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Mode d’emploi

Qu’est-ce que le cahier d’entrainement ?

Le cahier d’entrainement en physique-chimie est un outil destiné a renforcer ’acquisition de réflexes utiles
en physique et en chimie.

1l ne se substitue en aucun cas aux TD donnés par votre professeur ; travailler avec ce cahier d’entrainement
vous permettra en revanche d’aborder avec plus d’aisance les exercices de physique-chimie.

Pour donner une analogie, on pourrait dire que ce cahier d’entrainement est comparable aux exercices de
musculation d’un athlete : ils sont nécessaires pour mieux réussir le jour J lors de la compétition, mais
ils ne sont pas suffisants. Un coureur de sprint fait de la musculation, mais il fait également tout un tas
d’autres exercices.

Ce cahier a été congu par une large équipe de professeurs en classes préparatoires, tous soucieux de vous
apporter l'aide et les outils pour réussir.

Comment est-il organisé ?

Le cahier est organisé en fiches d’entrainement, chacune correspondant a un théme issu du programme de
premiére année d’enseignement supérieur.

Les thémes choisis sont dans I’ensemble au programme de toutes les CPGE. De rares thémes sont spécifiques
a la filiere PCSI, mais les intitulés sont suffisamment clairs pour que vous puissiez identifier facilement les
fiches qui vous concernent.

Chaque fiche est composée d’une suite de petits exercices, appelés entrainements, dont le temps de résolution
estimé est indiqué par une ( 0), deux ( 00), trois (| OOO) ou quatre (OOO®) horloges.




Les exercices « bulldozer »
Certains entrainements sont accompagnés d’un pictogramme représentant un bulldozer.

D Ces entrainements sont basiques et transversaux.

m Les compétences qu’ils mettent en jeu ne sont pas forcément spécifiques au théme de
la fiche et peuvent étre transversales.

Ce pictogramme a été choisi parce que le bulldozer permet de construire les fondations et que c’est sur
des fondations solides que l’on batit les plus beauz édifices. Ces entrainements sont donc le gage pour vous
d’acquérir un socle solide de savoir-faire.

Comment utiliser ce cahier ?

Le cahier d’entralnement ne doit pas remplacer vos TD. Il s’agit d’un outil a utiliser en complément de
votre travail « normal » en physique-chimie (apprentissage du cours, recherche de TD, recherche des DM).

Un travail personnalisé.
Le cahier d’entralnement est prévu pour étre utilisé en autonomie.

Choisissez vos entralnements en fonction des difficultés que vous rencontrez, des chapitres que vous
étudiez, ou bien en fonction des conseils de votre professeur.

Ne cherchez pas a faire linéairement ce cahier : les fiches ne sont pas a faire dans ’ordre, mais en
fonction des points que vous souhaitez travailler.

Un travail régulier.

Pratiquez ’entrainement a un rythme régulier : une dizaine de minutes par jour par exemple.
Privilégiez un travail régulier sur le long terme plutét qu'un objectif du type « faire dix fiches par
jour pendant les vacances ».

Un travail efficace.

Utilisez les réponses et les corrigés de fagon appropriée : il est important de chercher suffisamment
par vous-méme avant d’aller les regarder. Il faut vraiment persévérer dans votre raisonnement et
vos calculs avant d’aller voir le corrigé si vous voulez que ces entrainements soient efficaces.

Une erreur 7 Une remarque ?

.. i v v , , . . - . N L.
Si jamais vous voyez une erreur d’énoncé ou de corrigé, ou bien si vous avez une remarque a faire, n’hésitez
pas a écrire a 'adresse cahier.entrainement@gmail.com.

Si vous pensez avoir décelé une erreur, merci de donner aussi I'identifiant de la fiche, écrit en gris en haut
a gauche de chaque fiche.

vi



Enoncés







GALO1 Fiche d'entrainement n°1 Généralités

Conversions

Prérequis
Unités du Systeme international. Ecriture scientifique.

Unités et multiples

L |Entrainement 1.1] — Multiples du meétre (I). 00
Ecrire les longueurs suivantes en métres et en écriture scientifique.
a) ldm ...... ¢) 3mm ..... e) 5,2pm
b) 25km .... d) 72nm .... f) 13fm .....

L |Entrainement 1.2 — Multiples du métre (II). 00
Ecrire les longueurs suivantes en métres et en écriture scientifique.
a) 150km .... c) 234cm .... e) 0,23mm ..
b) 0,7pm .... d) 120nm .... f) 04lnm ...

&,L [Entrainement 1.3 — Vitesse d’un électron. )

2eU
La vitesse d’un électron est v = \/T, ot e=1,6-10"1C est la charge d’un électron, U = 0,150kV est
Me

une différence de potentiel et m, = 9,1-1072% g est la masse d’un électron.

a) Calculer venm/s ...

b) Calculer venkm/h ... .. i

L |Entrainement 1.4 — Avec des joules. 0o
On considere la grandeur T = 0,67 kWh. On rappelle que 1J =1 Ws.

Convertir T" en joules, en utilisant le multiple le mieux adapté .......................

Fiche n° 1. Conversions 3



%& |[Entrainement 1.5 — Valeur d’une résistance.

La résistance d’un fil en cuivre est donnée par la formule R =

vS

cuivre, ot £ = 1,0 - 10® cm est la longueur du fil et ot S = 3,1 mm? est sa section.

1
—, ol v = 59 MS/m est la conductivité du

Lunité des résistances est I’ohm, notée « Q ». L'unité, notée « S », est le siemens; on a 1Q =1S71.

Calculer R (en ohms)

[Entrainement 1.6 — Ronna, ronto, quetta et quecto.

En novembre 2022, lors de la 27¢ réunion de la Conférence générale des poids et mesures, a été officialisée
I’existence de quatre nouveaux préfixes dans le systéme international :

Facteur multiplicatif | Préfixe | Symbole

10%7 ronna R
10727 ronto r
1030 quetta

10730 quecto q

On donne les masses de quelques objets :
Soleil Jupiter Terre proton électron
1,99-10%kg | 1,90-10%"kg | 5,97-10**kg | 1,67-10"2"kg | 9,10-10 3 kg

Convertir ces masses en utilisant ces nouveaux préfixes (en écriture scientifique).

a) Soleil (en Rg)

f)

b) Soleil (en Qg)
Jupiter (en Rg)

Jupiter (en Qg)

Terre (en Rg) ..

Terre (en Qg) ..

proton (en rg)

proton (en qg)

électron (en rg)

électron (en qg)
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Regle de trois et pourcentages

c'%k |[Entrainement 1.7| — Un peu de cuisine. L)

Les ingrédients pour un gateau sont : 4 ceufs, 200 g de farine, 160 g de beurre, 100 g de sucre et 4 g de sel.
On décide de faire la recette avec 5 ceufs. Combien de grammes faut-il de :

a) farine? ....... ... C) SUCTE? . .iuiiiiiiiiiia,
b) beurre? ... d) sel? .o
c.;)k |[Entrainement 1.8 — Pourcentages. L)
Convertir en pourcentage :
1
0,1 oo d) —
a) 0, ) %
9
b) 0,007 «.iiiiiiii €) o
)
1
c) SYRRERRRRERTEERRRERPREITY f) unquartde2% ..........
L |Entrainement 1.9 — Energie en France (I). L)

Les origines de 1’énergie primaire consommée en France (en 2020) sont : nucléaire 40,0 %, pétrole 28,1 %,
gaz 15,8 %, biomasse 4,4 %, charbon 2,5 % hydraulique 2,4 %, éolien 1,6 %.

Quel pourcentage occupent les autres énergies (solaire, biocarburants, etc.)? ........

L |[Entrainement 1.10| — Energie en France (II). 00

La consommation primaire totale en France est de 2 571 TWh.

A Taide des données de 'entrainement précédent, calculer (en « TWh ») les quantités d’énergie créées par
les sources suivantes :

a) nucléaire ................. e) charbon ..................
b) pétrole ...l f) hydraulique ..............
C) BAZ st g) éolien ............. ... ...
d) biomasse ................. h) autre ....................
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%& [Entrainement 1.11] — Abondance des éléments dans la crofite terrestre. 00

L’abondance chimique d’un élément peut étre exprimée en « parties par centaine » (notée %, on parle
communément de « pourcentage »), en « parties par millier » (notée %o, on parle aussi de « pour mille »)
ou encore en « parties par million » (notée « ppm »).

Les abondances de quelques éléments chimiques constituant la crofite terrestre sont :

Silicium Or Hydrogeéne Fer Oxygéne | Cuivre
275 %o 1,0x 107" % 1,4 %o 50 000 ppm 46 % 50 ppm

Quel est 1’élément le moins abondant ? ......... ... i

Longueurs, surfaces et volumes

%L [Entrainement 1.12] — Taille d’un atome. o

La taille d'un atome est de l'ordre de 0,1 nm.

a) Quelle est sa taille en m (écriture scientifique)? ....... ... .. ...l

b) Quelle est sa taille en m (écriture décimale)? ......... ... ...

B |[Entrainement 1.13] — Alpha du Centaure. o

La vitesse de la lumiére dans le vide est ¢ = 3,00-10% m/s. Une année dure 365,25 jours. Alpha du Centaure
est & une distance de 4,7 années-lumiere de la Terre.

a) Quelle est cette distance en m (écriture scientifique)? .....................

b) Quelle est cette distance en km (écriture scientifique)? ...................

%{ [Entrainement 1.14| — Avec des hectares. 00

La superficie de la France est de 672 051km?. L’ile danoise de Bornholm (au nord de la Pologne) a une
superficie de 589 km?. Un hectare (ha) est la surface d’un carré de 100m de coté.

