le rendement de Carnot d’un moteur cyclique ditherme est donné par η = 1− TF

TC
. Après avoir converti

les températures en kelvins en ajoutant 273,15, on trouve η = 33 %.
.......................................................................................................................................................

20.16 b) Pour un moteur, on a η = −W
QC

. Or, sur un cycle, on a ∆U = W +QC +QF = 0. Ainsi, on a :

η = −W
−W −QF

et donc W = ηQF

1− η .

.......................................................................................................................................................
20.16 c) Il faut identifier que, pour un moteur, on a QF < 0, soit ici QF = −600 J.

L’application numérique donne : W = 0,33× (−600 J)
1− 0,33 = −295 J.

Si on considère que η = 1/3, on trouve W = −300 J.
.......................................................................................................................................................
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20.16 d) Le moteur fournit 295 J par cycle à un régime de 2 000 cycles par minute. La puissance P est donc :

P = 295 J× 2 000 cycles ·min−1

60 s ·min−1 = 9 833 W.

En utilisant que 1 cv = 736 W, on obtient P = 13,4 cv.
Si on considère que W = −300 J, on trouve P = 13,5 cv.
.......................................................................................................................................................

20.17 a) Pour un gaz parfait, on a l’équation d’état PV = nRT , ainsi V = nRT

P
.

On dérive par rapport à P à T constant. On obtient :(
∂V

∂P

)
T

= −nRT
P 2 et donc χT = − 1

V

(
∂V

∂P

)
T

= nRT

V P 2 .

En utilisant de nouveau l’équation d’état PV = nRT , il vient alors χT = 1
P

.
.......................................................................................................................................................

20.17 b) Pour un gaz parfait, on a l’équation d’état PV = nRT , ainsi V = nRT

P
.

On dérive par rapport à T à P constant. On obtient :(
∂V

∂T

)
P

= nR

P
et donc α = 1

V

(
∂V

∂T

)
P

= nR

PV
.

En utilisant de nouveau l’équation d’état PV = nRT , il vient alors α = 1
T

.
.......................................................................................................................................................
20.17 c) On utilise l’équation d’état PV = nRT pour isoler la variable à dériver. Après calcul, on obtient :(

∂V

∂T

)
P

= nR

P
,

(
∂T

∂P

)
V

= V

nR
et

(
∂P

∂V

)
T

= −nRT
V 2 .

On arrive alors à Y = −1.
.......................................................................................................................................................
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Fiche no 21. Statique des fluides

Réponses

21.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 N · cm−2

21.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,5 bar

21.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,4 atm

21.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,9 × 102 N

21.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 bar

21.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

21.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 + ρgz1

21.5 b) . . . . . . . . . . . . . . . . . . . . p0 + ρg(H − h− z2)

21.5 c) . . . . . . . . . . . . . . . . . . ρg(H − z3 sin(α)) + p0

21.6 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 1√
2

( #»ex − #»ey)

21.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ey

21.6 c) . . . . . . . . . . . . . . . . . . . . . . . . −1
2

(√
3 #»ex + #»ey

)
21.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.7 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a c

21.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ρhVh
ρes

21.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 + ρgH

21.8 b) . . . . . . . . . . . . . . . . . . . . . . p0 + ρg
(
H + s

S
h
)

21.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 N

21.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 N

21.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 N

21.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

21.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

21.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −ρga3

21.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − # »

Pd

21.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 N

21.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

21.13 a) . . . . . . . . . . . . . . . . . . [ρsh− ρℓ(h− x)]S #»g

21.13 b). . . . . . . . . . . . . . . . . . . . . . . . . . . h

(
ρℓ − ρs
ρℓ

)
21.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . (ρℓ − ρs)Shg

21.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

21.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3
S(h− x)3

h2

21.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . h

(
1 − 3

√
ρs
ρe

)
21.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A #»ez

21.16 b) . . . . . . . . . . . By2 #»ex + 2Bxy #»ey + 2Ce2z #»ez

21.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . 43,6 g · mol−1

21.17 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14,8 g · m−3

21.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.17 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 km

21.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . dp
dz = − 2p

zmax

21.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 e−2z/zmax

21.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0e−agz/p0
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21.19 b) . . . . . . . . . . . . . . . . . . . . . p0 + a

b

(
e−bgz − 1

)
21.19 c) . . . . . . . . . . . . . p0 − agz + bcg

(
1 − e−z/c

)
21.20 a) . . . . . . . . . . . . . . . . . . . . . . . ρ(ay − gz) + p0

21.20 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . z = a

g
y

21.21 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2ρgLh

2

21.21 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
6ρgLh

3

21.21 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3h

Corrigés

21.1 a) Par définition, on a 1 Pa = 1 N ·m−2. Ainsi, on a :

750 kPa = 750× 103 Pa = 750× 103 N ·m−2 = 750× 103 ×N× (100 cm)−2 = 75 N · cm−2.

.......................................................................................................................................................
21.1 b) En effet, par définition, on a 1 bar = 1× 105 Pa.
.......................................................................................................................................................

21.1 c) Par définition, on a 1 atm = 1 013,25 hPa. C’est pourquoi 750 kPa = 7 500 hPa = 7 500
1 013,25 = 7,4 atm.

.......................................................................................................................................................

21.2 a) La force de pression s’écrit #»
F =

¨
p #»n dS, où #»n est le vecteur unitaire normal à l’élément de surface

et dirigé vers l’intérieur du solide. Ici #»n est vertical car la surface est un disque horizontal. Enfin, la pression étant
uniforme sur la base du cylindre, on a :

#»
F = pS #»n, soit F = pπ(d/2)2 = 6× 105 × π × (0,01)2 = 1,9× 102 N.

.......................................................................................................................................................
21.2 b) Le volume de gaz ne variant pas, la pression reste la même.
.......................................................................................................................................................
21.3 La formule a n’est pas homogène car p0 est une pression et z une longueur. La formule b n’est pas

homogène car p0

(
1− e− z

zmax

)
est une pression et z une longueur. La formule d n’est pas homogène car (entre

autres) l’expression 1− z − z2 n’est pas homogène, puisque z est une longueur et z2 une aire.
.......................................................................................................................................................
21.4 Dans un liquide incompressible en équilibre dans le champ de pesanteur uniforme #»g , la pression suit la

loi p(M) = p0 + ρg × hM, où hM est la profondeur du point M depuis la surface libre soumise à une pression p0.
Ici, le point M se situe à une profondeur hM = h0 − z. Donc, on a p(M) = p0 + ρg(h0 − z).
.......................................................................................................................................................
21.5 a) L’équation fondamentale de la statique des fluides est #      »grad p = ρ #»g . On projette cette égalité suivant

l’axe (O1z1) :
dp
dz1

= ρg d’où après intégration p(z1) = ρgz1 + C1.

À l’interface air/eau, on a p(z1 = 0) = p0 = C1. Ainsi, on a p(z1) = p0 + ρgz1.
.......................................................................................................................................................
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21.5 b) Suivant l’axe (O2z2), on a dp
dz2

= −ρg. D’où, p(z2) = −ρgz2 + C2. À l’interface air/eau, on a :

p(z2 = H − h) = p0 = −ρg(H − h) + C2.

Donc, on a C2 = p0 + ρg(H − h). Finalement, on trouve p(z2) = p0 + ρg(H − h− z2).
.......................................................................................................................................................
21.5 c) Suivant l’axe (O3z3), on a :

dp
dz3

= −ρg sinα ce qui donne p(z3) = −ρg sinαz3 + C3.

Au fond de l’eau, on a p(z3 = 0) = p0 + ρgH = C3. Par conséquent, on a p(z3) = ρg(H − z3 sinα) + p0.
On pouvait aussi plus simplement reprendre la formule de la question b) et noter que z3 = (z2 + h)/ sin(α), ce qui
donne le même résultat.
.......................................................................................................................................................
21.6 a) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uA = 1√
2

( #»ex − #»ey).
.......................................................................................................................................................
21.6 b) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uB = − #»ey.
.......................................................................................................................................................
21.6 c) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uC = − cos
(
π

6

)
#»ex − sin

(
π

6

)
#»ey = −1

2
(√

3 #»ex + #»ey

)
.

.......................................................................................................................................................
21.7 a) Le point A est sous une hauteur h d’huile de masse volumique ρh par rapport à la surface. La pression

en A vaut donc : pA = patm + ρhgh. Le volume Vh d’huile occupe la hauteur h dans le tube de section s telle que :
Vh = sh. On obtient ainsi pA = patm + ρhg

Vh

s
.

.......................................................................................................................................................
21.7 b) Le point B est sous une hauteur d1 d’eau de masse volumique ρe par rapport à A, la pression en B vaut

donc : pB = pA + ρegd1.
.......................................................................................................................................................
21.7 c) Le point C est sous une hauteur d2 d’eau par rapport à la surface. La pression en C vaut donc :

pC = patm + ρegd2.

De plus, les points B et C sont à la même altitude dans le même fluide donc pB = pC.
.......................................................................................................................................................
21.7 d) À partir des expressions de pA, pB et pC obtenues précédemment, la relation pB = pC donne :

patm + ρhg
Vh

s
+ ρegd1 = patm + ρegd2.

Il en découle : d2 − d1 = ρhVh

ρes
.

.......................................................................................................................................................
21.8 a) La pression qui règne dans un liquide incompressible s’écrit p(M) = p0 + ρghM, où hM est la profondeur

du point M depuis la surface libre soumise à une pression p0. Ainsi, au fond du récipient, on a p = p0 + ρgH.
.......................................................................................................................................................
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21.8 b) En plongeant le solide dans le liquide, on modifie la hauteur de liquide. Notons H ′ cette nouvelle hauteur.
On obtient H ′ en traduisant l’additivité des volumes :

SH + sh = SH ′ soit H ′ = H + s

S
h.

Finalement, la pression au fond du récipient vaut :

p = p0 + ρgH ′ = p0 + ρg
(
H + s

S
h
)
.

.......................................................................................................................................................
21.9 a) On a

∥∥ #»Π
∥∥ = mgly × g = ρgly × Vimmergé × g, avec Vimmergé = a3. Finalement, on trouve :∥∥ #»Π
∥∥ = ρgly × a3 × g = 1,2× 10−3 kg · cm−3 × (10 cm)3 × 9,8 m · s−2 = 12 N.

.......................................................................................................................................................

21.9 b) On a
∥∥ #»Π
∥∥ = msavon × g = ρsavon × Vimmergé × g, avec Vimmergé = 1

2 ×
4
3πa

3. Finalement, on trouve :

∥∥ #»Π
∥∥ = 2

3ρsavon × πa3g = 2
3 × 2,5× 10−3 kg · cm−3 × π × (10 cm)3 × 9,8 m · s−2 = 51 N.

.......................................................................................................................................................

21.9 c) On a
∥∥ #»Π
∥∥ = meau×g = ρeau×Vimmergé×g avec Vimmergé = 2

3πa
2h avec h = 4a. Finalement, on trouve :

∥∥ #»Π
∥∥ = 8

3ρeau × πa3g = 8
3 × 1,0× 10−3 kg · cm−3 × π × (10 cm)3 × 9,8 m · s−2 = 82 N.

.......................................................................................................................................................
21.10 En notant #»

P le poids du solide et #»Π la poussée d’Archimède qui s’exerce sur lui, la condition d’équilibre
assure #»

P + #»Π = #»0 . Par projection sur l’axe vertical, on obtient mSg−mLg = 0, avec mL la masse de fluide déplacé
par le glaçon. En faisant apparaître les masses volumiques, l’équation mS = mL devient ρSVS = ρLVimm : b .
.......................................................................................................................................................
21.11 a) La pression ne dépend que de z, par conséquent les forces de pression qui s’exercent sur les faces latérales

verticales se compensent. Aussi a-t-on Rx = 0.
.......................................................................................................................................................
21.11 b) Pour les mêmes raisons que précédemment, Ry = 0.
.......................................................................................................................................................
21.11 c) Rappelons que la pression vérifie la loi p(z) = p0 + ρgz avec p0 la pression qui règne à la surface

libre. Faisons un bilan des forces qui agissent sur les faces horizontales du cube. La face du dessus ressent la force
# »
F1 = (p0 + ρgz1)a2 #»ez alors que la face du dessous subit une force pressante # »

F2 = −(p0 + ρgz2)a2 #»ez. Ainsi, la
résultante verticale des forces pressantes vaut :

Rz = ( # »
F1 + # »

F2) · #»ez = −ρga2(z2 − z1) = −ρga3.