Donner les superficies suivantes :

a) un hectare (en m?) ............. d) la France (en ha) ...............
b) un hectare (en km?) ............ e) Bornholm (enm?) ..............
¢) la France (enm?) .............. f) Bornholm (en ha) ..............
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%L [Entrainement 1.15 — Volume. L)

a) Peut-on faire tenir 150 mL d’huile dans un flacon de 2,5-107*m®? ....................

b) Peut-on faire tenir 1,5 L d’eau dans un flacon de 7,5-1072m>®? ...................o..s

Masse volumique, densité et concentration

L |Entrainement 1.16] — Masse volumique. 0o

Si on néglige la masse du contenant, une bouteille d’eau de 1 L. a une masse de 1kg. Un verre doseur rempli
indique, pour la méme graduation, eau : 40 cL. et farine : 250 g.

a) Quelle est la masse volumique de l'eau en kg/ m3

b) Quelle est la masse volumique de la farine? ...... ... .. .. i

&,L [Entrainement 1.17| — Densité. o
Pcorps

1 000 kg/m3’

La densité d’'un corps est le rapport Ol Peorps €St la masse volumique du corps en question.

a) Une barre de fer de volume 100 mL pése 787 g. Quelle est la densité du fer? ............

b) Un cristal de calcium a une densité de 1,6. Quelle est sa masse volumique (en kg/m?)?

L |[Entrainement 1.18) — Un combat de masse. 00

On posséde un cube de 10 cm en plomb de masse volumique 11,20 g/ cm? et une boule de rayon 15cm en

4
or de masse volumique 19 300kg/ m®. On rappelle que le volume d’une boule de rayon R est gwR?’.

Lequel posseéde la plus grande masse? ........o.uiint oo,

c‘;x [Entrainement 1.19] — Prendre le volant ? o

Le taux maximal d’alcool dans le sang pour pouvoir conduire est de 0,5 g d’alcool pour 1L de sang.

A-t-on le droit de conduire avec 2mg d’alcool dans 1 000 mm? de sang? ...................

Fiche n° 1. Conversions 7



Autour de la vitesse

%{ [Entrainement 1.20| — Le guépard ou la voiture ? o

Un guépard court & 28 m/s et un automobiliste conduit une voiture & 110 km/h sur 'autoroute.

Lequel est le plus rapide ? .. ... e e

%{ [Entrainement 1.21) — Classement de vitesses. 00

On considere les vitesses suivantes : 20km /h, 10m/s, 1 année-lumiére/an, 22 mm/ns, 30 dm/s et 60 cm/ms.

a) Laquelle est la plus petite? ... ... .

b) Laquelle est la plus grande? ... ..ot

%{ [Entrainement 1.22| — Vitesses angulaires. 00

La petite aiguille d’'une montre fait un tour en 1h, la Terre effectue le tour du Soleil en 365,25 j.

Quelles sont leurs vitesses angulaires :

a) en tours/min (laiguille)? ....... c) en tours/min (la Terre)? .......

b) enrad/s (Paiguille)? ........... d) enrad/s (la Terre)? ............

Réponses mélangées

10 000 m? 30dm/s 625 kg/m?> 0,017 tour /min 62 TWh 1-107'm

oui 1,90 - 10° Rg 7,87 722 TWh 1,99 -10° Qg 7,2-107%m 1,90 Qg
134 TWh 0,000 000 000 1 m 406 TWh 7-107%m 4,43 - 10" km 113TWh
9,10-10% qg lor 2,6-10" km/h 200 g 9,10-10" ' rg 1,67-10%qg 3-10%m
5,89 - 10* ha La voiture 1,99 - 10°Rg 4,43 -10%m 0,001 7rad/s 2,3-107*m
180 % 10% 1,20-10""m 250 g 1,50 - 10° m 125¢g 6,72 - 10" ha
La boule en or 5% 64 TWh 1,67-10%rg 0,01 km? 1,99 - 10" rad/s
55-10720 1-1071%m oui 1,6 x 103 kg/m? 5971072 Qg 6,72 -10* m?
1 année-lumiere/an 50 % 1,90 - 107 tour/min 2,34m 5,2% 1-10%kg/m?
5,97 Rg 0,7% 41 TWh 5g 41-107%m 52-1072m 0,5% non

2,4MJ 1,03 x 10° TWh 5,89 - 108 m? 7,3-10m/s 2,5-10%m 1,3-107%m

» [Réponses et corrigés page 200

8 Fiche n° 1. Conversions



GALO3 Fiche d'entrainement n°2 Généralités

Signaux

Prérequis
Fonctions trigonométriques.
Signaux périodiques (fréquence, période, pulsation, longueur d’onde, phase).

Autour des fonctions trigonométriques

L |[Entrainement 2.1 — Cercle trigonométrique. (]

Sur le cercle trigonométrique ci-contre, cos(«) se lit sur Paxe des
abscisses et sin(«) se lit sur 'axe des ordonnées.

Exprimer les fonctions suivantes en fonction de cos(«) et sin(a).

a) sin(a4+m) ..ol c) sin(fa4+m/2) ...
b) cos(a+m/2) ..., d) sin(n/2—a) ...l
L |Entrainement 2.2 — Dérivée de signaux. 0o

Pour chaque signal ci-dessous, calculer sa dérivée par rapport a t.

a) sin(2t) ... c) cos(t) xsin(t) .....

c.;)k [Entrainement 2.3| — Transformer des sommes de signaux en produits. 00

On rappelle les formules trigonométriques :
cos(a + b) = cos(a) cos(b) — sin(a) sin(b) sin(a 4 b) = sin(a) cos(b) + cos(a) sin(b)

cos(a — b) = cos(a) cos(b) + sin(a) sin(b) sin(a — b) = sin(a) cos(b) — cos(a) sin(b).

Mettre les signaux suivants sous la forme C' cos(€2t) cos(wt) ou C'sin(€2t) sin(wt) (ol les constantes C, et
w s’exprimeront en fonction de A, wy et wy).

a) Acos(wit) + Acos(wat) «.ovvviiiiiii.n,

b) Acos(wit) — Acos(wat) «ovvviiiiiiiin...

Fiche n° 2. Signaux 9



%& [Entrainement 2.4] — Formules d’addition.

Mettre le signal A sin(wt+ ) sous la forme B cos(wt)+C'sin(wt), ot B et C dont des constantes & exprimer

en fonction de A et ¢.

B |[Entrainement 2.5 — Représentations graphiques. o
courbe 1 courbe 2
1 14
0,75 4 0,5
0,5 -1 O .
0,25 —0,5
0 - —1
0o 4 8 12 16 20 @ 0o 4 8 12 16 20 @
courbe 3 courbe 4
2~ 1+
1,5 0,5 -
1 0 -
0,5 4 —0,5 1
0 - —14
0o 4 8 12 16 20 © 0o 4 8 12 16 20 ©
Pour les quatre graphiques ci-dessus, « est exprimé en radians.
Associer chaque fonction a sa courbe représentative.
a) sin(a) ..o c) l+sin(a) .covvveeiiiii.t.
b) cos(@) «.ooiiiiiiiiit d) cos*(a) ...l
[Entrainement 2.6] — Formules trigonométriques. 00

Le signal cos(wt) 4 sin(wt) peut s’écrire sous la forme :

@ cos? (wt + m/4) @ 2 cos(wt + 7 /4)

10
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Etude graphique

[Entrainement 2.7 — Parameétres d’un signal sinusoidal. o

2w
En travaux pratiques, vous faites 'acquisition d’une tension sinusoidale u(t) = Uy cos (Tt + go) et obtenez

loscillogramme ci-dessous.

2
—~ 17
>
G
s g

-2

0 1 2 3 4 5 6 7 8 9 10 t(ens)

Par lecture graphique ou par le calcul, déterminer :

a) lamplitude Uy .............. d) la fréquence f ...............

b) la phase & lorigine ¢ ........ e) la pulsation w ...............

c) lapériodeT .................

[Entrainement 2.8] — Différence de phase. o

La figure ci-dessous donne les représentations graphiques de deux signaux : le signal u;(t) = Up cos(wt) et

2
le signal uq(t) = Up cos(wt + ¢), ol on a w = ?ﬂ rad - st

— ui(?)
- == us(t)

0 1 2 3 4 5 6 7 8 9 10  temps (en s)

a) Le signal us(t) est-il en avance ou en retard sur ui(¢)? .............

b) En déduire le signe de @ ...

¢) Déterminer graphiquement @ ...

Fiche n° 2. Signaux 11



[Entrainement 2.9 — Qui est qui ? 00

En travaux pratiques, vous faites I’acquisition de trois signaux périodiques : uq (t), ua(t) et us(t).
Malheureusement, vous ne vous souvenez pas quelle voie d’acquisition vous avez utilisée pour chaque signal !

Vous savez que la tension u;(t) a pour période 300 ps, que la tension us(t) a pour fréquence 8,0kHz et que
la tension u3(t) a pour pulsation 1 x 10%rad - s~

Valeur moyenne et valeur efficace

La valeur moyenne Upnoy et la valeur efficace Ueg d’un signal u(t) périodique de période T' sont définies par

les formules :
1 [T 1 [T
Umoy = T/o u(t) de et Uet = f/o u(t)? dt.

[Entrainement 2.10] — Signal sinusoidal. 000

2
On consideére le signal sinusoidal u(t) = Up cos(?t).

a) Calculer la valeur moyenne de w(t) ...,

b) Calculer la valeur efficace de u(t) .........c..cooiiiiiiiiiL.

12 Fiche n° 2. Signaux
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[Entrainement 2.11| — Un signal carré. 00

On consideére le signal périodique carré dissymétrique u(t) représenté ci-dessous.

3
> 2
=
L
s L]
0 ; ; ; ; ; ;
0 1 2 3 4 5 6 7 t(ens)
Calculer :
a) la valeur moyenne de u(t) ...... b) la valeur efficace de u(t) ........
|[Entrainement 2.12| — Un signal carré, sans son dessin. L)

Up si 0<t<T/2

On consideére le signal périodique carré défini par u(t) =
shat b d P ®) {O si T/2<t<T.

Calculer :

a) la valeur moyenne de u(t) ...... b) la valeur efficace de u(t) ........

Propagation d’un signal

Une onde progressive se propageant dans le sens des = croissants est un signal s(x,t) qui peut se mettre
sous la forme : "
s(x,t) = f(tf E)a

ou f est une fonction mathématique quelconque. La grandeur c est la célérité de I'onde, c’est-a-dire sa
vitesse de propagation.

[Entrainement 2.13] — Eclair et tonnerre. o

La foudre est une décharge électrique qui se produit pendant les orages et qui entraine une lumiére intense
(Iéclair) et un grondement sourd (le tonnerre).

La lumiére se propage & la vitesse ¢ = 3,00 x 10%m - s™1 et le son se propage & la vitesse ¢, = 344m - s~ L.
Vous mesurez & 'aide d’un chronometre la durée entre le moment ou vous voyez 1’éclair et le moment ou
vous entendez le tonnerre : vous trouvez At = 5,0+ 0,5s.

a) On considére que la lumiére se propage instantanément entre le lieu de 1’éclair et votre position.

Déterminer la distance a laquelle la foudre a frappé ..................... ... ...

b) En déduire la durée de propagation de la lumiére entre 'endroit ol la foudre a frappé et votre position.

¢) L’hypothese faite & la premiére question est-elle justifiée? .................
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|[Entrainement 2.14] — Vitesse de propagation. o

Une vague s(z,t) se propage en direction des cdtes. Ci-dessous, on représente 'allure de la surface de ’eau
aux instants t; = Omin et {5 = 1 min.

| | L. | | . | === s(x,ta)
0 100 200 300 400 500 600 700 800 900 1000 « (en m)

Déterminer la vitesse de propagation de la vague en km/h

|[Entrainement 2.15| — Onde progressive sinusoidale. L

Une onde progressive sinusoidale a pour expression, en x =0 :
s(0,¢t) = 2sin(3,9¢ + 0,3 7),

le temps t étant exprimé en secondes.

Elle se propage dans le sens des z croissants & la vitesse ¢ = 30cm - s 1.

a) Déterminer la période T du signal

b) Déterminer la longueur d’onde A du signal

¢) Donner 'expression générale de s(x,t)

Réponses mélangées

cos(a) —2sin(t + 4) cos(t + 4) = —sin(2t + 8) uy(t) oui 48 cm —sin(a)

1,7km Courbe 4 cos?(t) — sin®(t) = cos(2t) 24 sin(w2 ; w1 t) sin(w1 ; 22 t)

2
@ us(t) —?ﬂ rad g rad mrad-s! Asin(p) cos(wt) + A cos(p) sin(wt)
U
1,6s 2 cos(2t) Courbe 1 0 En retard —sin(a) 1,5V V3V \/—%
Uy . Uo
7 18km/h v <0 1,5V us(t) cos(a) 2sin(3,9¢ — 13z + 0,37) -

2s 0,5Hz Courbe 3 2A cos (%t) cos (wl —; i t> Courbe 2 5,7ns

» [Réponses et corrigés page 203
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ELCO1 Fiche d'entrainement n°3 Electricité

Etude des circuits électriques I

Prérequis
Lois des nceuds. Loi des mailles. Loi d’Ohm. Montages diviseurs.
Constantes utiles

— nombre d’Avogadro : Na = 6,0 - 10*®* mol ™"

— charge élémentaire : e = 1,6 - 107°¢C

Autour du courant électrique

“.;,L [Entrainement 3.1 — Une bataille de courants. ]

Lequel de ces trois courants électriques présente la plus forte intensité ?

@ 5 000 électrons durant 1ms @ 20 milliards d’électrons durant 1 min
@ 0,2 mol d’électrons durant 1an

c‘;x [Entrainement 3.2| o

L’intensité du courant traversant un fil de cuivre vaut I = 4,0 mA.

Combien d’électrons traversent la section du fil pendant 1087 ..........................

[Entrainement 3.3 — Loi des noeuds (I). L)
%
B
1 B D
N } ; } 11—
A C
)
5

Les courants indiqués sur le schéma ci-dessus sont algébriques.

En utilisant la loi des noeuds, déterminer en fonction de ¢ les courants suivants (on note iap le courant qui
va de A vers B, etc.) :

a) iAB .............................................................................
D) B« et
C) iCD .............................................................................
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[Entrainement 3.4 — Loi des nceuds (II).

400 mA

On considére le circuit électrique représenté ci-dessus.

A partir de la loi des noeuds, calculer intensité des courants sans utiliser la calculatrice.

Autour de la tension électrique

[Entrainement 3.5 — Loi des mailles.

Un circuit électrique est formé d’une pile de f.é.m F et
de quatre dipoles. Certaines tensions sont indiquées.

A partir de la loi des mailles, exprimer en fonction de
FE et U; les tensions suivantes :

[Entrainement 3.6| — Calculer une tension.

On considére le circuit électrique formé de deux
sources idéales de tension et de quatre dipoles, comme
représenté ci-contre.

A partir de la loi des mailles, calculer les tensions :

0
C) ig ............
o
B D
%
U1
E T + IU
A C
0o
| |

5V

0 T
D) U e
C) U ot
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Loi d’Ohm

[Entrainement 3.7 — Caractéristiques. L]
On consideére les cas suivants :
—{ | —{ = |} —{ 1
R —— «— R ——
u u u
Résistance 1 Résistance 2 Résistance 3
Dans chaque cas, exprimer i en fonction de u et R.
a) Résistance 1 ...
b) RESIStANCcE 2 .. ...
c) Résistance 3 ...
[Entrainement 3.8 — Résistances associées. 000
Exprimer la résistance équivalente des dipdles AB suivants :
R/2 R/3
a) o — T
A B
R/2
T
b) *— T e
) : R/3 B
T
Al
c) R R R R
iB
N résistances
R(1+a)
T
R
d) T T
A R(1—a) B
T
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Qv

[Entrainement 3.9 — Trois résistances équivalentes.

Sans utiliser la calculatrice, calculer la résistance équivalente :

2)

1kQ

dipole 1 dipole 2

du dipdle 1 ...... b) du dipdle 2

1k 1k 1kQ 1k 1kQ
A — A A
2kQ 1kQ 2k 2k 1kQ 2k 2k 2k 1k§j¢
B Be Be

[Entrainement 3.10| — Une autre résistance équivalente.

On considere le dipole AB constitué uniquement de
conducteurs ohmiques.

)

dipdle 3

du dipole 3 ......

R
]

o | ]
R

Exprimer la résistance équivalente du dipdle AB en fonction de R et R’

[Entrainement 3.11| — Quelle résistance choisir ?

La résistance équivalente d’un dipodle s’écrit :

Req =

Déterminer la valeur de R’ pour que :

2)

_ 4R(R+R/)
R+ R

Résoudre une équation électrique

[Entrainement 3.12] — Une équation de maille.

Dans un circuit, la loi des mailles se traduit par la relation RyI + Ro(Iy + I) = 2Rz 1.

a)

b) Exprimer I en fonction de Ry, Ry et I

On suppose que Ry = 2R5. Exprimer I en fonction de I

00
A
B
000
0

18
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[Entrainement 3.13] — Circuit a 2 mailles. 00

On forme un circuit avec une pile et trois conducteurs
ohmiques. On définit les courants algébriques ¢ et i3
comme indiqué ci-contre.

Exprimer F en fonction de i, 71 et R en appliquant la
loi des mailles dans la maille :

a) (ABCF) .... b) (ABDE) ....

[Entrainement 3.14| 00
Ri+ 4Ri; = 4F
13R: — 12Ri; = 4F.

Dans l'entrainement précédent, les grandeurs i et i1 vérifient le systéme {

a) Déterminer ¢ en fonction de F et R .....o.iiiiiiniiii i

b) Déterminer i; en fonctionde E et R ...

Diviseurs
[Entrainement 3.15 — Un diviseur de tension. 00
R1 Ro
On forme un circuit avec une pile de f.é.m F et quatre conduc-
teurs ohmiques. On définit les tensions Uy, Us et Us comme U,
indiqué ci-contre. E + EEINE
Ry
Exprimer en fonction de F, Ry, Ro, R3 et Ry, les tensions :
%
Us
a) Ul ..... b) Ug ..... C) U3 .....

a) Pour quelle valeur de o a-t-0m 41 = §/37 ... o

b) Pour quelle valeur de o a-t-0m 2 = 3017 .. .t

Fiche n° 3. Etude des circuits électriques I 19



[Entrainement 3.17| — Exercice de synthése (I). 00

On forme un circuit avec une pile et trois conducteurs
ohmiques. On définit les tensions U; et Us comme
indiqué ci-contre.

a) Calculer la résistance équivalente aux deux conducteurs ohmiques en paralléle ......

b) A Tlaide de la formule du diviseur de tension, exprimer U; en fonction de F et R ...

c) Faire la méme chose POUr Uz ....oovniiniii it

[Entrainement 3.18 — Exercice de synthése (II). 000

a) Apres avoir simplifié le circuit, calculer ¢ en fonction de E et R ...t

b) En déduire ¢; a partir de la formule du diviseur de courant ............ ... ... o

€) BN dEAUITe Go .ottt

Réponses mélangées

3 3 Ry ER, 3F
2 °E 2 7 2 o=
4? 4 §1R+R2 0 Ri+Ro+ Rs+ Ry R 4R R
0 - 4
- 1V 2 —6V —u/R 3R
s 3 Ry + {%2 + R3+ Ry JR(R 4+ R) v/ v/
+
2 —Ri—3Ri A E— 1kQ
o () 1 Ri—3Riy T 0 (])_17; Uy ¢
TV 80 mA 30 mA 2,5-107 U —-FE Wi u/2R -7
1—a? R E R E(Ry + R3) 3 .
3—a? N 8R 5 Ri+ Ry + R3+ Ry
i 3P E 1kQ —350 mA 1k E-U Lpit Ri
8R R ! 4 !