.......................................................................................................................................................
21.11 d) On trouve donc #»

R = −ρga3 #»ez. L’immersion du solide déplace un volume a3 de liquide, qui a pour masse
m = ρ a3 et poids # »

Pd = ρa3 #»g = ρa3g #»ez. Ainsi on trouve #»
R = − # »

Pd conformément au principe d’Archimède.
.......................................................................................................................................................
21.12 a) Avant immersion, on a #»

T + #»
P = #»0 , où #»

P est le poids du solide. Après, on a
# »

T ′ + #»
P + #»Π = #»0 , où #»Π est

la poussée d’Archimède. On en déduit :
#»Π = #»

T −
# »

T ′ soit ∥ #»Π∥ = ∥ #»
T −

# »

T ′∥ = 10 N− 8 N = 2 N.

.......................................................................................................................................................
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21.12 b) On a vu que le poids vaut P = 10 N et la poussée d’Archimède Π = 2 N. Or, on a :

P = ρsV g et Π = ρeV g avec
{
ρs masse volumique du solide
ρe masse volumique de l’eau.

Le rapport de ces deux relations donne immédiatement la densité du solide : d = ρs

ρe
= P

Π = 5.
.......................................................................................................................................................
21.13 a) Le poids du bloc solide vaut #»

P = ρsSh
#»g . La poussée d’Archimède est l’opposée du poids de liquide

déplacé, à savoir #»Π = −ρℓS(h− x) #»g . Ainsi, la résultante des forces vaut #»
R =

[
ρsh− ρℓ(h− x)

]
S #»g .

.......................................................................................................................................................

21.13 b) La condition d’équilibre mécanique #»
R = #»0 donne ρsh− ρℓ(h− x) = 0 et donc x = h

(
ρℓ − ρs

ρℓ

)
.

.......................................................................................................................................................
21.13 c) La résultante des forces vaut maintenant #»

R = #»
P + #»Π + #»

F . En faisant x = 0 dans l’expression obtenue à
la question a), on trouve :

#»
R = (ρsh− ρℓh)S #»g + #»

F .

La condition d’équilibre #»
R = #»0 donne alors #»

F = (ρℓh− ρsh)S #»g , d’où ∥ #»
F ∥ = |(ρℓh− ρsh)S|g = (ρℓ − ρs)Shg.

.......................................................................................................................................................
21.14 a) La proposition a est homogène car ρs/ρe est sans dimension et h est homogène à une longueur.

La formule b n’est pas homogène à cause de la racine cubique.
La formule c n’est pas homogène non plus car on ajoute une longueur (h) à une masse volumique (ρs).

Enfin, la proposition d n’est pas homogène car le produit d’une masse volumique par une longueur ne peut pas
donner une longueur.
.......................................................................................................................................................

21.14 b) Le volume immergé s’écrit Vimm = 1
3S

′(h− x), où S′ est l’aire de la base du volume conique immergé.
Si l’on note r′ le rayon de cette base, on a :

S′

S
=
(
r′

r

)2

=
(
h− x
h

)2
,

où la dernière égalité utilise les relations de Thalès (r est le rayon de la base de l’iceberg et r′ celui du cône immergé).
On en déduit :

Vimm = 1
3
S(h− x)3

h2 .

.......................................................................................................................................................

21.14 c) Le poids du cône vaut #»
P = m #»g , avec m = 1

3Shρs et S l’aire de la base du cône.

Quant à la poussée d’Archimède, on a #»Π = −md
#»g , où md désigne la masse de liquide déplacé par l’immersion

du cône. On a md = ρeVimm = 1
3
S(h− x)3

h2 ρe, d’où #»Π = −1
3
S(h− x)3

h2 ρe
#»g . La condition d’équilibre #»Π + #»

P = #»0
donne : [

1
3Shρs −

1
3S

(h− x)3

h2 ρe

]
#»g = #»0 d’où x = h

(
1− 3

√
ρs

ρe

)
.

.......................................................................................................................................................
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21.15 a) La masse mB peut se décomposer en notant mliq la masse de la partie liquide et mglaçon celle des glaçons :

mB = mliq +mglaçon = ρe(Vtot − Vim) +mglaçon,

en notant ρe la masse volumique de l’eau, Vtot le volume total du verre (égal à celui du verre A) et Vim le volume
immergé des glaçons.
Par ailleurs, l’équilibre mécanique des glaçons donne d’après le PFD : mglaçon = ρeVim. Ainsi, mB = ρeVtot = mA.
.......................................................................................................................................................
21.15 b) Le polystyrène étant moins dense que la glace, il est aussi moins dense que l’eau. Par conséquent, les

boules flottent. Ayant la même masse que les glaçons, les boules de polystyrène présenteront un volume immergé
identique à la situation précédente. La hauteur sera donc identique.
.......................................................................................................................................................
21.15 c) Le fer est plus dense que l’eau, donc les boules coulent. On note Vsb1 et Vsb2 respectivement les volumes

submergés avec les glaçons et avec les boules de fer. On a les relations :

Vsb1 = Vliq + Vim et Vsb2 = Vliq + VFe.

De plus, comme les boules de fer sont de même masse que les glaçons : mglaçon = ρeVim = mFe = ρFeVFe, en notant

ρFe la masse volumique du fer et VFe leur volume. Ainsi : VFe =
(
ρe

ρFe

)
Vim. Ainsi, on a :

Vsb2 = Vliq +
(
ρe

ρFe

)
Vim,

avec ρe

ρFe
< 1. Ainsi, Vsb2 < Vsb1 : le niveau diminue.

.......................................................................................................................................................
21.16 a) On a :

∂(p0 +Az)
∂x

= 0, ∂(p0 +Az)
∂y

= 0 et ∂(p0 +Az)
∂z

= A.

On en déduit #      »grad(p) = A #»ez.
.......................................................................................................................................................
21.16 b) On a :

∂(Bxy2 + Ce2z)
∂x

= By2,
∂(Bxy2 + Ce2z)

∂y
= 2Bxy et ∂(Bxy2 + Ce2z)

∂z
= 2Ce2z.

Par conséquent, #      »grad(p) = By2 #»ex + 2Bxy #»ey + 2Ce2z #»ez.
.......................................................................................................................................................
21.17 a) La masse molaire d’un mélange s’obtient en effectuant la moyenne pondérée des masses molaires :

M = 0,96M(CO2) + 0,02M(Ar) + 0,02M(N2)
= 0,96× 44 g ·mol−1 + 0,02× 40 g ·mol−1 + 0,02× 28 g ·mol−1 = 43,6 g ·mol−1.

.......................................................................................................................................................
21.17 b) En partant de l’équation d’état des gaz parfaits, on a :

pV = nRT = m

M
RT donc pM

RT
= m

V
= ρ.

L’application numérique donne : ρ = 6× 102 Pa × 43,6× 10−3 kg ·mol−1

8,314 J ·K−1 ·mol−1 × 213,15 K
= 14,8 g ·m−3.

.......................................................................................................................................................
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21.17 c) On remplace ρ par son expression trouvée précédemment et on obtient alors une équation différentielle
du premier ordre :

dp
dz = −ρg = −Mg

RT
p donc dp

dz + p

z0
= 0.

Ainsi, on a :
p(z) = p0 exp

(
− z

z0

)
avec z0 = RT

Mg
.

.......................................................................................................................................................

21.17 d) On calcule H = 5z0 = 5 8,314 J ·K−1 ·mol−1 × 213,15 K
43,6× 10−3 kg ·mol−1 × 3,72 m · s−2 = 55 km.

.......................................................................................................................................................

21.18 a) En effet, on a dp
dz = p(z + dz)− p(z)

dz , ce qui donne l’équation différentielle dp
dz = − 2p

zmax
.

.......................................................................................................................................................
21.18 b) Il s’agit d’une équation différentielle linéaire du type y′ + ay = 0.

La solution s’écrit p(z) = A e−2z/zmax , avec A une constante d’intégration que l’on détermine à l’aide de la contrainte
p(z = 0) = p0. On trouve p(z) = p0 e−2z/zmax .
.......................................................................................................................................................

21.19 a) La projection de l’équation de la statique sur les axes (Ox) et (Oy) donne ∂p

∂x
= ∂p

∂y
= 0. Le champ de

pression ne dépend donc que de z. La projection selon (Oz) donne alors :

dp
dz = −ρg = −ag

p0
p.

Par conséquent, on aboutit à l’équation différentielle :

dp
dz + ag

p0
p = 0.

C’est une équation différentielle linéaire du premier ordre dont les solutions s’écrivent p(z) = C1e−agz/p0 .
On détermine la constante d’intégration C1 à l’aide des conditions aux limites :

p(z = 0) = p0 = C1 d’où p(z) = p0e−agz/p0 .

.......................................................................................................................................................
21.19 b) Pour les mêmes raisons que précédemment, le champ de pression ne dépend que de z. La projection de

l’équation de la statique suivant (Oz) donne :

dp
dz + bg p = −ag + bgp0.

C’est une équation différentielle linéaire du première ordre avec un second membre constant. Les solutions de
l’équation homogène se mettent sous la forme ph(z) = C2e−bgz, et il est facile de trouver une solution particulière
constante : ppart = p0 −

a

b
. La solution générale s’écrit donc :

p(z) = ph(z) + ppart = C2e−bgz + p0 −
a

b
.

Il ne nous reste plus qu’à déterminer C2 à l’aide de la condition aux limites :

p(z = 0) = p0 = C2 + p0 −
a

b
d’où p(z) = p0 + a

b

(
e−bgz − 1

)
.

.......................................................................................................................................................
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21.19 c) À nouveau, le champ de pression ne dépend que de z. La projection de l’équation de la statique suivant
(Oz) donne :

dp
dz = −ag + bge−z/c.

On obtient p(z) en cherchant la primitive de −ag + bge−z/c, à savoir : p(z) = −agz − bcge−z/c + C3.
La condition p(0) = p0 impose bcg + C3 = p0, soit C3 = p0 − bcg. Finalement, on trouve :

p(z) = p0 − agz + bcg
(
1− e−z/c

)
.

.......................................................................................................................................................
21.20 a) Projetons l’équation de la statique sur les trois axes cartésiens. On trouve :

∂p

∂x
= 0, ∂p

∂y
= ρa et ∂p

∂z
= −ρg.

La première relation implique que le champ de pression ne dépend que de y et z.
Intégrons la deuxième relation :

∂p

∂y
= ρa donc p(y, z) = ρay + f(z).

Dérivons cette dernière relation par rapport à z : ∂p
∂z

= f ′(z). Par identification avec la troisième projection, on
trouve :

f ′(z) = −ρg donc f(z) = −ρgz + C.

Le champ de pression se met sous la forme p(y, z) = ρay − ρgz + C. Déterminons la constante d’intégration C à
l’aide de la condition aux limites :

p(y = 0, z = 0) = p0 = C d’où p(y, z) = ρ(ay − gz) + p0.

.......................................................................................................................................................
21.20 b) La surface libre est l’ensemble des points du liquide soumis à une pression p0 :

p(y, z) = ρ(ay − gz) + p0 = p0 donne z = a

g
y.

Il s’agit de l’équation d’un plan incliné d’un angle α = arctan (a/g).
.......................................................................................................................................................
21.21 a) On calcule

Fp =
¨

p(z) dy dz =
¨

ρg(h− z) dy dz

= ρg

ˆ L

0
dy
ˆ h

0
(h− z) dz = ρgL

[
hz − z2

2

]h

0

= ρgL(h2 − h2

2 ) = 1
2ρgLh

2.

.......................................................................................................................................................
21.21 b) On calcule

Mp =
¨

z p(z) dy dz =
¨

ρg(hz − z2) dy dz

= ρg

ˆ L

0
dy
ˆ h

0
(hz − z2) dz = ρgL

[
hz2

2 − z3

3

]h

0

= ρgL(h
3

2 −
h3

3 ) = 1
6ρgLh

3.

.......................................................................................................................................................

21.21 c) On a zC = Mp

Fp
=

1
6ρgLh

3

1
2ρgLh

2 = 1
3h.

.......................................................................................................................................................
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Fiche no 22. Fondamentaux de la chimie des solutions

Réponses

22.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 mmol

22.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,1 × 1022

22.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 g

22.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51,8 mol

22.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,12 × 1025

22.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,01 × 1024

22.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,75 × 10−22

22.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 400

22.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le cuivre

22.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

22.5 b) . . . . . . . . . . . . . . . . [H3O+] = 10−7mol · L−1

22.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pH0 − 2

22.6 a) . . . . . . . . . . . . . . . . . x = 2,85 et y = 5,80

22.6 b) . . . . a = H2A, b = HA− et c = A2−

22.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HA−

22.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2A

22.6 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2−

22.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le premier

22.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le premier

22.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 g · L−1

22.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . 0,26 mol · L−1

22.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

22.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1V1
V1 + V2

22.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,28 g · L−1

22.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 g · L−1

22.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aucune

22.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . C1V1 + C2V2
V1 + V2

22.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n×M

V

22.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V × Cm

M

22.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . V = m

C ×M

22.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mL

22.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,2 g · L−1

22.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,2 g

22.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 g

22.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 mol

22.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,4 mol

22.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 mol

22.16 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,128 mol

22.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,128 mol

22.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,86 g

22.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,4 g

22.17 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,33

22.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . Il a diminué

22.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

22.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

22.18 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

22.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,19 kg

22.19 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,44 kg

22.19 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 mol · L−1

22.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 %

22.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
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Corrigés

22.1 a) Par définition, on a :

n = m

M
= 6 g

12× 12 g ·mol−1 + 22× 1 g ·mol−1 + 11× 16 g ·mol−1 .

L’application numérique donne n = 18× 10−3 mol.
.......................................................................................................................................................
22.1 b) On a :

N = n×NA = 18× 10−3 mol× 6,02× 1023 mol−1.

L’application numérique donne N = 1,1× 1022.
.......................................................................................................................................................
22.2 a) On peut écrire m = 3 106× 200× 10−3 g = 621 g.
.......................................................................................................................................................

22.2 b) On a n = 621 g
12 g ·mol−1 = 51,8 mol.

.......................................................................................................................................................
22.2 c) Par définition, on a :

N = n×NA = 51,8 mol× 6,02× 1023 mol−1.

L’application numérique donne N = 3,12× 1025.
.......................................................................................................................................................
22.3 a) Déjà, 24,0 cL d’eau pèsent 240 g, la quantité de matière correspondante est donc :

n = 240 g
18 g ·mol−1 = 13,3 mol.

Il reste à calculer N0 = n×NA = 13,3 mol× 6,02× 1023 mol−1 = 8,01× 1024.
.......................................................................................................................................................
22.3 b) Le rapport des volumes est :

R = 24,0 cL
1,37× 1018 m3 = 2,40× 10−1 L

1,37× 1018 m3 = 2,40× 10−4 m3

1,37× 1018 m3 = 1,75× 10−22.

.......................................................................................................................................................
22.3 c) Les N0 molécules d’eau se retrouveront dans l’ensemble du volume Vtot, on considère donc qu’on prélève

un volume V = 24 cL dans le volume total. Ainsi, le rapport des volumes nous donnera la proportion N de molécules
d’eau prélevées par rapport à N0.
Ainsi, le nombre N de molécules d’eau initiales présentes dans le verre à la fin est :

N = N0 ×R = 8× 1024 × 1,75× 10−22 = 1 400.

.......................................................................................................................................................

22.4 On rappelle que 1 cm3 = 1 mL et 1 dm3 = 1 L. On a ρCu = m

V
= 178 g

20× 10−3 L
= 8 900 g · L−1. De même,

on calcule ρFe = 24× 103 g
3 L = 8 000 g · L−1.

.......................................................................................................................................................
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22.5 c) On a pH0 = − log10(x/C◦) et pH = − log10(100x/C◦) = − log10(100)− log10(x/C◦) = −2 + pH0.
.......................................................................................................................................................
22.6 c) Par lecture du diagramme de prédominance, il s’agit directement de l’espèce HA−.
.......................................................................................................................................................
22.6 d) Commençons par calculer le pH de la solution. Il vaut pH = − log10(1,0× 10−2) = 2. Une lecture du

diagramme de prédominance montre que l’espèce H2A prédomine.
.......................................................................................................................................................
22.6 e) On commence par calculer le pH de la solution ; il vaut pH = − log10(a(H3O+)).

Le produit ionique de l’eau est défini par a(H3O+)× a(HO−) = Ke, ainsi il vient pH = − log10

(
Ke

a(HO−)

)
.

Donc, on a pH = − log10

(
1× 10−14

1,0× 10−5

)
= 9. Une lecture du diagramme de prédominance à pH = 9 montre que

l’espèce A2− prédomine.
.......................................................................................................................................................
22.7 a) La première concentration en masse du sel est de 267 g · L−1 ; la deuxième vaut 3 g · L−1.
.......................................................................................................................................................
22.7 b) La première concentration du sucre est de 300 mol · L−1 ; la deuxième vaut 200 mol · L−1.
.......................................................................................................................................................

22.8 a) La concentration en masse est donnée par Cm = 3× 6 g
20× 10−2 L

= 90 g · L−1.
.......................................................................................................................................................

22.8 b) Une analyse dimensionnelle permet de retrouver que C = Cm

M
= 90 g

344 g ·mol−1 = 0,26 mol · L−1.
.......................................................................................................................................................
22.9 a) Une concentration en quantité de matière s’exprime en mol · L−1, seule la dernière proposition est

homogène (mais fausse).
.......................................................................................................................................................
22.9 b) La concentration de ces ions dans le mélange est donnée par le rapport de la quantité de matière sur le

volume total, soit [Fe3+]i = C1V1

V1 + V2
.

.......................................................................................................................................................
22.10 a) La masse m1 de caféine est m1 = C1 × V1 = 0,7 g · L−1 × 100× 10−3 L = 0,07 g. La concentration en

masse dans la solution finale de volume V = V1 + V2 = 250 mL est donc : C′
1 = m1

V
= 0,07 g

250× 10−3 L
= 0,28 g · L−1.

.......................................................................................................................................................
22.10 b) La masse m2 de sucre est m2 = C2 × V2 = 40 g · L−1 × 150× 10−3 L = 6 g. La concentration en masse

dans la solution finale de volume V = V1 + V2 = 250 mL est donc : C′
2 = m2

V
= 6 g

250× 10−3 L
= 24 g · L−1.

.......................................................................................................................................................
22.11 a) Une concentration en quantité de matière s’exprime en mol · L−1, aucune de ces relations n’est homogène,

elles ne peuvent donc pas être correctes.
.......................................................................................................................................................
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22.11 b) Lors du mélange, la quantité de matière se conserve. La quantité de matière totale en sucre est

n = n1 + n2 = C1V1 + C2V2.

Le volume total du mélange est V = V1 + V2 (en négligeant la contraction des volumes). La concentration en
quantité de matière du mélange en sucre est donc C = n

V
= C1V1 + C2V2

V1 + V2
.

.......................................................................................................................................................

22.12 a) On a Cm = m

V
= n×M

V
.

.......................................................................................................................................................

22.12 b) En partant de la relation précédente Cm = m

V
= n×M

V
, il vient Cm × V = n×M puis Cm × V

M
= n.

.......................................................................................................................................................
22.12 c) On a Cm = m

V
et Cm = M × C, ainsi m

V
= M × C. Soit alors m = C ×M × V . Finalement, on a

V = m

C ×M .
.......................................................................................................................................................
22.13 a) Lors d’une dilution, la quantité de matière prélevée à la solution mère est conservée dans la solution

fille. Ainsi, on a CVi = CfVf et donc :

Vi = CfVf

C
= 20 g · L−1 × 100× 10−3 L

80 g · L−1 .

L’application numérique donne Vi = 25 mL.
.......................................................................................................................................................
22.13 b) La même démarche donne CmVm = CfVf , soit :

Cf = CmVm

Vf
= 40 g · L−1 × 20× 10−3 L

250× 10−3 L
.

L’application numérique donne Cf = 3,2 g · L−1.
.......................................................................................................................................................
22.14 a) Dans 20 mL d’une solution saturée en sel, on a m = 358 g · L−1 × 20× 10−3 L = 7,2 g de sel.
.......................................................................................................................................................
22.14 b) Dans 300 mL, on peut dissoudre m = 2× 103 g × 300× 10−3 L = 600 g de sucre.
.......................................................................................................................................................

22.15 a) On a n = C × V = Cm

M
× V = 1 220 g

138 g ·mol−1 × 250× 10−3 L = 2,2 mol.
.......................................................................................................................................................
22.15 b) La dissolution de K2CO3 donne deux ions K+. Ainsi, on a n1 = 2× n = 4,4 mol.
.......................................................................................................................................................
22.15 c) La dissolution de K2CO3 donne un ion CO2−

3 . Ainsi, on a n2 = n = 2,2 mol.
.......................................................................................................................................................

22.16 a) La quantité de matière de fluorure de calcium que l’on a dissoute est n = 10 g
78 g ·mol−1 = 0,128 mol.

.......................................................................................................................................................
22.16 b) Une entité CaF2 libère un ion Ca2+. Ainsi, en solution, on retrouve nCa2+ = 0,128 mol.
.......................................................................................................................................................
22.16 c) Une entité CaF2 libère deux ions F−. Ainsi, en solution, on retrouve nF− = 0,256 mol. Cela représente

une masse mF− = 0,256 mol× 19 g ·mol−1 = 4,86 g.
.......................................................................................................................................................
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22.17 a) La masse maximale que l’on peut dissoudre dans ce volume est :

mmax = s× V = 330 g · L−1 × 20× 10−3 L = 6,6 g.

Sur les 10 g introduits, il reste donc 3,4 g non dissous.
.......................................................................................................................................................
22.17 b) La masse volumique de la solution tient compte de la masse du soluté et du solvant (on ne tient pas

compte de la masse non dissoute). Ainsi ρ = 6,6 g + 20 g
20× 10−3 L

= 1,33 kg · L−1. La densité est donc d = 1,33.
.......................................................................................................................................................
22.17 c) Comme la densité réelle augmente à masse constante, il s’agit d’une diminution de volume. On parle

d’effet de contraction de volume lors d’une dissolution.
.......................................................................................................................................................
22.18 a) La courbe 1 car on retrouve l’ordre de grandeur de la densité égale à 1.
.......................................................................................................................................................
22.18 b) La courbe 2 car elle présente une densité plus faible que l’eau et peut se retrouver liquide à 230 °C

d’après les températures d’ébullition de l’huile et de l’éthanol dans le tableau.
.......................................................................................................................................................
22.18 c) L’eau se vaporise à 100 °C sous pression atmosphérique, cela se confirme par l’arrêt de la courbe de

densité du liquide sur le graphe.
.......................................................................................................................................................
22.19 a) Prenons 1 L de solution. La densité vaut 1,19. Cette solution pèse donc m = 1,19 kg.
.......................................................................................................................................................
22.19 b) Cette solution contient mHCl = 37 %× 1,19× 1 kg · L−1 × 1 L = 0,44 kg d’acide pur.
.......................................................................................................................................................
22.19 c) La quantité de matière d’acide chlorhydrique pur contenu dans ce litre de solution est :

n = m

M
= 0,44× 103 g

36,5 g ·mol−1 = 12 mol.

Ainsi, la concentration en quantité de matière de ce litre de solution est C = 12 mol · L−1.
.......................................................................................................................................................
22.20 Prenons 1 L de solution. Cette solution contient n = 18 mol d’acide pur. Soit une masse en acide
macide = n ×M = 18 mol × 98 g ·mol−1 = 1 764 g = 1,764 kg. Ce litre de solution présente une densité d = 1,84,
donc il pèse 1,84 kg. Ainsi, le titre massique vaut :

t = 1,764
1,84 = 96 %.

.......................................................................................................................................................
22.21 La masse de la solution est m = ρ × V = 0,789 × 1 kg · L−1 × 10 000 L = 7 890 kg. Elle contient 95,4 %

d’éthanol pur, soit une masse :
mEtOH = 0, 954× 7 890 kg = 7 527,06 kg.

Cela représente une quantité de matière :

nEtOH = m

M
= 7 527,06 kg

46,07× 10−3 kg ·mol−1 = 163 383 mol = 163 kmol.