» [Réponses et corrigés page 208
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ELCO02 Fiche d'entralnement n°4 Electricité

Etude des circuits électriques II

Prérequis
La fiche Etude des circuits électriques I et les équations différentielles.

Bobines
En convention récepteur, I'inductance L d’une bobine vérifie I’équation différentielle : L .
1
di(t) ¢ 0308 —>—e
u(t) = L——=.
(t) " U
c.;)k [Entrainement 4.1| — Bobine ou pas ? o

On donne I’évolution de l'intensité i(t) et de la tension u(t) aux bornes d’un dip6le inconnu.

i(t) W u(t)

t
t
Ce dipoéle inconnu se comporte-t-il comme une bobine ?
@ oui @ non
c.;,k [Entrainement 4.2 — Inductances équivalentes. 00

On considére deux bobines, d’inductances L et L', regroupées dans les montages suivants :

L
L . L/ ;—[g]_‘
T >— T -

m
m
montage () montage (b)

a) Donner la relation entre u et i dans le montage @ ........................

b) En déduire I'inductance équivalente du montage @ .......................

¢) Donner la relation entre u et i dans le montage @ ........................

d) En déduire I'inductance équivalente du montage @ .......................
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B |[Entrainement 4.3| — Simplifions ! 0

On souhaite remplacer les bobines par un dipole équivalent.

R L)2 R

Déterminer Leq

Condensateurs

En convention récepteur, la capacité C d’un condensateur vérifie I’équation différentielle :

%L [Entrainement 4.4] — Condensateurs équivalents. o0

On considére deux condensateurs, de capacités C et C’, regroupés dans les montages suivants :

c
|
ﬁ . ICI/ il
/
11 11 - ¢
|
U I
U
montage @ montage @

a) Donner la relation entre u et ¢ dans le montage @

b) En déduire la capacité équivalente du montage @

c) Donner la relation entre u et ¢ dans le montage @

d) En déduire la capacité équivalente du montage @
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%L [Entrainement 4.5 — Condensateur ou pas ? o

On donne I’évolution de l'intensité i(t) et de la tension u(t) aux bornes d’un dip6le inconnu.

i(t) W u(t)

t
t
Ce dipodle inconnu se comporte-t-il comme un condensateur 7
@ oui @ non
%L [Entrainement 4.6 — Simplifions ! o

On considere le montage suivant, constitué de plusieurs condensateurs, d’un générateur et d’un conducteur
ohmique. On souhaite remplacer les condensateurs par un dipole équivalent.

C

R
||
N

Déterminer Cog . .vvvvvinire

Conditions initiales et régime stationnaire

On utilisera dans cette partie les notations suivantes pour une grandeur donnée x :

7)) = lim x(¢ ) = lim (¢ = i t).
e 2(07) = lim (1) o 2(0) = lim 2(1) o a(+o0) = lim_a()
<0 >0
[Entrainement 4.7| — Condensateurs et bobines en régime stationnaire. L)

En régime stationnaire, toutes les grandeurs électriques sont indépendantes du temps.

a) Dans ce cas, un condensateur se comporte comme :

@ un interrupteur fermé @ une source de tension @ un interrupteur ouvert

b) Quant & la bobine, elle se comporte comme :

@ un interrupteur fermé @ une source de courant @ un interrupteur ouvert
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|[Entrainement 4.8 — Eclairage en régime permanent. o

On consideére le circuit suivant, constitué de lampes (symbolisées par 48%) que l'on peut assimiler a des
résistances qui brillent quand elles sont parcourues par un courant électrique :

Ay

-

L As

A0 ~®

C

-

Le régime permanent étant établi, la ou les ampoules qui brillent sont :

@ I'ampoule Ay @ Iampoule As @ I'ampoule Aj

[Entrainement 4.9| — Relations de continuité. 00

Dans ce QCM, plusieurs réponses sont possibles pour chaque question.
a) Aux bornes de quel(s) dipdle(s) la tension est-elle toujours continue ?

@ une résistance @ un condensateur

@ une bobine @ un interrupteur fermé

On consideére les deux circuits (1) et (2) pour lesquels 'opérateur ferme l'interrupteur & 'instant ¢ = 0.

On suppose de plus que le condensateur est initialement déchargé.
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On consideére & présent les deux circuits (3) et (4) pour lesquels 'opérateur ferme l'interrupteur a 'instant
t = 0. On suppose de plus que les condensateurs sont initialement déchargés.

[Entrainement 4.10] — Conditions initiales pour circuits du premier ordre. 000

On considere trois circuits constitués de générateurs de tension de f.é.m. constante F, de conducteurs de
résistance R ainsi que de condensateurs de capacité C' et d’une bobine d’inductance L.

L’interrupteur K est ouvert pour ¢t < 0 et fermé pour ¢ > 0.

Tous les condensateurs sont initialement déchargés.

R R
et LE |ug et C—— Iuc
K K
—
(1) (2)

On considére dans un premier temps le circuit (1).

a) Exprimer i(07) ................. |:| b) Exprimer uz(07)

On considére & présent le circuit (2).

c)  Exprimer i(07) L.

On considére finalement le circuit (3).

d) Exprimer ug(0%) ........ ..., e) En déduire i;(07) ..............
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[Entrainement 4.11| — Circuit a4 deux mailles. 00

Le circuit suivant, constitué de deux mailles indépendantes, est alimenté par un générateur de tension de
f..m. F constante :

Pour ce circuit, on considére de plus que :

e linterrupteur K est ouvert pour t < 0 et fermé pour ¢t > 0;
e le condensateur est initialement déchargé.

Exprimer :

Q) U 00) ettt

Circuits du premier ordre

On dit qu'un circuit est du premier ordre quand il est régi par une équation différentielle qui se met sous

la forme canonique suivante :
dz(t) 1
b ~alt) = f), (+

ou 7 est la constante de temps représentative de la durée du régime transitoire.

Quand ’équation différentielle est écrite comme dans (), on dit qu’elle est sous forme canonique.

[Entrainement 4.12| — Constantes de temps. o

On donne des exemples d’équations différentielles régissant des grandeurs électriques d’un circuit.

Dans chaque cas, déterminer ’expression de la constante de temps 7.

2) Ld;(tt) S B RI(E) oo
b) Rcd“st(t) B QUCE) e
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[Entrainement 4.13] — Des mises en équations. 000

On cherche a obtenir 1’équation différentielle qui régit le comportement d’une grandeur électrique dans
chacun des circuits suivants.

Cette équation devra étre donnée sous forme canonique.

(1) (2)

On consideére le circuit (1).

a) A partir de la loi des mailles, déterminer 1'équation différentielle vérifiée par i(t)

On considére maintenant le circuit (2). Déterminer :

b) 1’équation différentielle vérifiée par uc(t) .................

c¢) léquation différentielle pour le courant #(¢) ...............

On considére enfin le circuit (3), qui comporte deux mailles. En appliquant la loi des noeuds au point N
déterminer :

du(t)

d) la relation entre le courant i(t), la tension u(t) et g

e) En déduire I’équation différentielle pour la tension u(t) ...

c‘;x [Entrainement 4.14] — Allez, on s’entraine ! 000

N’oubliez pas d’exprimer une solution particuliére avant d’appliquer les conditions initiales!

1
dug (t) u

Résoud
a) Résoudre g —uc

di(t 1 E
b) Résoudre ift) +—i(t)=0 aveci(0)=—= .........ciat.
dt T R

du(t E
¢) Résoudre ?th +;u(t) =g, avec u(0) =
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B |[Entrainement 4.15 — Analyse de courbes. 0o

Les graphes ci-dessous représentent 1’évolution de trois grandeurs au cours du temps :
e deux tensions uq(t) et ua(t);
e une intensité i(t).

~ courbe 1 courbe 2 courbe 3
I I I I I I I I I
g 41 f 4+
5
< 3F s 3
g
@ 2 f 2
g 1 f 1+ 1+ f
S|
% | | | [ . L L | | | | | | | | | | | | | |
& 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
t (en ms) t (en ms) t (en ms)
a) Ona:

u(t) = B (1 - e_t/T).

Quelle est la courbe correspondante ?

@ courbe 1 @ courbe 2 @ courbe 3

@ courbe 1 @ courbe 2 @ courbe 3

Q) B o
e) E2 .................................................................................
B R
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Circuits du second ordre

c'%k |[Entrainement 4.16 — Equation canonique. L)

De nombreux circuits du second ordre sont en fait des oscillateurs dont 1’équation canonique est de la
forme :

d?z(t)  wo da(t)
a2 T Q dt

ou wy est appelée pulsation propre et Q facteur de qualité.

+wga(t) = f(t),

Donner la dimension de :

d2i(t)  di(t)

O idere I’équation RC
n considere 1’équation e ”

R
+ Zl(t) = 0. Exprimer :

C) WO cvtvieiieentatniennoans d) Q ........................

[Entrainement 4.17] — Mise en équation. 000

On considere les deux circuits suivants, pour lesquels les f.é.m. des générateurs de tension E sont constantes.

montage 1 montage 2

A laide de la loi des mailles et des noeuds, établir Péquation différentielle vérifiée par la tension wu :

a) Danslemontage 1 ........... ...,

b) Dansle montage 2 ...........cooiiiiiiiiiii..

c‘;x |[Entrainement 4.18) — Equations du type « oscillateur harmonique ». 00

d? t uc (0) =0

a) Résoudre uic;() +wd (uc(t) —E) =0 avec { duc
dt —(0)=0
dt

d2i(t i(0) =0

b) Résoudre ilt) +wii(t)=0 avec { di E .
ar a0=7
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[Entrainement 4.19] — Réponses d’un circuit du second ordre.

Les graphes ci-dessous représentent 1’évolution de trois tensions wuj(t), ua(t) et us(t) au cours du temps.