.......................................................................................................................................................
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Fiche no 23. Fondamentaux de la chimie en phase gazeuse

Réponses

23.1 . . . . . . . . . . . . . . . . . . . . RT

P

23.2 a) . . . . . . . . 12,5 L · mol−1

23.2 b) . . . . . . . . 24,9 L · mol−1

23.2 c) . . . . . . . . . 495 L · mol−1

23.2 d) . . . . . . . . 24,9 L · mol−1

23.3 . . . . . . . . . . . . . . . . . . . . . c

23.4 a) . . . . . . . . . . . . . . . . . . . b

23.4 b) . . . . . . . . . . . . . . . . . . . c

23.4 c) . . . . . . . . . . . . . . . . . . . d

23.4 d) . . . . . . . . . . . . . . . . . . . a

23.5 . . . . . . . . . . . . . . . . . . . . . b

23.6 a). . . . . . . . . . 0,078 g · L−1

23.6 b) . . . . . . . . 24,8 L · mol−1

23.6 c) . . . . . . . . . . . 2 g · mol−1

23.6 d) . . . . . . . . . . . . . . . . . . . H2

23.7 a) . . . . . . . . . . . . . . . . . . RT

23.7 b). . RT + bP − a

Vm
+ ab

V 2
m

23.7 c) . . . . . . . . . . . . . . . . . . . . . 0

23.8 . . . . . . . . . . . . . . . . . . . . . a

23.9 a) . . . . . . . . . . 1
V0

N∑
k=0

PkVk

23.9 b) . . . . . . . . . . . . . . . . . . . P0

23.9 c) . . . . . . . . . N(N + 1)
2 P0

23.9 d). . . . . . . . . . . . . Nn0RT0
V0

23.10 a) . . . . . . . . . . . 151 mmol

23.10 b) . . . . . . . . . . . . . . . 0,788

23.10 c). . . . . . . . . . . . . . . . . 0,21

23.10 d) . . . . . . . . . . . 213 mbar

23.10 e). . . . . . . . . . . . . . 8 mmol

23.10 f) . . . . . . . . . . . . . . . . 0,162

23.10 g) . . . . . . . . . . . 164 mbar

23.10 h) . . . . . . . . . . . . 51 mbar

23.11 a) . . . . . . . . . . . . . . . . faux

23.11 b) . . . . . . . . . . . . . . . . faux

23.11 c) . . . . . . . . . . . . . . . . . vrai

23.11 d) . . . . . . . . . . . . . . . . faux

23.12 a) . . . . . . . . . . . . . . . 4 bar

23.12 b) . . . . . . . . . . . . 0, 78 bar

23.12 c) . . . . . . . . 2 × 10−4 bar

23.12 d) . . . . . . . . . 9 × 101 bar

23.12 e) . . . . . . . . 6 × 10−3 bar

23.12 f) . . . . . . . . . . . . . 0,21 bar

23.13 a) . . . . . . . . . . . . . 4n− 2ξ

23.13 b) . . . . . . . . . . . 2n− ξ

2n Pi

23.13 c) . . . . . . . . . . . . . ξ

2 − ξ
Pi

23.13 d). . . . . . . . . . . (n− ξ)
4n Pi

23.13 e) . . . . . . . . . . 3(n− ξ)
4n Pi

23.14 . . . . . . . . . . . . . . . . . . . . c

23.15 a) . . . . . . . . . . . . . . . . . . . 0

23.15 b) . . . . . . . . . . . . . . . . . −2

23.15 c) . . . . . . . . . . . . . . . . . . +2

23.15 d) . . . . . . . . . . . . . . . . . −1

23.16 a) . . . . . . . . .
P 2

NH3
(P ◦)2

PN2P
3
H2

23.16 b) . . . . . . . . . . . . (P ◦)5

P 4
H2
PO2

23.16 c) . . . . . . . . [CO2](P ◦)3

PCH4P
2
O2
C◦

23.16 d). . . . . . . . . [H2CO3]P ◦

PCO2C
◦

23.17 . . . . . . . . . . . . . . . . . . . . c
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Corrigés

23.1 Par définition, le volume molaire s’écrit Vm = V

n
, soit Vm = RT

P
par identification avec l’équation d’état

des gaz parfait (PV = nRT ). Le volume molaire est indépendant de la nature chimique du gaz : il ne dépend que
des conditions de température et de pression.
.......................................................................................................................................................

23.2 a) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 1,00× 105 Pa et T = 150 K. L’application numérique

donne : Vm = 8,31 J ·K−1 ·mol−1 × 150 K
1,00× 105 Pa

= 12,5 L ·mol−1 en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.2 b) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 1,00× 105 Pa et T = 300 K. Par rapport au cas a),

la pression est inchangée et la température est doublée : le volume molaire est donc doublé. On peut le vérifier

par l’application numérique : Vm = 8,31 J ·K−1 ·mol−1 × 300 K
1,00× 105 Pa

= 24,9 L ·mol−1 en considérant le bon nombre de
chiffres significatifs.
.......................................................................................................................................................

23.2 c) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 5,000× 103 Pa et T = 298 K. L’application numérique

donne : Vm = 8,31 J ·K−1 ·mol−1 × 298 K
5,000× 103 Pa

= 495 L ·mol−1 en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.2 d) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 5,00× 104 Pa et T = 150 K. Par rapport au cas a), la

pression est divisée par deux et la température est inchangée : le volume molaire est donc doublé, comme dans

le cas b). On peut le vérifier par l’application numérique : Vm = 8,31 J ·K−1 ·mol−1 × 150 K
5,00× 104 Pa

= 24,9 L ·mol−1 en
considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.3 On note Vm le volume molaire du gaz sous ces conditions. La masse de gaz est :

m = n×M = V

Vm
M

en exprimant n via la définition du volume molaire, à savoir Vm = V

n
. Ainsi, la masse est proportionnelle au produit

MV , la valeur Vm ne dépendant pas de la nature chimique du gaz.
En convertissant les volumes en litres (par exemple), les applications numériques donnent une masse de 20/Vm

pour l’hélium, 24/Vm pour le dioxygène (avec M(O2) = 2M(O)), 28/Vm pour le diazote (avec M(N2) = 2M(N))
et 20/Vm pour le dihydrogène (avec M(H2) = 2M(H)) : la réponse c est la bonne.
.......................................................................................................................................................
23.4 a) Cette loi stipule que, à pression et quantité de matière fixées, le rapport volume/température est constant,

c’est-à-dire que le volume est une fonction linéaire de la température. La représentation graphique V = f(T ) est
donc une droite : c’est la réponse b .
.......................................................................................................................................................
23.4 b) Cette loi stipule que, à pression et température fixées, le rapport volume/quantité de matière (appelé

volume molaire) est constant, c’est-à-dire que le volume est une fonction linéaire de la quantité de matière. La
représentation graphique V = f(n) est donc une droite : c’est la réponse c .
.......................................................................................................................................................
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23.4 c) Cette loi stipule que, à volume et quantité de matière fixés, le rapport pression/température est constant,
c’est-à-dire que la pression est une fonction linéaire de la température. La représentation graphique P = f(T ) est
donc une droite : c’est la réponse d .
.......................................................................................................................................................
23.4 d) Cette loi stipule que, à température et quantité de matière fixées, le produit pression× volume est

constant, c’est-à-dire que la pression est une fonction inverse du volume. La représentation graphique P = f(V ) est
donc une branche d’hyperbole : c’est la réponse a .
.......................................................................................................................................................
23.5 L’équation d’état d’un gaz parfait est PV = nRT .

Ainsi, si l’on fait subir une transformation isotherme (T est une constante) à une quantité de matière donnée (n
est une constante) d’un gaz parfait, alors le produit PV est identique à chaque instant de la transformation. Dans
notre cas, en notant P1 la pression du gaz dans la bouteille, V1 le volume du gaz contenu dans la bouteille, P2 la
pression du gaz respiré (égale à la pression atmosphérique, soit 1 bar) et V2 le volume de gaz que le plongeur peut
respirer, on a P1V1 = P2V2 ou encore V2 = P1

P2
V1.

L’application numérique donne :
V2 = 200 bar

1 bar × 12 L = 2 400 L.

Une bouteille de 12 L remplie d’air comprimé à 200 bar contient donc l’équivalent de 2 400 L d’air à la pression
atmosphérique.
.......................................................................................................................................................
23.6 a) Par définition, on a ρ = m

V
.

Sachant que m = 0,70 mg et V = 0,009 0 L, l’application numérique donne ρ = 0,078 g · L−1.
.......................................................................................................................................................

23.6 b) Pour un gaz parfait, on a Vm = RT

P
. Ici, on a P = 1,00× 105 Pa et T = 298 K. Finalement, on trouve

Vm = 0,024 8 m3 ·mol−1 = 24,8 L ·mol−1.
.......................................................................................................................................................

23.6 c) On sait que ρ = m

V
, Vm = V

n
et M = m/n. On en déduit M = ρ× Vm = 24,8× 0,078 ∼ 2 g ·mol−1.

.......................................................................................................................................................
23.6 d) On a trouvé M ∼ 2 g ·mol−1. Sachant qu’on a M(H) = 1 g ·mol−1 et que le corps simple formé par

l’hydrogène est le dihydrogène H2, on déduit que M(H2) ∼ 2 g ·mol−1. On en conclut que le gaz formé est H2.
.......................................................................................................................................................

23.7 a) En identifiant Vm = V

n
dans l’équation d’état d’un gaz parfait, on obtient PVm = RT .

.......................................................................................................................................................

23.7 b) En identifiant Vm = V

n
dans l’équation d’état de van der Waals et en développant le produit, on obtient

PVm = RT + bP − a

Vm
+ ab

V 2
m

.
.......................................................................................................................................................
23.7 c) En identifiant les deux expressions obtenues précédemment, on constate qu’elles sont identiques si, et

seulement si, a = b = 0.
.......................................................................................................................................................
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23.8 Intuitivement, il semble que la pression totale doit être supérieure à chacune des pressions des bouteilles
individuelles. En modélisant tous les gaz comme des gaz parfaits, la pression correspond exactement à la somme
des pressions des différentes bouteilles. En effet, pour chaque bouteille, ni = PiVi

RT
, avec V1 = V2 = V3 = V4 = V

(toutes les bouteilles sont de même volume). Après mélange, la bouteille finale contient une quantité de matière
n =

∑
i
ni, donc la pression totale s’exprime Ptot =

∑
i
Pi (loi de Dalton). On remarque que la pression des gaz

dans chaque bouteille correspond à la pression partielle dans le mélange obtenu.
.......................................................................................................................................................
23.9 a) Les gaz étant parfaits, chaque contenant initial vérifie l’équation d’état des gaz parfaits, c’est-à-dire que

le contenant k contient une quantité de matière nk = PkVk

RT
. Une fois l’ensemble des contenants transvasé dans le

flacon, ce dernier contient une quantité de matière n =
∑

k
nk. Le mélange obtenu se comportant a priori lui aussi

comme un gaz parfait, on a P = nRT0

V0
=
RT0

∑
k
nk

V0
. En injectant l’expression de nk, il vient P = 1

V0

N∑
k=0

PkVk.

.......................................................................................................................................................

23.9 b) En partant de l’expression P = 1
V0

N∑
k=0

PkVk obtenue précédemment, on obtient P = P0

N

N∑
k=0

1 = P0.

.......................................................................................................................................................

23.9 c) En partant de l’expression P = 1
V0

N∑
k=0

PkVk obtenue précédemment, on obtient P = P0
V0

V0

N∑
k=0

k.

On reconnaît la somme des entiers naturels de 1 à N . Ainsi, on a P = N(N + 1)
2 P0.

.......................................................................................................................................................

23.9 d) En partant de P = 1
V0

N∑
k=0

PkVk (obtenu précédemment), on obtient P = n0RT0

V0

N∑
k=0

1 = Nn0RT0

V0
.

.......................................................................................................................................................
23.10 a) On a ntot = 119 mmol + 24 mmol = 151 mmol.
.......................................................................................................................................................

23.10 b) On a xins(N2) = nins(N2)
ntot

= 119 mmol
151 mmol = 0,788. Sachant que la même quantité de matière totale est

inspirée et expirée et que la quantité de diazote est inchangée, on retrouve naturellement la fraction molaire du
mélange expiré.
.......................................................................................................................................................

23.10 c) On a xins(O2) = nins(N2)
ntot

= 32 mmol
151 mmol = 0,21. On peut aussi considérer la quantité totale : on trouve

x(O2) = 1− 0,788 = 0,212.
.......................................................................................................................................................
23.10 d) On a Pins(O2) = xins(O2)× ptot = 0,212× 1 013 mbar = 213 mbar. On peut aussi considérer la pression

totale : on a PO2 = 1 013 mbar− 800 mbar = 213 mbar.
.......................................................................................................................................................
23.10 e) On a nexp(CO2) = ntot − nexp(N2)− nexp(O2) = 151 mmol− 119 mmol− 24 mmol = 8 mmol.
.......................................................................................................................................................
23.10 f) On a xexp(CO2) = xtot − xexp(N2)− xexp(O2) = 1− 0,788− 0,050 = 0,162.
.......................................................................................................................................................
23.10 g) On a Pexp(O2) = xexp(O2)× ptot = 0,162× 1 013 mbar = 164 mbar.
.......................................................................................................................................................
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23.10 h) On a Pexp(CO2) = xexp(CO2)×ptot = 0,050×1 013 mbar = 51 mbar. On peut aussi considérer la pression
totale : on a PCO2 = 1 013 mbar− 800 mbar− 162 mbar = 51 mbar.
.......................................................................................................................................................
23.11 a) Si les pressions partielles sont égales, alors les quantités de matière sont égales d’après la loi de Dalton :

la proposition est fausse.
.......................................................................................................................................................
23.11 b) Si les fractions molaires sont égales, alors les quantités de matière sont égales, par définition de la fraction

molaire : la proposition est fausse.
.......................................................................................................................................................
23.11 c) Les gaz étant différents, ils n’ont pas la même masse molaire ; donc, si leurs quantités de matière sont

égales, leurs masses ne peuvent pas l’être : la proposition est vraie.
.......................................................................................................................................................
23.11 d) Si les volumes sont identiques, alors les quantités de matière sont identiques, par définition du volume

molaire : la proposition est fausse.
.......................................................................................................................................................
23.12 a) On a PN2 = 0,04× 90 bar = 4 bar, en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 b) On a PN2 = 0,78× 1,000 bar = 0,78 bar, en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 c) On a PN2 = 0,03× 600× 1× 10−5 bar = 2× 10−4 bar, avec le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.12 d) On a PCO2 = 0,96× 9× 106 Pa
1 013× 102 Pa · bar−1 = 9× 101 bar, avec le bon nombre de chiffres significatifs.

.......................................................................................................................................................
23.12 e) On a PCO2 = 0,95× 600× 10−5 bar = 6× 10−3 bar, avec le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 f) On a PO2 = 0,21× 1,000 bar = 0,21 bar.
.......................................................................................................................................................
23.13 a) On a ntot(t) = nN2 (t) + nH2 (t) + nNH3 (t) = (n− ξ(t)) + (3n− 3ξ(t)) + 2ξ(t) = 4n− 2ξ(t).

La quantité de matière totale dépend de l’avancement. La réaction ayant lieu dans un volume constant et la
température étant constante, la pression dépendra elle aussi de l’avancement si l’on considère des gaz parfaits.
.......................................................................................................................................................

23.13 b) On sait que Ptot(t) = ntot, gazeux(t)RT
V

avec V le volume et T la température du système (constantes).

Pour l’état initial, on a Pi = 4nRT
V

. Pour un état intermédiaire quelconque, étant donné la réponse à la question

précédente, on a Ptot(t) = (4n− 2ξ)× RT

V
= 4n− 2ξ

4n Pi = 2n− ξ
2n Pi.

.......................................................................................................................................................

23.13 c) On a PNH3 = xNH3Ptot(t) = nNH3 (t)
ntot

Ptot(t) = 2ξ
4n− 2ξ Ptot(t) = 2ξ

4n− 2ξ
2n− ξ

2n Pi = ξ

2nPi.
.......................................................................................................................................................

23.13 d) On a PN2 = xN2Ptot(t) = nN2 (t)
ntot

Ptot(t) = n− ξ
4n− 2ξ

2n− ξ
2n Pi = n− ξ

4n Pi.
.......................................................................................................................................................
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23.13 e) On a PH2 = xH2Ptot = nH2 (t)
ntot

Ptot(t) = 3n− 3ξ
4n− 2ξ Ptot(t) = 3n− 3ξ

4n− 2ξ
2n− ξ

2n Pi = 3(n− ξ)
4n Pi.

Les résultats obtenus sont cohérents car on remarque que la loi de Dalton est vérifiée : Ptot = PH2 + PN2 + PNH3 .
.......................................................................................................................................................

23.14 L’activité a d’un gaz s’exprime a = Pi

P ◦ où Pi est la pression partielle du gaz i dans le mélange et P ◦ la

pression de référence (1 bar). Pour un gaz parfait, cette pression partielle s’exprime Pi = niRT

V
avec ni la quantité

de matière du gaz i dans le mélange, T la température du mélange et V le volume total du mélange. Si l’on ajoute
20 moles de dioxygène alors ni triple : la pression Pi et donc l’activité sont triplées (la réponse a est exclue). Si
l’on agrandit l’enceinte à 4 m3 alors V est doublée : l’activité est divisée de moitié (la réponse b est exclue). Si l’on
double la température alors l’activité double, à condition de considérer la température absolue, qui s’exprime en
kelvins. Ici la température est de 25 °C, soit 298 K, dont le double vaut 596 K, soit 323 °C (la réponse d est exclue,
la réponse c est correcte).
.......................................................................................................................................................

23.15 a) On a Q1 = n2
1n

3
2

n3
3n

2
4

. La grandeur P ◦ n’apparaît pas, elle est à la puissance 0. On constate que le résultat
simplifié est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 b) On a Q2 = n4
1n

2
2

n3n3
4n

2
tot

P 2

(P ◦)2 . La grandeur P ◦ est à la puissance −2. On constate que le résultat simplifié
est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 c) On a Q3 = n5
1n

2
tot

n3
2n

4
3

c2
1

(C◦)2
(P ◦)2

P 2 . La grandeur P ◦ est à la puissance +2. On constate que le résultat
simplifié est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 d) On a Q4 = n3
1

n2
2ntot

c2
1C

◦

c3
2

P

P ◦ . La grandeur P ◦ est à la puissance −1. On constate que le résultat simplifié
est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................
23.16 a) L’activité d’un gaz parfait dans un mélange vaut le rapport de sa pression partielle sur la pression de

référence, le tout à la puissance de son coefficient stœchiométrique : on trouve Q =
P 2

NH3

PN2P
3
H2

(P ◦)4

(P ◦)2 =
P 2

NH3

PN2P
3
H2

(P ◦)2.
.......................................................................................................................................................

23.16 b) L’activité d’un corps pur en phase condensée vaut 1, donc aH2O(l) = 1 : ainsi, Q = 1(P ◦)4P ◦

P 4
HPO2

= (P ◦)5

P 4
H2
PO2

.
.......................................................................................................................................................
23.16 c) L’activité d’un solvant vaut 1, donc aH2O(l) = 1 ; l’activité d’un soluté en solution vaut le rapport de sa

concentration dans la solution sur la concentration de référence à la puissance son coefficient stœchiométrique : on

trouve Q = 1× [CO2]P ◦(P ◦)2

C◦PCH4P
2
O2

= [CO2](P ◦)3

PCH4P
2
O2
C◦ .

.......................................................................................................................................................

23.16 d) L’activité d’un solvant vaut 1, donc aH2O(l) = 1 : on trouve Q = [H2CO3]P ◦

1× C◦PCO2
.

.......................................................................................................................................................
23.17 On est à l’équilibre donc le quotient de réaction vaut la constante d’équilibre.

On a K = Q =
a(CO2(aq))
a(CO2(g))

=
[CO2(aq)]/C◦

P (CO2(g))/P ◦ =
[CO2(aq)]
P (CO2(g))

P ◦

C◦ = 7,0 g · L−1

44 g ·mol−1 × 3,0 bar
× 1,00 bar

1,00 mol · L−1 = 0,050.
.......................................................................................................................................................
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Fiche no 24. Réactions chimiques

Réponses

24.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CO + O2 = 2 CO2

24.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ag+ + Cu = 2 Ag + Cu2+

24.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 NO + 2 CO = N2 + 2 CO2

24.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2O2−
8 + 2 I− = 2 SO2−

4 + I2

24.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 C8H18 + 25 O2 = 16 CO2 + 18 H2O

24.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MnO−
4 + 8 H+ + 5 Fe2+ = 5 Fe3+ + Mn2+ + 4 H2O

24.2 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n1 − ξ

24.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n2 − 3ξ

24.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2ξ

24.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

24.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

24.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

24.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

24.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(HO−)eq × a(H3O+)eq
a(H2O)2

eq

24.5 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K◦ = KA

Ke

24.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104,75

24.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

24.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,0 × 10−2 mol
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24.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,0 × 10−1 mol

24.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C◦(V1 + V2))2

(C1V1 − ξ) × (C2V2 − ξ)

24.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2 − ξ(C1V1 + C2V2) + C1C2V1V2 − [C◦(V1 + V2)]2

K◦ = 0

24.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v(1 −K◦) + ξvK

◦(C1 + C2) −K◦C1C2 = 0

24.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v + ξv(C2 +K◦C◦) −K◦C1C

◦ = 0

24.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2(K◦ − 1) − ξK◦(n1 + n2) +K◦n1n2 = 0

24.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4K◦ξ2 − ξ

(
4K◦n+ P ◦V

RT

)
+K◦n2 = 0

24.11 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2(4K◦P + P ◦) − ξ(4nK◦P + nP ◦) +K◦n2P = 0

24.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,6 × 10−2 mol · L−1

24.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,6 × 10−2 mol · L−1

24.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3

24.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

24.14 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pH = pKA + log10

(
[NH3]
[NH+

4 ]

)
24.15 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,9

24.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v +KAC

◦ ξv −KAC1C
◦ = 0

24.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,8 × 10−4 mol · L−1

24.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,9
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Corrigés

24.1 a) On commence d’abord par équilibrer les atomes de carbone (un de chaque côté). On a deux atomes

d’oxygène à droite, on doit donc en placer deux à gauche. Ce qui donne : CO + 1
2 O2 = CO2.

On préfère raisonner avec des coefficients stœchiométriques entiers, il suffit alors de multiplier les coefficients par
deux : 2 CO + O2 = 2 CO2.
.......................................................................................................................................................
24.1 b) Initialement, les charges ne sont pas équilibrées. Il faut mettre 2 Ag+ pour ajuster les charges. Enfin,

on équilibre l’élément Ag en mettant un coefficient 2 au produit Ag. On obtient 2 Ag+ + Cu = 2 Ag + Cu2+.
.......................................................................................................................................................
24.1 c) On commence par équilibrer l’élément azote : 2 NO + CO = N2 + CO2. Les carbones sont équilibrés

mais pas les atomes d’oxygène. On doit donc trouver x tel que :
2 NO + xCO = N2 + xCO2.

En raisonnant sur l’atome d’oxygène, on trouve 2 + x = 2x, soit x = 2.
.......................................................................................................................................................
24.1 d) Commençons par équilibrer les atomes d’iode puis le soufre et enfin l’oxygène. On arrive à :

S2O2−
8 + 2 I− = 2 SO2−

4 + I2.

On s’aperçoit que les charges sont de facto ajustées. La réaction est équilibrée !
.......................................................................................................................................................
24.1 e) Commençons par ajuster les atomes d’hydrogène : C8H18 + O2 = CO2 + 9 H2O. Poursuivons avec les

atomes de carbone : C8H18 +O2 = 8CO2 +9 H2O. Puis avec les atomes d’oxygène : C8H18 + 25
2 O2 = 8CO2 +9 H2O.

Terminons en multipliant tous les coefficients par deux : 2 C8H18 + 25 O2 = 16 CO2 + 18 H2O.
.......................................................................................................................................................
24.1 f) Commençons par équilibrer les atomes d’oxygène : MnO−

4 + H+ + Fe2+ = Fe3+ + Mn2+ + 4 H2O.

Puis les atomes d’hydrogène : MnO−
4 + 8 H+ + Fe2+ = Fe3+ + Mn2+ + 4 H2O.

Les éléments sont équilibrés. Comptons les charges : +9 à gauche et +5 à droite. Les charges ne sont donc pas
ajustées. Or, on n’a pas encore considéré le fer. Appelons x son coefficient :

MnO−
4 + 8 H+ + xFe2+ = xFe3+ + Mn2+ + 4 H2O.