Toutes ces grandeurs évoluent suivant une équation différentielle du type :

2
d x(t) ﬂd.’[(t) +w(2) x(t) _ Cte'

de? Q dt
courbe 1 courbe 2 courbe 3
I I I I I I I I I
8 : 81 :
= 6 1 6 .
£ 4] 1 4 .
g 2 1 2 |
Z 0| 1 of
Q
= 2l 1 —2f .
_4 C [ [ [ [ [ [ [ 1 _4 L [ [ [ [ [ [ [ 1 _4 [ [ [ [ [ [ [ [ 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
t (en ms) t (en ms) t (en ms)

a) Quelle courbe est associée au plus grand facteur de qualité @ ?

@ courbe 1 @ courbe 2

uy(t) = Esin(Qt) e /7.

Quelle est la courbe correspondante ?

us(t) = E [1 — (cos(Q't) + asin(sz't))e*t/f’]

Quelle est la courbe correspondante ?

e) Déterminer la valeur numérique de la pseudo-pulsation 2 qui intervient dans us(t).
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Réponses mélangées

%E @, @ et @ Q est sans dimension i=(C+ C')i—? R2—C @, @ et @
di(t 1 E 1
:ft) + i =0 4V ® & uolt)= E(l - e_t/T) uo(t) = 5B

d2u+ 1 du+ 1
dt2  RCdt LC

Lr d?>u  Rdu 1 E ,
© 37 © wrtiatie'"e Ct¢ 0 ©

du (1 1Y, ) C E
)

@ E x (1 — cos(wot)) 1,2 x 10%rad - s7! u=0

Codi L di dug 11 o E .
UC_C’Ldt MY v . & " RC'CT RO ® = R°
u 2 FE 1
) dw, 2,2 L 3k E
cr o & "TRC""RC  JIC ’ @

C di uw u 2F
= T_l —_— -_— = — —— gy
=T Wi ® ®e© ® §-pvp g
1 R . [ U .
- —1 = f 0 E 1= E + CE L_wo Sln(th) @ E @

» |Réponses et corrigés page 213|
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ELCO03 Fiche d'entrainement n°5 Electricité

Etude des filtres

Prérequis
Trigonométrie. Nombres complexes. Association de dipéles. Signaux pério-
diques. Spectres de Fourier.

Nombres complexes et association de dipdles

[Entrainement 5.1 — Un entrainement fondamental. o

Un nombre complexe peut se mettre sous les formes suivantes :
e Z =a+jbavec a sa partie réelle et b sa partie imaginaire ;
o Z = Zyexp (i) = Zo(cos(p) + jsin(p)) avec Zy > 0 son module et ¢ € R un argument.

a) Exprimer Zy en fonction de a et b ...

b) On suppose a # 0. Exprimer tan(y) en fonction de a et b ...........

On suppose que ¢ € | — 7, 7).
c) Sia >0, que peut-on dire de ¢ ?

@ v € [0,7] @ € [r/2,7] @ p € [-m/2,7/2]
@(,06[077T/2] @(pe]—ﬂ,O] () pe]—m/2,0]

d) Sia>0etb<0, que peut-on dire de ¢ ?

@@E[O,ﬂ'] @(pE[T{'/Q,ﬂ'] @906[_77/2771-/2]
@goe[Om/Q] @@6]—7r,0] @cpe]—w/Z,O]

[Entrainement 5.2 — Impédances complexes des composants de base. L)

Les impédances complexes d’un résistor de résistance R, d’une bobine d’inductance L et d’un condensateur
de capacité C' auxquels on impose une pulsation w sont respectivement :

1
Zp=R Z; =jL t Zo=——.
4R ) 4y = )Lw e L0 iCw
Calculer le module Z; et I'argument ¢ € | — 7, ] de chacune de ces impédances :
a) ZpdeZgp ... c) ZopdeZ; .... e) Zopde Zqo ...
b) odeZp ..... d) ¢deZ; ..... f) odeZq.....
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[Entrainement 5.3] — Associations de dipdles.

On rappelle la régle pour déterminer 'impédance complexe équivalente a celle de dipodles associés :

» si les dipOles sont en série : Loq = ZZZ- ;
p— ' 1
Nz

» si les dipdles sont en parallele :  Z

A Taide de ces reégles, déterminer I'impédance complexe Z i des associations de dipdles suivantes :

a) b)

(e
~
Q
Q.
~

Q

Ao . -
R —
L 1
1T R
L
a) ZAB T i i e et ettt ettt et ettt e e
b) ZAB T e e e et e et e e e e e et e e e
C) AR T e
d) ZAB e T
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[Entrainement 5.4 — A la recherche de la bonne impédance. 00

Un groupe d’étudiants doit trouver I'impédance Z,p du dipdle AB ci-dessous :

R L

||
B
C

Quelle proposition correspond a l'impédance du dipble AB?

R+jLw R+jLw R+ jlw
LA = Iap = T am =
@ SAB T 1T 00?2 4 jRCw @ “AB T 1 4 LCw? + jRCw @ “AB T 1 4 LCw? — jRCw

Signaux périodiques

[Entrainement 5.5 — Analyse du signal provenant d’un GBF. o

En TP, un éleve observe a ’oscilloscope la tension dé- e N\
livrée par un générateur de basses fréquences (GBF).

Aider cet éleve a analyser le signal de tension me-
suré ci-contre en déterminant sa fréquence fy et son
amplitude Uy.

a) f() ...........................
ov >\ )
b) Up covvriiniiiiiiii, base de temps : 20 ps/division
calibre vertical : 1V /division
%L |[Entrainement 5.6| — Expression d’une tension. 0

Nous disposons d’une tension sinusoidale u(t) de période Ty = 1ms, d’amplitude Uy = 2V et de phase a
I’origine ¢ = Orad.

Parmi les propositions ci-dessous, laquelle correspond & 1’expression littérale de cette tension wu(t)?
t Uy t

u(t) = Uy cos| — u(t) = — cos| —

@) ut) = (T0> ©u =5 (T0>

() u(t) = % cos(?{jt) (d) u(t) = Uo cos(2T:t>
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L [Entrainement 5.7 — Modulation d’amplitude. 00

On consideére un signal modulé, de la forme :

0<m<1

s(t) = Sp cos (27rfpt) X (1 + mcos(27rfot)) avec {fp > fo.

a) On rappelle que :
{cos(a +b) = cos(a) cos(b) — sin(a) sin(b)
cos(a — b) = cos(a) cos(b) + sin(a) sin(b).

En calculant cos(a + b) 4 cos(a — b), trouver une formule pour cos(a) cos(b).

b) Développer s(t) et faire apparaitre des sommes de cosinus.

On constate que le signal s(t) peut s’écrire comme la somme de trois signaux sinusoidaux d’amplitudes et
de fréquences spécifiques. On représente les différentes amplitudes des composantes de s(t) en fonction de
leur fréquence. Cette représentation est appelée spectre en amplitude de s(t).

Le but de cet entrainement est de déterminer lequel des spectres ci-dessous (@, @ ou @) est celui du
signal s(t) :

Amplitude @ Amplitude @ Amplitude @

SO __________ SO _____ =-=== -=== SO ______________
mS() _____ [ mSo _____ o
2 X I 2 X
! f
fpffO .fp fp+.f0 fpf.fO fp fp+f0 fpffO fp fp+f0

¢) Donner 'amplitude de la composante de fréquence f, de s(t) .......

d) Donner 'amplitude de la composante de fréquence f, + fo de s(t) ..

e) Donner 'amplitude de la composante de fréquence f, — fo de s(t) ..

f) Déterminer le spectre (@, @ ou @) correspondant a s(t) ........
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[Entrainement 5.8 — Péle-méle. 00

Un étudiant dispose de quatre spectres en amplitude et de quatre signaux. Malheureusement, I’ensemble
est mélangé. Pouvez-vous ’aider a associer le bon signal au bon spectre (@, @, @ ou @) ?

Spectre @ Spectre @

Amplitude (en V) Amplitude (en V)

okt f (en kHz) o4 f (en kHz)
01 01

Spectre (¢) Spectre (d)

Amplitude (en V) Amplitude (en V)

0+ f (en kHz) 0+ f (en kHz)
01 01

Signal n°1 Signal n° 2
1 1 . L. L.
Ay (cos(wot) + 3 cos(3wot) + 3 cos(5w0t)> Ay (1 + sin(wpt) + 3 sin(2wot) + 3 sm(3w0t)>
avec Ay =1Vet fp =1kHz avec A, =1 Vet fp =2 kHz
Signal n° 3 Signal n° 4
1 . 1. 1.
As (Cos((wo —wi)t) + 3 cos((wp + w1)t) Ayg| 1+ sin(wot) + 3 sin(3wot) + 3 sin(bwot)
1
+ 3 cos((wo + 3w1)t))
avec A3 =1V, fo =3 kHz et f; =1 kHz avec Ay =1Vet fp =1kHz
a) Spectre du signal n°1 ....... c) Spectre du signal n°3 .......
b) Spectre du signal n°2 ....... d) Spectre du signal n°4 .......
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Fonctions de transfert

[Entrainement 5.9 — Filtre passe-bande. 000

Nous disposons du filtre ci-contre, constitué de deux dipdles dont les
impédances complexes sont :

1 R Ue Z, Us
leR"_@ et ZQ:W avec C:47HF etR:].kQ

u
Nous souhaitons écrire la fonction de transfert du filtre H (jw) = = sous sa forme canonique :
U

H(] w
avec Tr= —.

H(jx) = m o

a) A laide d’un pont diviseur de tension, ¢) dentifier @ ...........

exprimer H(jw) ............

d) Identifier et calculer wy .

b) Identifier Hy ...........

[Entrainement 5.10 — Filtre du second ordre. 0000
Nous disposons d’un filtre passe-bas de fonction de R ;g Mg R
transfert : 7 :l I G :l
H, Yi
H(j) = == ‘ J

ye_1+%—x2

avec T = i. Ona C=10pF et R=2200.
wo

Un étudiant obtient les trois égalités suivantes :

Ri=u, —u, Ri; =u—u, et Riy = jRCwu.

a) A laide de la loi des nceuds, exprimer i en fonction de dpebdy oo

b) Utiliser la réponse précédente et les trois égalités fournies pour exprimer u, en fonction de u et u,.

L’étudiant montre, grace a un pont diviseur de tension, que u = (1 + jRCw)u,.

¢) En déduire la fonction de transfert simplifiée H(jw) ..........

En comparant la réponse précédente a la forme canonique de H (jw) donnée, identifier :
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De la fonction de transfert au diagramme de Bode

LB |[Entrainement 5.11] — Calcul de gain en décibels. 0

On considere les fonctions de transfert suivantes : H; = 3,0; Hy, = ji et Hy =1 +ji.
wo w1
Le gain en décibels G4p d’un filtre se détermine a partir de la relation :
GdB = 2010g ( |ﬂ| )

Déterminer le gain en décibels associé aux différentes fonctions de transfert ou combinaisons de fonctions
de transfert ci-dessous :

a) Hy .......... d) H—H, ....
H
b) Hy .ooo0ovnnn =2 .
) H, e) i,
c) Hy.....o.... f) H,x Hg
%{ [Entrainement 5.12] — Calcul de phase. 00
On reprend les mémes fonctions de transfert que précédemment : H, = 3,0; H, = ji et Hy =1+ ji.
wo w1
Le déphasage ¢ introduit par un filtre entre les signaux d’entrée et de sortie se détermine a partir de la
relation : im(H)
m
= H) = t — .
¢ = arg(H) = arctan ( Re(H) )

Déterminer le déphasage associé aux différentes fonctions de transfert ou combinaisons de fonctions de
transfert ci-dessous :

a) H; .......... d) H,—H,
H
b) Hy ..ooovt... =
) H, e) H,
c) Hq..oovn. f) HyxH, ....
LB |[Entrainement 5.13] — Diagramme de Bode en phase. 0
On utilise un filtre passe-haut de fonction de transfert H(jz) = Jx_ avec T = —.
1+ jx wo

Déterminer la valeur du déphasage ¢(x) = arg (ﬂ (Jx)) du filtre pour des signaux tels que :

a) w =wy (la pulsation propre du filtre) ........................

b) w > wp (en hautes fréquences) ........... ... ...

c) w < wp (en basses fréquences) ............ ..o
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L |[Entrainement 5.14] — Calcul de gain. L)

Pour les fonctions de transfert suivantes, évaluer le gain G(z) = |H(jz)| pour = = 1.

1—jx
H(Jr) = o e
a) Hw) =1 i
. jx
b) H e T
) Hlle) = -2
. 1
c) H(jz) = - —savecm =2 ..........
1+ 2jmaz + (jx)
[Entrainement 5.15 — Tracé sur papier semi-logarithmique. o

Un éléve souhaite étudier le comportement d’un filtre passe-haut en basses fréquences. Pour cela, il releve
les amplitudes des tensions d’entrée et de sortie pour différentes fréquences bien inférieures a la fréquence
de coupure du filtre.

Fréquence (en Hz) 200 700 2 000
Amplitude du signal d’entrée (Ugntrée €n V) 1 1 1
Amplitude du signal de sortie (Usortic en V) 0,04 0,14 0,40

GaB

—10

—20

—30

—40

1 10! 10° 10° 10*

Usorti
Le gain en décibels est donné par la relation Gag = 20 log< Uﬁome )
entrée

Calculer le gain en décibels pour chacune des fréquences et placer le point correspondant sur le graphe
ci-dessus.

a) Point A f=200HzZ ... .ottt

b) Point B: f=T00Hz ...... o

c¢) Point C: f=2000Hz ... ...

d) Déterminer la pente de la droite passant les points A, Bet C .......................
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|[Entrainement 5.16| — Bande passante et facteur de qualité d’un filtre.
On dispose d’un filtre passe-bande de fréquence propre fy = 15kHz, dont les deux fréquences de coupure
a4 —3dB sont f.1 et feo (avec for < fe2), et dont la fréquence de résonance est f;.

Le diagramme de Bode en gain du filtre en fonction de = = f/fy et un agrandissement sont fournis.

GdB GdB
107 10° 10 102 w 10° 10" w
0 xr= — 0 r = —
7N\ wo wo
71\
—-10 /X -2
S/ \C I\
— \C AR
/ \ [\
—20 - N —4 T
/ N I \
/ N\, [ \
—30 —~ -6 / \
, NG / \
/ N / \
40 - X —8 / \
- X / \
/ \
/ \
1 \

a) fr ............ b) fcl ........... C) fC2 ...........
Réponses mélangées
1 1 RjLw
0 —cos(a+b)+§cos(a—b) Rt ilw - RLCW? @
2
20 1og(i> —101log (1 + (i) ) w@+jRCw) —u,  ~  1/3 S+ arctan<i>
wo w1 2 2 w1
1 R(l - LCwQ) w
3 10kH: Va2 + b2 — arct, —
141 ifCw 0kHz @t 1 - LCW? + jRCw ® are an<3w0>
3jRCw 3
2
19,2kHz —8,0dB  1/V2 i 4y 10log(1+ (%) > @
1
@  R+— 1 L /2 20log( <) +10log(1+ (2 2
. — . fudl fadl
jCw Cw & wo & w1
13 (@ () 1/3  b/a  +20dB/décade 2,1 x10%rad/s 1
So cos(2m fpt)
/2 /2 +m_5’0 cos(2m(fp + fo)t) 0 ! )
P 1+ 3jRCw — (RCw)
+cos(2m(fp — fo)t)
T_ arctan<i) © arctan<i> 95dB  150kHz  —28,0dB
2 w1 w1
RjLw w
2 11,7kH —_— 201 — 2 4
mSp/ ,7TkHz R+ilo 0 og<w0 mSp/ 7/ @ R
1 w )’
0 L 25V —17,1dB — 1/4 S 101 9 —
w , ; RC / 0 O Og< + (w(]) )
» [Réponses et corrigés page 220|
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ELCO4 Fiche d'entrainement n°6 Electricité

Energie et puissance électriques

Prérequis
Puissance électrique. Relation puissance-énergie. Expression des énergies
stockées dans une bobine et dans un condensateur. Effet Joule.

Pour commencer

L [Entrainement 6.1] — Puissance et énergie. 0o

Le chargeur d’un téléphone portable consomme une puissance de 5 W. La charge complete de la batterie
(& partir d’une batterie vide) prend 55 min.

Calculer I'énergie E contenue dans la batterie :

Q) I JOULES .ttt

b) en watts-heures (Wh) ...

L |[Entrainement 6.2] — Voiture de série contre Formule 1. 0o

Les voitures de course « Formule 1 » sont des véhicules hybrides : elles possédent a la fois un moteur
thermique et un moteur électrique. On souhaite comparer le moteur électrique d’une Formule 1 a celui
d’une simple voiture électrique de série.

On donne les informations suivantes :

Hyundai Ioniq 6 Formule 1
Capacité batterie 77,4kWh 4MJ
Puissance moteur 239 kW 160 cv
Consommation moyenne 15,1 kWh/100km

On indique que 1cv = 0,735 kW.

a) Calculer Pautonomie en km de la batterie de la Hyundai Ioniq 6 ..........

b) Quel véhicule possede la batterie de plus grande capacité? ................

¢) Quel véhicule possede le moteur électrique le plus puissant? ..............
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B |[Entrainement 6.3] — Identification de courbes. 0000

Une tension u(t) est appliquée aux bornes d’un conducteur ohmique de résistance R = 10 ).

Identifier parmi les courbes proposées celle correspondant a la puissance

dissipée par effet Joule dans la résistance.
a) Pour u(t) = 3sin(wt) avec w = 2m rad - s~ .
1 1

0,5

P(t) (en W)
P(t) (en W)

=)
[N}

0,5 1 15 2 0 05 1 15

@ t (en s) @ t (ens)

P(t) (en W)
P(t) (en W)

P(t) (en W)

P(t) (en W)
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t
¢) Pour u(t) =3exp <) avec T = 2s.
T

1 1
= =
= =
Q Q
= 05 = 05
& &
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6

P(t) (en W)

L |[Entrainement 6.4 — Un calcul graphique. L]

Pour un dipdle soumis a un signal alternatif harmonique, la puissance moyenne vaut :

Uolyp
2

Pmoy = COS(SO)a

ou Uy et Iy sont respectivement I’amplitude de la tension et du courant et ou ¢ représente la valeur du
déphasage angulaire entre la tension et I'intensité du courant.

Les figures ci-dessous donnent les représentations graphiques de la tension u(t) et de l'intensité i(t) en
convention récepteur.

4 10
S 2] R T s oo
g g SR NI
: 0 7 ~ 0 "1 \‘ "l “ " \‘
\5 —92 1 l:/ _5 B Yu? e
—4 \ \ \ \ \ \ \ —10 \ \ \ ‘ ; : :
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
temps (en ms) temps (en ms)

Déterminer la puissance moyenne regue par ce dipdle ............... .. ...
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B |[Entrainement 6.5 — Des calculs de puissance. 000

On souhaite calculer la puissance regue par un dipdle. Quand celui-ci est alimenté par une tension u(t) et
parcouru par un courant i(t), la puissance moyenne regue est donnée par la formule :

% /0 u(t) x i(t) dt,

Pmoy =

ou T est la période du signal.

Dans un premier temps, on considére les signaux u(t) = ug cos(wt + ¢) et i(t) = ig cos(wt + ).

a) Combien vaut la période T pour ces SIgNAUX T .....ooveinininiininannnnnn...

b) Calculer Py pour ces signaux.

1 5(2
On pourra utiliser la formule cos®(z) = —H%(x) ..............................

Maintenant, on considére les signaux u(t) = ug cos(wt) et i(t) = ig cos(wt + ).

c) Calculer Py, pour ces signaux.

On pourra utiliser la formule cos(a) cos(b) = = (cos(a +b) + cos(a — b)) ..........