L’équilibre des charges donne 7 + 2x = 2 + 3x, d’où x = 5.
.......................................................................................................................................................

24.2 a) Par définition, l’avancement est lié aux quantités de matière des produits ou réactifs via ξ = ni(t)− ni(0)
νi

où νi est le coefficient stœchiométrique algébrique du produit ou réactif. On obtient donc :

N2(g) + 3H2(g) = 2NH3(g)

État initial n1 n2 0
État final n1 − ξ n2 − 3ξ 2ξ

.......................................................................................................................................................
24.3 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
a et b . Ensuite, par définition, l’activité des produits de la réaction doit se trouver au numérateur et celle des

réactifs au dénominateur. On garde donc l’expression d .
.......................................................................................................................................................
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24.4 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
b , d et f . Ensuite, par définition, l’activité d’un solide seul dans sa phase vaut 1, ce qui exclut les propositions
a et c . On garde donc l’expression e .

.......................................................................................................................................................

24.5 a) D’après la loi d’action de masse, on a K◦ = Qeq = a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

.
.......................................................................................................................................................
24.5 b) La constante d’acidité est la constante d’équilibre associée à la réaction entre l’acide du couple et l’eau :

NH+
4 + H2O = NH3 + H3O+.

D’après la loi d’action de masse, on a donc : KA = a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

.
.......................................................................................................................................................
24.5 c) La constante d’autoprotolyse de l’eau est la constante d’équilibre associée à la réaction :

2 H2O = H3O+ + HO−.

D’après la loi d’action de masse, on a donc Ke = a(H3O+)eq × a(HO−)eq

a(H2O)2
eq

.
.......................................................................................................................................................
24.5 d) On a, d’après les questions précédentes :

KA = a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

et Ke = a(HO−)eq × a(H3O+)eq

a(H2O)2
eq

.

Donc KA

Ke
= a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

. On en déduit donc que K◦ = KA

Ke
.

.......................................................................................................................................................

24.5 e) On a K◦ = KA

Ke
= 10−9,25

10−14 = 104,75.
.......................................................................................................................................................

24.6 a) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 0 < K◦. La réaction évolue donc dans le sens direct.

.......................................................................................................................................................

24.6 b) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 0 < K◦. La réaction évolue donc dans le sens direct.

.......................................................................................................................................................

24.6 c) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 1 > K◦. La réaction évolue donc dans le sens indirect.

.......................................................................................................................................................

24.6 d) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 2,5× 10−2 = 10−1,6 = K◦.

Ainsi, le système est à l’équilibre et n’évolue pas.
.......................................................................................................................................................
24.7 On calcule, pour chaque réactif, le rapport entre sa quantité de matière initiale et son nombre stœchio-

métrique. Le réactif pour lequel ce rapport est le plus faible est le réactif limitant.

On trouve n(Fe3+)i

1 = 3,0× 10−2 mol et n(OH−)i

3 = 2,0× 10−2 mol.

L’ion hydroxyde HO− est donc le réactif limitant.
Remarque : on ne prend pas en compte les ions Na+ ni Cl− car ce sont des ions spectateurs et non des réactifs.
.......................................................................................................................................................
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24.8 a) On a n1

2 = n2

13 = 5,0× 10−2mol : les réactifs ont donc été introduits en proportions stœchiométriques.
Dans ce cas, il n’y a pas de réactif limitant (ou alors tous les réactifs sont limitants).
L’avancement maximal est alors ξmax = 5,0× 10−2mol.
.......................................................................................................................................................
24.8 b) On écrit un tableau d’avancement pour la réaction totale :

2 C4H10(g) + 13 O2(g) −→ 8 CO2(g) + 10 H2O(g)

État initial n1 n2 0 0
État final n1 − 2ξmax n2 − 13ξmax 8ξmax 10ξmax

Comme la réaction est totale, l’avancement atteint à l’état final correspond à l’avancement maximal ξmax calculé à
la question précédente. On a donc n(CO2)f = 8ξmax = 4,0× 10−1mol.
.......................................................................................................................................................
24.9 a) On calcule dans un premier temps les quantités de matière initiales de tous les réactifs :

n(Ag+)i = n1 = C × V = 0,25 mol · L−1 × 20× 10−3 L = 5,0× 10−3 mol

et n(Cu)i = n2 = m

MCu
= 0,254 g

63,5 g ·mol−1 = 4,0× 10−3 mol.

On calcule ensuite les rapports entre les quantités de matière initiales et les nombres stœchiométriques :

n(Ag+)i

2 = 2,5× 10−3 mol < n(Cu)i

1 = 4,0× 10−3 mol.

Le réactif limitant est donc Ag+.
.......................................................................................................................................................
24.9 b) On dresse un tableau d’avancement pour cette réaction :

2 Ag+
(aq) + Cu(s) = Cu2+

(aq) + 2 Ag(s)

État initial n1 n2 0 0
État final n1 − 2ξmax n2 − ξmax ξmax 2ξmax

La réaction est totale, donc l’avancement final est égal à l’avancement maximal.
Le réactif limitant est l’ion argent (Ag+), donc l’avancement final est ξmax = n1

2 = 2,5 mmol.
À l’état final, on a donc n(Cu)f = 4,0 mmol− 2,5 mmol = 1,5 mmol.
.......................................................................................................................................................

24.10 a) D’après la loi d’action de masse, K◦ = a(PhCOOH)eq × a(H2O)eq

a(PhCOO−)eq × a(H3O+)eq
. Comme PhCOOH est un solide

seul dans sa phase, son activité vaut 1. Comme H2O est le solvant, son activité vaut 1. L’activité des espèces
aqueuses s’exprime en fonction de leur concentration et de C◦.
Avec les expressions du tableau d’avancement, on a alors :

K◦ = 1× 1(
1

C◦
C1V1−ξ
V1+V2

)
×
(

1
C◦

C2V2−ξ
V1+V2

) = (C◦(V1 + V2))2

(C1V1 − ξ)× (C2V2 − ξ)
.

.......................................................................................................................................................

24.10 b) À partir de la relation précédente, on déduit (C1V1 − ξ)× (C2V2 − ξ) = (C◦(V1 + V2))2

K◦ .

Après développement, on obtient :
ξ2 − ξ(C1V1 + C2V2) + C1C2V1V2 −

(C◦(V1 + V2))2

K◦ = 0.

Au passage, la formule obtenue est bien homogène : chaque terme est homogène à une quantité de matière au carré.
.......................................................................................................................................................
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24.12 a) La résolution du polynôme du second degré donne deux solutions :

ξv,1 = 7,6× 10−2 mol · L−1 et ξv,2 = 5,2× 10−1 mol · L−1.

L’avancement final ne peut pas être supérieur à l’avancement maximal ξv,max = 1,0× 10−1 mol · L−1. On en déduit
donc que ξv = 7,6× 10−2 mol · L−1.
.......................................................................................................................................................
24.12 b) La résolution du polynôme du second degré donne deux solutions :

ξv,1 = 3,6× 10−2 mol · L−1 et ξv,2 = −5,6× 10−2 mol · L−1.

Il est indiqué que la réaction se déroule dans le sens direct, donc l’avancement doit être positif. La solution ξv,2 est
par conséquent impossible. On a donc ξv = 3,6× 10−2 mol · L−1, qui est bien inférieur à l’avancement maximal.
.......................................................................................................................................................
24.13 a) Par définition, pH = − log10

(
a(H3O+)

)
.

En solution aqueuse diluée, l’activité de H3O+ est a(H3O+) = [H3O+]
C◦ . L’expression précédente devient donc :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
5,0× 10−2 mol · L−1

1,0 mol · L−1

)
= 1,3.

.......................................................................................................................................................
24.13 b) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+]

C◦ = Ke C
◦

[HO−]
.

On a donc :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
KeC

◦

[HO−]

)
= − log10

(
1,0× 10−14 × 1,0 mol · L−1

1,0× 10−2 mol · L−1

)
= 12.

.......................................................................................................................................................
24.14 a) Une solution à pH = 1,0 possède une concentration en ions oxonium [H3O+] = 10−1,0mol · L−1, et une

solution à pH = 2,0 possède une concentration en ions oxonium [H3O+] = 10−2,0mol · L−1.
.......................................................................................................................................................
24.14 b) Une solution à pH = 3,0 possède une concentration en ions oxonium [H3O+] = 1,0× 10−3,0 mol · L−1.
.......................................................................................................................................................
24.14 c) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+] = Ke · (C◦)2

[HO−]
.

On a donc :
• pour la solution a , [H3O+] = 5,0× 10−13 mol · L−1 ;
• Pour la solution b , [H3O+] = 1,25× 10−13 mol · L−1.

C’est donc la solution a qui est la plus concentrée en ions oxonium.
.......................................................................................................................................................
24.14 d) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+] = Ke · (C◦)2

[HO−]
.

On a donc [H3O+] = 1,0× 10−13 mol · L−1 pour la solution a .

Quant à la solution de pH = 9,0 : sa concentration en ions oxonium est [H3O+] = 1,0× 10−9,0 mol · L−1.

C’est donc la solution b qui est la plus concentrée en ions oxonium.
.......................................................................................................................................................
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24.15 a) La concentration en ions oxonium en solution est liée aux concentrations en NH+
4 et en NH3 via la

constante d’acidité du couple (NH+
4 /NH3) :

KA = [NH3]× [H3O+]
[NH+

4 ]× C◦
d’où [H3O+]

C◦ = KA[NH+
4 ]

[NH3] .

On retrouve ainsi la formule d’Henderson :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
KA[NH+

4 ]
[NH3]

)
= pKA + log10

(
[NH3]
[NH+

4 ]

)
.

.......................................................................................................................................................
24.15 b) Numériquement, on trouve :

pH = pKA + log10

(
[NH3]
[NH+

4 ]

)
= 9,2 + log10

(
1,0× 10−3 mol · L−1

2,0× 10−3 mol · L−1

)
= 8,9.

.......................................................................................................................................................
24.16 a) On écrit un tableau d’avancement pour cette réaction, où ξv représente l’avancement volumique :

CH3COOH(aq) + H2O(ℓ) = CH3COO−
(aq) + H3O+

(aq)

État initial C1 excès 0 0
État final C1 − ξv excès ξv ξv

avec C1 = CV

V + V ′ = 1,00× 10−3 mol · L−1.

À l’équilibre, d’après la loi d’action de masse, on a :

Qeq = KA = a(CH3COO−)eq × a(H3O+)eq

a(CH3COOH)eq × a(H2O)eq
.

En solution aqueuse diluée, on remplace les activités par leurs expressions. On obtient :

KA = [CH3COO−]eq × [H3O+]eq

[CH3COOH]eq C◦ .

Ensuite, on remplace les concentrations par leurs expressions trouvées dans le tableau d’avancement. Il vient :

KA = ξ2
v

(C1 − ξv)C◦ donc ξ2
v +KAC

◦ ξv −KAC1C
◦ = 0.

.......................................................................................................................................................
24.16 b) La résolution du polynôme du second degré obtenu à la question précédente donne deux solutions :

ξv,1 = 1,2× 10−4 mol et ξv,2 = −1,3× 10−4 mol.

Le quotient de réaction à l’instant initial vaut Qi = 0 (il n’y a pas de produits à l’instant initial).
Ainsi, on a Qi < KA : la réaction se produit dans le sens direct. L’avancement doit donc être positif et on a ξv = ξv,1.
Ainsi, à l’équilibre, [CH3COOH] = C1 − ξv = 8,8× 10−4 mol · L−1.
.......................................................................................................................................................

24.16 c) La concentration en ions H3O+ est égale à ξv, ainsi le pH se calcule par pH = − log10

(
ξv

C◦

)
= 3,9.

.......................................................................................................................................................
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Fiche no 25. Cinétique chimique

Réponses

25.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

25.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

25.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

25.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a c d

25.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui : 2

25.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui : 5
2

25.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

25.4 a) . . . . . . . . . . . . . . . . . . 5,0 mmol · L−1 · min−1

25.4 b) . . . . . . . . . . . . . . . . . . 1,7 mmol · L−1 · min−1

25.4 c) . . . . . . . . . . . . . . . . . . 3,3 mmol · L−1 · min−1

25.4 d) . . . . . . . . . . . . . . . . . . 1,7 mmol · L−1 · min−1

25.5 a) . . . . . . . . . . . . . . . . . . . . . RT
(

ln(A) − ln(k)
)

25.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 kJ · mol−1

25.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(A) − Ea
RT

25.6 b) . . . . . . . . . . . . . . . . . . . . 1,8 × 102 kJ · mol−1

25.6 c) . . . . . . . . . . . . . . . . 5,3 × 1011 L · mol−1 · s−1

25.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 1
α

d[A]
dt

25.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k

25.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0 − αkt

25.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v = k[A]

25.8 b). . . . . . . . . . . . . . . . . . . . . . . [A]0 × exp(−αkt)

25.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k[A]2

25.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
[A]0

+ αkt

25.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0
1 + α[A]0kt

25.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0
2αk

25.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(2)
αk

25.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
[A]0αk

25.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

25.11 b) . . . . . . . . . . . . . . . . . . . . . . . 7,90 × 10−4 s−1

25.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

25.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

25.13 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m = 1

25.13 b) . . . . . . . . . . . . ln
(
k × [H2]m0

)
+ n ln

(
[S]0
)

25.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n = 1
2

25.13 d). . . . . . . . . . . . . 3,00 L1/2· mol−1/2· min−1
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Corrigés

25.1 a) C’est a car la vitesse volumique s’exprime en mol · L−1 · s−1.
.......................................................................................................................................................
25.1 b) C’est d car la vitesse volumique s’exprime en mol · L−1 · s−1 et la concentration en mol · L−1.

Une analyse dimensionnelle sur v = k[A]3 donne k en L2 ·mol−2 · s−1.
.......................................................................................................................................................

25.2 a) Par définition, on a vform(NH3) = +d[NH3]
dt .

.......................................................................................................................................................

25.2 b) Par définition, on a vdisp(H2) = −d[H2]
dt .

.......................................................................................................................................................

25.2 c) Par définition, en utilisant les coefficients stœchiométriques, on a v = 1
2

d[NH3]
dt = −d[N2]

dt = −1
3

d[H2]
dt .

.......................................................................................................................................................
25.2 d) On a vdisp(N2) = v ; vdisp(H2) = 3v ; vform(NH3) = 2v.
.......................................................................................................................................................
25.3 a) La réaction admet un ordre global égal à 2.
.......................................................................................................................................................

25.3 b) La réaction admet un ordre global égal à 5
2 .

.......................................................................................................................................................
25.3 c) La réaction n’admet pas d’ordre global.
.......................................................................................................................................................
25.4 a) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de disparition du réactif est égale à l’opposé du coefficient directeur de la tangente à la courbe.
On en déduit : vdisp(CℓO−)0min = 5,0 mmol · L−1 ·min−1.
.......................................................................................................................................................
25.4 b) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente à la courbe. On en déduit :

vform(CℓO3
−)0 min = 1,7 mmol · L−1 ·min−1.

.......................................................................................................................................................
25.4 c) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente à la courbe. On en déduit :

vform(Cℓ−)0 min = 3,3 mmol · L−1 ·min−1.

.......................................................................................................................................................

25.4 d) Par définition, la vitesse de réaction est égale à v = 1
|νi|

vdisp/form.

On en déduit ici que v(t = 0 min) = 1
3vdisp(CℓO−)0min = 1,7 mmol · L−1 ·min−1.

.......................................................................................................................................................

25.5 a) On a ln(k) = ln(A)− Ea

RT
. On en déduit : Ea = RT

(
ln(A)− ln(k)

)
.

.......................................................................................................................................................
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25.5 b) On a Ea = RT1(ln(A)− ln(k)) et Ea = RT2(ln(A)− ln(2k)). On en déduit :

Ea

( 1
RT1

− 1
RT2

)
= ln(2),

puis Ea = −R ln(2)
1

T2
− 1

T1

. L’application numérique donne : Ea = 53 kJ ·mol−1.

.......................................................................................................................................................

25.6 a) On a k = A× exp
(
− Ea

RT

)
donc ln(k) = ln(A)− Ea

RT
.

.......................................................................................................................................................

25.6 b) Le coefficient directeur de la droite a est égal à a = −Ea

R
. On en déduit donc que l’énergie d’activation

vaut Ea = −a×R = 1,8× 102 kJ ·mol−1.
.......................................................................................................................................................
25.6 c) L’ordonnée à l’origine de la droite b est égale à b = ln(A). On en déduit donc le facteur de fréquence

vaut A = exp(b) = 5,3× 1011 L ·mol−1 · s−1.
.......................................................................................................................................................

25.7 a) On a v = − 1
α

d[A]
dt .

.......................................................................................................................................................
25.7 b) Par définition de l’ordre d’une réaction, on a v = k[A]0 = k.
.......................................................................................................................................................

25.7 c) On a donc − 1
α

d[A]
dt = k donc d[A] = −αk dt. Il vient par intégration :

ˆ [A]

[A]0
d[A] = −αk

ˆ t

t=0
dt.

Ainsi, on a
[
[A]
][A]

[A]0
= −αk

[
t
]t

t=0
, ce qui donne [A] = [A]0 − αkt.

.......................................................................................................................................................
25.8 a) Par définition de l’ordre d’une réaction, on a v = k[A]1 = k[A].
.......................................................................................................................................................

25.8 b) On a donc − 1
α

d[A]
dt = k[A] donc d[A]

[A] = −αk dt. Il vient par intégration :
ˆ [A]

[A]0

d[A]
[A] = −αk

ˆ t

t=0
dt.

Ainsi, on a
[

ln[A]
][A]

[A]0
= −αk

[
t
]t

t=0
, ce qui donne ln

(
[A]
)
− ln

(
[A]0

)
= −αk(t− 0).

Finalement, on trouve [A] = [A]0 × exp(−αkt).
.......................................................................................................................................................
25.9 a) Par définition de l’ordre d’une réaction, on a v = k[A]2.
.......................................................................................................................................................

25.9 b) On a donc − 1
α

d[A]
dt = k[A]2 donc −d[A]

[A]2 = αk dt. Il vient par intégration :
ˆ [A]

[A]0
−d[A]

[A]2 = αk

ˆ t

t=0
dt.

Ainsi, on a
[ 1

[A]

][A]

[A]0
= αk

[
t
]t

t=0
, ce qui donne 1

[A] = 1
[A]0

+ αkt.
.......................................................................................................................................................

25.9 c) On a donc [A] = 1
1

[A]0
+ αkt

= [A]0
1 + α[A]0kt

.

.......................................................................................................................................................

25.10 a) Lorsque t = t1/2, on a [A]t1/2 = [A]0
2 . On a donc [A]0

2 −[A]0 = −αkt1/2. On en déduit alors : t1/2 = [A]0
2αk .

.......................................................................................................................................................

Réponses et corrigés 335



25.10 b) À t = t1/2, on a l’égalité [A]0
2 = [A]0 × exp(−αk × t1/2). En simplifiant de part et d’autre par [A]0, il

reste 1
2 = exp(−αkt1/2), soit ln(2) = αk× t1/2. On en déduit l’expression du temps de demi-réaction : t1/2 = ln(2)

αk
.

.......................................................................................................................................................

25.10 c) À t = t1/2, on a l’égalité 2
[A]0

= 1
[A]0

+ α × k × t, soit 1
[A]0

= α × k × t1/2. On en déduit l’expression

du temps de demi-réaction : t1/2 = 1
[A]0αk

.
.......................................................................................................................................................
25.11 a) Le temps de demi-réaction t1/2 ne dépend pas de la concentration initiale. La réaction est d’ordre 1.
.......................................................................................................................................................

25.11 b) Pour l’ordre 1, on a t1/2 = ln(2)
1× k . La moyenne des temps de demi-réaction obtenus est de 877 s.

On en déduit que k = ln(2)
877 = 7,90× 10−4 s−1.

.......................................................................................................................................................
25.12 a) D’après l’énoncé, les ions hydroxyde sont en large excès donc RBr est le réactif limitant de la transfor-

mation. On constate que, après 70 minutes, la concentration en RBr est divisée par deux et que, après 140 minutes,
soit 2× 70 minutes, la concentration est divisée par quatre. On en déduit que t1/2 = 70 min (réponse b ).
.......................................................................................................................................................
25.12 b) L’ordre partiel par rapport à chacun des réactifs étant de 1, on peut écrire la vitesse v = k[RBr]1[HO−]1.

La réponse a est donc correcte. En outre, les ions hydroxyde sont en large excès par rapport au 1-bromo-2-
méthylpropane, donc on suppose leur concentration constante au cours de la transformation. Ainsi, on introduit
une constante de vitesse apparente kapp = k[HO−]0 ; la vitesse peut donc s’écrire v = kapp[RBr] (réponse c ).
.......................................................................................................................................................
25.12 c) L’ordre partiel par rapport à RBr valant 1, la concentration en RBr vérifie [RBr] = [RBr]0×exp(−kappt),

soit ln([RBr]) = ln([RBr]0)− kapp × t. Donc, le tracé de ln
(
[RBr]

)
en fonction du temps devrait être une droite de

coefficient directeur −kapp et d’ordonnée à l’origine ln
(
[RBr]0

)
. C’est la réponse b qui est correcte.

.......................................................................................................................................................

25.12 d) On a kapp = k[HO−]0 donc k = kapp

[HO−]0
donc k = 1,0× 10−1 L ·mol−1 ·min−1, ce qui correspond à d .

.......................................................................................................................................................
25.13 a) Dans la série 1, [S]0 est fixe. De plus, v0 est doublée/triplée lorsque [H2]0 est doublée/triplée donc v0

est proportionnelle à [H2]0. Ainsi, on a m = 1.
.......................................................................................................................................................
25.13 b) On a v0 = k× [S]0n× [H2]0m donc ln(v0) = ln

(
k× [H2]0m

)
+n× ln

(
[S]0
)
. C’est bien une fonction affine

de coefficient directeur n et d’ordonnée à l’origine ln
(
k × [H2]0m

)
.

.......................................................................................................................................................

25.13 c) Le coefficient directeur de la modélisation est de l’ordre de 0,5. On en déduit que n = 1
2 .

.......................................................................................................................................................

25.13 d) Grâce à la valeur de l’ordonnée à l’origine, on trouve k = exp(−5,19)
1, 86× 10−3 = 3,00 L1/2· mol−1/2· min−1.

.......................................................................................................................................................
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Fiche no 26. Chiffres significatifs et incertitudes

Réponses

26.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,15 × 101

26.1 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,9 × 10−3

26.1 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,120 × 10−1

26.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . 1,600 002 × 106

26.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,023 9 × 103

26.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,300 × 103

26.1 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,30 × 108

26.1 h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,022 × 10−3

26.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

26.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

26.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

26.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

26.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,0 km

26.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 cm

26.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,0 × 10−1

26.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c et d

26.5 a) . . . . . . . . . . . . . . . . . . . . . . . . (19,10 ± 0,36) m

26.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . (0,90 ± 0,36) m

26.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . (91,0 ± 3,5) m2

26.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,910 ± 0,035

26.6 . . . . . . . . . . . . . . . . . . . (59,0 ± 1,4) mmol · L−1

26.7 a) . . . . . . . . . . . . . . . . . . . . . . (1,191 ± 0,035) W

26.7 b) . . . . . . . . . . . . . . . . . . . . . . (1,175 ± 0,059) W

26.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

26.9 a) . . . . . d

√(
u(λ)
λ

)2

+
(

u(D)
D

)2

+
(

u(ℓ)
ℓ

)2

26.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . (74,4 ± 4,4) µm

26.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,929 5 V

26.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,472 V

26.10 c) . . . . . . . . . . . . . . . . . . . . . . . . (4,93 ± 0,15) V

26.11 . . . . . . . . . . . . . . . . . . . . . (25,017 ± 0,092) cm

26.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.13 a) . . . . . . . . . . . . . . . . . . . . (1,780 ± 0,050) mm

26.13 b) . . . . . . . . . . . . . . . . . . . . . (2,49 ± 0,14) mm2

26.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

Corrigés

26.1 a) Pour passer en écriture scientifique, on garde une puissance de 10 et un préfacteur compris entre 1
(inclus) et 10 (exclu). On réécrit alors 31,5 sous la forme 3,15× 101.
.......................................................................................................................................................
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26.1 b) On écrit 0,001 9=1,9× 10−3.
.......................................................................................................................................................
26.1 c) On écrit 0,812 0=8,120× 10−1.
.......................................................................................................................................................
26.1 d) On écrit 1 600 002=1,600 002× 106.
.......................................................................................................................................................
26.1 e) On écrit 2 023,9=2,023 9× 103.
.......................................................................................................................................................
26.1 f) On écrit 7 300=7,300× 103.
.......................................................................................................................................................
26.1 g) On écrit 330× 106=3,30× 108.
.......................................................................................................................................................
26.1 h) On écrit 70,22× 10−4=7,022× 10−3.
.......................................................................................................................................................
26.2 a) C’est le nombre de chiffres de 0,39 qu’il faut regarder, il y a 2 chiffres à partir du premier non nul, le

nombre de chiffres significatifs est 2.
.......................................................................................................................................................
26.2 b) C’est le nombre de chiffres de 12,84 qu’il faut regarder, il y a 4 chiffres à partir du premier non nul, le

nombre de chiffres significatifs est 4.
.......................................................................................................................................................
26.2 c) C’est le nombre de chiffres de 12,250 qu’il faut regarder, il y a 5 chiffres à partir du premier non nul (il

faut prendre en compte le zéro final), le nombre de chiffres significatifs est 5.
.......................................................................................................................................................
26.2 d) Les zéros avant le premier chiffre non nul ne comptent pas dans le décompte des chiffres significatifs,

ceux après si : le nombre de chiffres significatifs est 2.
.......................................................................................................................................................
26.3 a) Les deux données ont deux chiffres significatifs, on garde donc deux chiffres significatifs lors de la

multiplication : on a d = v t = 80 km · h−1 × 0,10 h = 8,0 km.
.......................................................................................................................................................
26.3 b) Il faut additionner la longueur et la largeur puis multiplier par deux. On a :

p = 2× (6 mm + 15 cm) = 31,2 cm.