[N

Enfin, on considére les signaux u(t) = ug X (14 cos(wt)) et i(t) = ig X (2 + sin(wt + 1)).

d) Calculer Ppoy POUr €CES SIGNAUK ...ttt et

B |[Entrainement 6.6 — Calcul de puissance en RSF. 00

En régime sinusoidal forcé, un générateur idéal de tension u alimente un dipdle inconnu en délivrant un
courant i. Dans ce cas, la puissance moyenne peut étre calculée a 'aide de la formule :

1 1
Proy = 3 Re(u - i) = 3 Re(u* - 1),

ou z* est le complexe conjugué de z.

Exprimer la puissance moyenne regue par le dipdle quand :
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Régime permanent

c'%k [Entrainement 6.7| — Puissance consommeée. o

Soit un générateur réel de f.é.m. E constante et de résis-
tance interne r.

On branche a ses bornes un conducteur ohmique de résis- ET R
tance variable R.

a) Déterminer l'intensité du courant qui circule dans le circuit ...............

b) Déterminer la puissance P dissipée dans le conducteur ohmique en fonction de E, r et R.

c.;)k |[Entrainement 6.8 — Optimisation de puissance échangée. o

Dans un certain circuit, la puissance dissipée dans un conducteur ohmique de résistance R vaut :

2 R

PR

ou r est un parametre.

On souhaite déterminer quelle valeur de R permet d’optimiser la puissance recue par la résistance R, étant
donné les caractéristiques de la source.

a) Calculer G

dR
b) Trouver la valeur Ryax pour laquelle P(R) est maximale :
(@) Ruax = R (©) Runax = R+7 © Ry = 7 (F) Ruax = R x e/ R
R R2 T + B
@Rmax:r @ max—T+R
%L [Entrainement 6.9] — Un peu de calcul algébrique. o

On consideére une résistance R définie par :

R = Ry x e"/To.

Déterminer, en fonction de Ry, la valeur du parametre r pour que R = 2Ry.
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[Entrainement 6.10] — Charge d’une batterie. 000

Une batterie de voiture est déchargée. Pour recharger cette batterie, de f.é.m. e = 12V et de résistance
interne r = 0,22, on la branche sur un chargeur de f.é.m. £ = 13V et de résistance interne R = 0,3 ).

On a alors le circuit suivant :

Chargeur Batterie

On lit sur la batterie qu’elle a une capacité de 50 A - h (ampéres-heures).

a) Exprimer le courant I circulant dans la batterie en fonction de E, e, R et r.

d) Exprimer la puissance dissipée par effet Joule dans le circuit en fonction de E, e, R et r.

Le rendement 1 de la charge est égal au rapport de la puissance regue par la batterie par la puissance
fournie par la source E.

f) Déterminer I'expression du rendement 7 en fonction de E et e.

g) Calculer la valeur numérique du rendement 7 ...,

46 Fiche n° 6. Energie et puissance électriques



|[Entrainement 6.11 — Energie d’un condensateur en régime permanent. 00

1
En régime permanent, I’énergie stockée dans un condensateur de capacité C est £ = §Cu2, ou u est la

tension a ses bornes.

R 20
I | R
— | | —
3C | | —
ET() e D 2R ——2C 6VT(> —3C 12 VT() —
R
Circuit n°1 Circuit n° 2
a) On considére que le régime permanent est établi dans le circuit n° 1.
Dans quel condensateur 1’énergie stockée est-elle la plus importante ?
® c ® 2 ® 30
b) Meéme question pour le circuit n° 2.
® c ® 2 ® 30
|[Entrainement 6.12] — Energie d’une bobine en régime permanent. 000

1
En régime permanent, 1’énergie stockée dans une bobine d’inductance L est £ = §Li2 ol ¢ est le courant

qui la traverse.

L R
H000° [
2L L
L L R 3L
3A
1D R
§3L
2L 2R
4A
Circuit n° 3 Circuit n° 4

a) On considére que le régime permanent est établi dans le circuit n° 3.

Dans quelle bobine 1’énergie stockée est-elle la plus importante ?
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Bilans d’énergie pour des circuits soumis a des échelons de tension

Prérequis
L’énergie £ fournie a un dipdle entre les temps o et t; est égale a

t1
o= / P(t) dt,
t

0

ot P(t) est la puissance instantanée fournie a ce dipole.

[Entrainement 6.13] — Charge d’un condensateur.

Soit le circuit ci-contre dans lequel le condensateur C' est
initialement déchargé.

A t =0, on ferme linterrupteur K.

Dans ces conditions, la tension aux bornes du condensateur
vaut :

uc(t) = B(1 — exp(—t/7)), et uc(t)

avec 7 = RC'. L’intensité dans le circuit vaut :

i(t) = 2 exp(—t/T).

Exprimer, en fonction des grandeurs introduites :

a)

la puissance instantanée Pg(t) délivrée par la source de f.é.m. E ..........

la puissance instantanée P;(t) dissipée par effet Joule dans le circuit ......

la puissance instantanée Pc(t) regue par le condensateur .................

I’énergie totale &g fournie par la source de tension que I'on calculera grace a la formule :

o0

Eg = PE(t) dt.

0

I’énergie totale £; dissipée par effet Joule que 'on calculera grace a la formule :

o0

&y = P(t)de.

0

I’énergie totale £ fournie au condensateur que ’'on calculera grace a la formule :

oo

Ec = Pc (t) dt.

0
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[Entrainement 6.14] — Aspects énergétiques du circuit RLC.

On consideére le montage ci-dessous dans lequel le condensateur est initialement

A t =0, on ferme l'interrupteur K.
At=0", onauc(t=0")=0ecti(t=0")=0.

En régime permanent, on a uc(t - +o00) = E et i(t — +00) = 0.

déchargé.

a) Exprimer la puissance instantanée Pg(t) fournie par la source en fonction de E et uc(t).

d
On pourra s’aider de la relation i(t) = cie.

dt

¢) Exprimer la puissance instantanée P (t) regue par la bobine en fonction de

i(t) et L.

En intégrant les expressions des puissances instantanées aux bornes de chaque dipdle, exprimer en fonction

des grandeurs introduites :

d) Dénergie totale fournie par la source de tension ...........................

e) Dénergie totale fournie au condensateur ............. .. ...

f) 1énergie totale fournie & la bobine ......... ... ... . o

g) En exploitant les résultats précédents, exprimer 1'énergie totale dissipée par

effet Joule.
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Bilan d’énergie en régime sinusoidal forcé

[Entrainement 6.15| — Adaptation d’impédance.

On considere un dip6le d'impédance Z,, branché aux bornes

dun générateur de f.é.m. eg(t) et d’impédance interne Zg. _ L1
On notera : Z, = Ry +jX, et Zg = Re +jXe. t Za
Le dip6le Z,, est traversé par le courant d’intensité i(t). @T()

On écrit, en notation complexe :

eq = EV2el“t et i = IV2e@WtH9),

La puissance moyenne regue par 'impédance Z, vaut :

Pm = %Re(@xg’xg*).

a) Exprimer la puissance P, en fonction de T et Ry .o.vvvviinnniini ...

b) Gréace a une loi des mailles, exprimer I en fonction de E, Rg, Ry, X¢ et X,.

Des résultats précédents, on déduit I’expression de P, en fonction de E :

R, E2
(Re + Ru)* + (Xg + Xu)*

On cherche a déterminer les conditions sur R, et X, pour que P,, soit maximale. On dit alors qu’il y a

adaptation d’impédance.

¢) Calculer la dérivée de P, par rapport & Xy «voveneniei e

d) Calculer la dérivée de Py, par rapport & Ry . o.vvveiniiiiiiii i

e) Choisir parmi les quatre propositions suivantes quelle est la condition pour que P, soit maximale :

(a) X, =—Xg et R, = —Rg
(b) X, = X¢ et R, = —Rg
(¢) Xy =—-Xg et R, = Rg
(d) X, = X¢ et R, = Rg
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Réponses mélangées
1 ) E
0 OB 3T5W 165k % cos(¢)
\/(RG + R, + (Xo + Xu)
E—e¢ uglg duc 1 9 eR+ Er E
E — EC—— 13k —CFE
R+r 2 & P13 km ]%C Ryr 4R
1 46Wh B2 “ —c
W0 (© ® 6W Ve 3008(12)\7\7 T
CFE? 27
= exp(—téT) @ (exp(—t/T) — exp(—2t/7')) 1n(22R0 o
@ E exp(—2t/T) Uplo (2 + % sin(ip)) % % R, I?
1
—R,E? 2(Xe + Xu) 3 @ §C’E2 92 % @ Hyundai Ioniq 6
(R + R)? + (Xo + X.02)
Jo R @ d(3Cug(t)) B2 (RZ - RY) + (Xg + Xu)? CE?
3 2
(r+R) a ((RG + Ru)? + (X + Xu)Q)
. . d(%LiQ(t)) E—e L 2
Hyundai Toniq 6 —a @ @ e Rir §CE 0 CFE

» |Réponses et corrigés page 228|
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ELCO5 Fiche d'entrainement n°7 Electricité
Amplificateurs linéaires intégrés
Prérequis
Loi des nceuds. Loi des mailles. Loi d’Ohm. Impédance complexe. Diviseur
de tension.
Les fondamentaux
[Entrainement 7.1 — Régime linéaire 7 0
Parmi les circuits suivants, lesquels peuvent fonctionner en régime linéaire 7
F F
- +
| | —
Vs
Ve Vg Ve
> oo > oo
A
+ —
Ve v Ve v
Rg RQ
Ry Ry
[Entrainement 7.2 — Modeéle de ’ALI idéal de gain infini. 0

Pour chaque affirmation, répondre par vrai ou faux.

a) L’impédance d’entrée de ’ALI idéal est infinie ...............