Dans la somme, la précision est limitée par la longueur (précise au centimètre près). Il faut donc arrondir au
centimètre près : on écrit p = 31 cm.
.......................................................................................................................................................
26.3 c) Déjà, on a R1 +R2 = 0,9 kΩ + 100 Ω = 1,0 kΩ, avec deux chiffres significatifs.

On calcule alors le gain par une division, en gardant le plus petit nombre de chiffres significatifs entre le numérateur
(trois chiffres significatifs) et le dénominateur (deux chiffres significatifs) :

G = R2

R1 +R2
= 100 Ω

1,0 kΩ = 1,0× 10−1.

.......................................................................................................................................................
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26.4 L’incertitude-type est exprimée dans le résultat final avec deux chiffres significatifs, avec un arrondi par
valeur supérieure, ou au plus près (les deux options sont acceptées). Le résultat numérique est ensuite arrondi au
niveau du dernier chiffre significatif de l’incertitude-type, donc ici au millimètre. On en déduit f ′ = (120± 33) mm
ou f ′ = (120± 32) mm.
.......................................................................................................................................................
26.5 a) On a z = x+ y = 19,1 m et u(z) =

√
0,22 + 0,32 = 0,36 m. En arrondissant l’incertitude à deux chiffres,

on obtient (19,10± 0,36) m.
.......................................................................................................................................................
26.5 b) On a z = x− y = 0,9 m et u(z) =

√
0,22 + 0,32 = 0,36 m. En arrondissant l’incertitude à deux chiffres,

on obtient (0,90± 0,36) m.
Lorsque l’on soustrait deux grandeurs physiques proches, le résultat est en général moins précis que la donnée la
moins précise.
.......................................................................................................................................................
26.5 c) On a z = x× y = 91 m2 et u(z) = 91×

√
(0,2/10)2 + (0,3/9,1)2 = 3,51 m2. En arrondissant l’incertitude

à deux chiffres, on obtient (91,0± 3,5) m2.
.......................................................................................................................................................
26.5 d) On a z = y/x = 0,91 et u(z) = 0,91×

√
(0,2/10)2 + (0,3/9,1)2 = 0,035 1. En arrondissant l’incertitude

à deux chiffres, on obtient (9,10± 0,35)×10−1.
.......................................................................................................................................................
26.6 On commence par calculer le résultat avant de s’intéresser aux incertitudes :

cA = cB · VB

VA
= 100,0 mmol · L−1 · 11,8 mL

20 mL = 59 mmol · L−1.

On propage l’incertitude pour ce produit de grandeurs indépendantes :

u(cA)
cA

=

√(
u(cB)
cB

)2

+
(

u(VA)
VA

)2

+
(

u(VB)
VB

)2

.

Numériquement, cela donne :

u(cA) = 59 mmol · L−1

√(
2,0 mmol · L−1

100,0 mmol · L−1

)2

+
(

0,10 mL
20,00 mL

)2

+
(

0,10 mL
11,80 mL

)2

.

On obtient u(cA) = 1,4 mmol · L−1, et finalement cA = (59,0± 1,4) mmol · L−1.
.......................................................................................................................................................
26.7 a) On calcule la puissance : P = U × I = 2,382 V× 0,500 A = 1,191 W.

On applique ici la propagation des incertitudes à P = U × I en écrivant :

u(P)
P =

√(
u(U)
U

)2

+
(

u(I)
I

)2

.

Numériquement, cela donne :

u(P) = 1,202 W×

√(
0,050 V
2,382 V

)2

+
(

0,010 A
0,500 A

)2

= 0,035 W.

Finalement, on obtient P = (1,191± 0,035) W.
.......................................................................................................................................................
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26.7 b) On calcule la puissance : P = R× I2 = 4,7 Ω× (0,500 A)2 = 1,175 W.

On applique ici la propagation des incertitudes à P = R× I2. On a :

u(P)
P =

√(
u(R)
R

)2

+ 22

(
u(I)
I

)2

.

Numériquement, cela donne :

u(P) = 1,175 W

√(0,14
100

)2
+ 4×

(
0,010 A
0,500 A

)2

= 0,059 W.

Finalement, on obtient P = (1,175± 0,059) W.
.......................................................................................................................................................
26.7 c) Les mesures sont P = (1,191± 0,035) W et P = (1,175± 0,059) W. Les deux intervalles se recoupent :

les mesures sont compatibles.
.......................................................................................................................................................
26.8 a) L’épaisseur du tube est la différence entre le rayon extérieur du cylindre et le rayon intérieur. Le rayon

étant la moitié du diamètre, on trouve e = D

2 −
d

2 .
.......................................................................................................................................................

26.8 b) On applique la formule donnée dans les prérequis de cette section avec a = 1
2 et b = −1

2 . On trouve :

u(e) =
√(1

2

)2
u2(D) +

(
−1

2

)2
u2(d) = 1

2
√

u2(D) + u2(d).

.......................................................................................................................................................

26.8 c) On a e = 10,3 mm− 6,8 mm
2 = 1,75 mm, et u(e) = 1

2
√

(0,1 mm)2 + (0,1 mm)2 = 0,071 mm. Finalement,
on a donc e = (1,750± 0,071) mm.
.......................................................................................................................................................
26.9 a) On a, pour ce produit de grandeurs indépendantes :

u(d)
d

=

√(
u(λ)
λ

)2

+
(

u(D)
D

)2

+
(

u(ℓ)
ℓ

)2

.

.......................................................................................................................................................
26.9 b) On commence par calculer le résultat avant de s’intéresser aux incertitudes :

d = 2λD
ℓ

= 2× 632,8 nm× 3 m
51 mm = 74,447 µm.

Le nombre de chiffres conservés ici n’est pas significatif, juste assez grand pour pouvoir être ajusté ensuite. On
calcule ensuite numériquement l’incertitude :

u(d) = 74,447 nm×

√(
0,10 nm
632,8 nm

)2

+
(

10× 10−3 m
3,000 m

)2

+
(

0,30 cm
5,1 cm

)2

= 4,4 µm.

Finalement, on obtient d = (74,4± 4,4) µm.
.......................................................................................................................................................
26.10 a) On peut faire le calcul à l’aide d’un tableur (fonction MOYENNE() souvent), d’une calculatrice ou de

Python (fonction mean() de la bibliothèque numpy par exemple). On obtient m =
10∑

i=1

Ui = 4,929 5 V.

.......................................................................................................................................................
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26.10 b) Le calcul est fait par une fonction prédéfinie du tableur (ECARTYPE() souvent), de la calculatrice ou
de Python (fonction std() de la bibliothèque numpy par exemple). On obtient σU = 0,472 042 429 825 493 V, soit
0,472 V en gardant trois chiffres significatifs.
.......................................................................................................................................................

26.10 c) On obtient alors u(m) = 0,472√
10

= 0,149 V, que l’on arrondit en gardant deux chiffres significatifs.

L’incertitude-type sur la valeur moyenne est donc finalement u(m) = 0,15 V.
Il faut exprimer la moyenne au centième de volt, ce qui donne le résultat suivant : m = (4,93± 0,15) V. Cette valeur
moyenne est la meilleure estimation de la « valeur vraie » que l’on peut faire à partir de cette série de mesures
répétées.
.......................................................................................................................................................
26.11 On calcule une valeur moyenne de 25,017 cm et un écart-type des mesures de 0,301 cm, ce qui donne une

incertitude-type sur la valeur moyenne de 0,087 cm.
L’incertitude-type est, avec deux chiffres significatifs, au centième de millimètre, il faut donc garder les chiffres
jusqu’à cette décimale : on obtient (25,017± 0,087) cm.
.......................................................................................................................................................

26.12 Pour une résistance, on a u(r) = r × u(r)
r

.

Pour les n = 5 résistances, on a R = n r, et u(R) =
√
nu2(r), donc :

u(R)
R

=
√
n

n
= 1√

n
.

Pour n = 5, on obtient u(R)
R
≈ 0,44 %.

La réduction de l’incertitude vient du fait que les incertitudes sur les composants sont indépendantes les unes des
autres. On retrouve ici le facteur « 1√

n
» qui permet de passer de l’incertitude sur une mesure (une résistance) à

celle sur la moyenne d’une série de n mesures (les n résistances en série).
.......................................................................................................................................................
26.13 a) Le zéro de l’échelle mobile est entre 1,7 mm et 1,8 mm. Il y a 20 graduations dans l’échelle mobile, le

pied à coulisse a donc une précision affichée de 1 mm
20 = 0,05 mm. La graduation qui est alignée avec une graduation

fixe est la 16e de l’échelle mobile, on lit donc :

d = 1,7 mm + 16× 0,05 mm = 1,78 mm.

Le résultat de la mesure est alors d = (1,780± 0,050) mm, puisque, conventionnellement, les incertitudes sont
données avec deux chiffres significatifs.
.......................................................................................................................................................
26.13 b) La section droite est un disque de diamètre d. Sa mesure vaut donc s = π(d/2)2. Numériquement, on

obtient :
s = π ×

(1,78 mm
2

)2
= 2,488 5 mm2.

La section étant reliée au diamètre par une fonction puissance, on a :

u(s)
s

= 2u(d)
d

= 2× 0,05 mm
1,78 mm = 5,6 %.

Finalement, on obtient u(s) = 0,14 mm2 et le résultat s’écrit s = (2,49± 0,14) mm2.
.......................................................................................................................................................
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26.14 a) On compare une valeur à une valeur de référence. On vérifie que l’incertitude de la valeur tabulée est
très inférieure à celle de la mesure. En effet, l’inégalité

(0,69 m · s−1)2 = 0,48 m2 · s−2 ≪ (2,3 m · s−1)2 = 5,3 m2 · s−2

est bien vérifiée (il y a plus d’un facteur 10 entre les deux valeurs).

On peut donc utiliser la formule simplifiée : on a z = 4,92 m · s−1

2,3 m · s−1 = 2,1 > 2.

Ainsi, les deux valeurs sont incompatibles.
.......................................................................................................................................................
26.14 b) On compare deux valeurs avec la même incertitude, on doit appliquer la formule complète, mais qui se

simplifie un peu puisque les incertitudes sont les mêmes. On trouve :

z = 0,2 °C√
2× 0,060 °C

= 2,4 > 2.

Ainsi, les deux valeurs sont incompatibles.
.......................................................................................................................................................

26.14 c) On compare une valeur à une valeur de référence exacte : on a z = 0,95 cm
0,85 cm = 1,1 < 2. D’après le critère

donné, les deux valeurs sont compatibles.
.......................................................................................................................................................
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