) > oo . . <1z

G ; b) Les courants d’entrée i* et i~ de I’ALI idéal sont nuls .......
S

> + ¢) Le courant de sortie i5 de 'ALI est toujours nul .............

i

d) Les potentiels VT et V'~ des entrées sont nuls en régime linéaire.
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[Entrainement 7.3

On considere le montage suivant : Ry

> 00

r A
) 77J; - )

a) L’ALI peut-il fonctionner en régime linéaire? ..................coiiiia..

b) Dans le cas du régime linéaire, quelle est la relation entre les potentiels V' et

V'~ des entrées inverseuse

et non inverseuse 7

¢) Donner, en régime linéaire, le potentiel V4 du point A ....................

[Entrainement 7.4 — Détermination de potentiels électriques.

Tous les ALI de cet exercice sont supposés fonctionner en régime linéaire.

Donner, pour chaque montage, le potentiel V4 du point A en fonction de v, ou de vs. Le potentiel peut

également étre nul.

R R

anine:
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> oo

Ve A o
Ry
Ry

C1
| | ‘
| |
_|> o0
A !
o— 1 [ +
R2 Rl Vs
Ve —0,
. R
[Entrainement 7.5 — Vrai ou faux ? 00

On consideére le montage ci-dessous dans lequel ’ALI est idéal et fonctionne en régime linéaire.

Uy U,
- «—
b ) :l )
R, Ry 2
Us R3 R _b>oo
i Lo .
Ve 1'3 n
14 it
v,
Uy Ry s

.t

Pour chaque affirmation, répondre par vrai ou faux.

a) Toutes les résistances sont orientées en convention récepteur ........................

b) La loi des noeuds asSUre 11 = 49 .. .ovvttn ittt et

¢) La 10l des NnosudS aSSUTE 3 = G4 « vt ntnenenete ettt

d) Les tensions Uy et Us SONt 6GALES ... .tuit ittt

e) Les tensions Us et Uy 80Nt 88AlES ... .o.iuiintui it
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Circuits usuels

[Entrainement 7.6 — Autour de ’amplificateur inverseur. 00

On consideére le montage amplificateur inverseur ci-dessous.

I’ALT est idéal et on suppose qu’il fonctionne en régime linéaire.

Ry

(P

a) Quelle est la relation entre 41 €t io? ..o

b) Exprimer Uy en fonction de e «...o.vvvniniiiii i

¢) Exprimer Us en fonction de vg «.v.vvenenein

d) Exprimer l'intensité i en fonction de ve ...........coiiiiiiiiiii

e) Exprimer l'intensité i5 en fonction de vs. ...l

v
f) Déterminer 'amplification G = — de ce montage .........................
Ve

g) Parmi les couples de résistances suivants, lequel permet d’obtenir amplification la plus importante ?

@ le couple (Ry = 3,3k}, Ry = 8,2k0)
@ le couple (R; = 1k, Ry = 3,3k0)
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[Entrainement 7.7 — Amplificateur inverseur. 0

Un montage amplificateur inverseur produit un gain :

— R2
G= R

avec Ry = 1,2k et Ry = 20012.

Les courbes ci-dessous représentent des allures temporelles de v, (en pointillés) et v, (en trait plein) en
fonction du temps.

Le calibre est de 1V /division pour v, et 0,5V /division pour vs.

Quelles sont les courbes pouvant correspondre au montage amplificateur inverseur étudié ?
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%L [Entrainement 7.8 — Un petit intermeéde. L)

On consideére une résistance R et une capacité C.

Quelle est la dimension de la grandeur RC'?

[Entrainement 7.9 — Montage intégrateur inverseur (I). 000

On consideére le montage ci-dessous.
I’ALI est idéal.

a) En régime stationnaire, ’ALI peut-il fonctionner en régime linéaire ?

Dans toutes les questions suivantes, on suppose que I’ALI fonctionne en régime linéaire et on se place en
régime sinusoidal.

b) Exprimer la tension Ug en fonction de v, et/ou vg

¢) Exprimer la tension Ue en fonction de v, et/ou vg

d) Donner la relation entre ig et ic

e) Quelle est la relation entre les grandeurs complexes i¢ et Ug ?

f) Donner la fonction de transfert H du montage

g) Donner la relation entre v (t) et vs(t)
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[Entrainement 7.10] — Montage intégrateur inverseur en régime sinusoidal. 00

Un montage intégrateur inverseur a pour fonction de transfert :

1

H=-
= jRCw’

avec R =11kQ et C =4,7nF.

Les courbes suivantes représentent des allures temporelles de v, (en pointillés) et vs (en trait plein) en
fonction du temps. Les réglages de ’oscilloscope sont les suivants :

e calibre vertical : 1V /division pour les deux voies,
e calibre horizontal : 250 ps/division.

A

Vg S

a) Quel est le gain du montage intégrateur inverseur? ........... ... . ...,

b) Quel est le déphasage de la tension de sortie vs par rapport & ve? .............

¢) Pour v, = F cos(wt), donner expression de Vg «.....oveiiiiiiiiiiiii ..

d) Quelle est la fréquence de fonctionnement ? ......... ... ... i,

e) Quelle est la valeur numérique du gain a cette fréquence? .....................

f)  Quelle courbe est compatible avec les valeurs numériques données ci-dessus ?
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[Entrainement 7.11] — Montage intégrateur inverseur (II).

Un montage intégrateur inverseur a pour fonction de transfert :

H=-

avec R =15k et C = 25nF.

1

jRCw’

Les courbes suivantes représentent des allures temporelles de v, (en pointillés) et vs (en trait plein) en

fonction du temps.
Les réglages de l'oscilloscope sont les suivants :

e calibre vertical : 1V /division pour les deux voies,
e calibre horizontal : 250 ps/division.

A

Vs

a) Donner 'équation différentielle reliant vs et v,

Us

b) Pour une tension constante v, = F, donner l'expression temporelle de vs.

On ne se préoccupera pas de déterminer les éventuelles constantes d’intégration.

¢) Quelle est la courbe compatible avec les valeurs numériques ci-dessus ?
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B |Entrainement 7.12] — Un petit interméde. 00

On considére deux montages dont les gains valent respectivement :

Ry RiRy
Gi=1+— et Gy=——"—,
' Ry ? R12 + R22

ou Ry et Ry sont des résistances.

R 1
a) On suppose que L Exprimer — en fonctionde o .....................
RQ GQ

R
b) On suppose encore que R—l = «. Exprimer G5 en fonction de o ..............
2

N 1
c) A quelle condition a-t-on G; = ren P

2

1
d) Pour quelle valeur de a > 0 la quantité « + — est-elle minimale ?
o

On pourra introduire une fonction et la dériver ........... ... ... ..

[Entrainement 7.13] — Montage non inverseur. 00

On consideére le montage ci-dessous.

L’ALI est idéal et on suppose qu’il fonctionne en régime linéaire.

a) Quelle est la relation entre les intensités i1 et 497 ... ..ol

b) Exprimer la tension U; en fonction de vg, Ry et Ro «.ovvvvviviiiiiiiii...

c) Exprimer Uy en fonction de ve .....o.ouvuiininn i

d) Exprimer le gain G du montage non inverseur .....................cioiiin...

e) Donner la valeur de G pour Ry =2,2kQ et Ro =33kQ ...t
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[Entrainement 7.14] — Montage amplificateur non inverseur.

Un montage amplificateur non inverseur posséde un gain :

avec R = 1,5k et Ry = 7,5k,

Les courbes suivantes représentent des allures temporelles de v, (en pointillés) et vs (en trait plein) en

fonction du temps.

Le calibre utilisé pour v, est de 1V /division alors que le calibre pour v, est de 2V /division.

--=- Ve Vs --=- Ve Vs
| 4 i
N 1\ AY
1N LAY
1 AR
1 \ 1 \
1 \
\ ! \
7\ ran Vi \ ,’ \‘ 1 \
RN | SN 1 ' ! \ ! \
U \ I 7 Al 1 \ J o\ 1 \
! \ I \ i} N t t
‘ A 1 1 1 1 1 Y 1 1 ‘ 1 1 1 1 1 1 ‘ 1
\ I \
’ \ 7 \ ,’ \ / f\ " L 1
i T \ \ [ B ¥
\ ’ 7 1 \ ! \
.’ N \ \ 1 \
- - N4 ~ 1 \ 4 + ¥ ! \
1 \ 1 \
1 \
+ 1 | + - '
Vi v, ! v
N \ 4 A\W3
1 P 1 ~
- Ve ——Us - Ve ——Us

®

inverseur ?
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Impédances d’entrée

[Entrainement 7.15 — Montage suiveur.

On consideére le montage suiveur représenté ci-contre.

Le suiveur est alimenté par une source idéale de tension v,
de fréquence variable, la charge est une résistance R,.

L’ALI est idéal et fonctionne en régime linéaire.

a) Quelle est la relation entre v, et vs? ... ... ... ...,

b) Quelle est 'impédance d’entrée d’'un ALI idéal? .......

¢) Exprimer l'intensité i. traversant la source de tension .

d) Quelle est 'impédance d’entrée du montage suiveur ? ..

[Entrainement 7.16] — Circuits inverseurs.

On consideére le montage représenté ci-contre.

Les impédances Z; et Z sont quelconques et la tension
d’entrée v, est sinusoidale, de pulsation w.

L’ALI est idéal et fonctionne en régime linéaire.

a) Exprimer Uintensité i; en fonction de v, et de Z; .....

b) Donner 'impédance d’entrée du circuit ................

La tension d’entrée est constante, égale a 10V.

¢) Donner I'impédance d’entrée si Z; est un condensateur

d) Donner 'impédance d’entrée si Z; est une bobine .....

> oo

La tension d’entrée est maintenant sinusoidale, de pulsation w = 6,0 - 103rad - s~ 1.

e) Pour quel dipdle Z; 'impédance d’entrée a-t-elle le plus grand module :

un condensateur C' = 10nF ou une résistance R = 15kQ 7 .

62
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Réponses mélangées

Faux ov 0 Faux C =10nF o+ é 11 = 19 ov
Us = —w, 0A Ve @ RC’CZ;S = —v,(t) Vrai G= _%
i = ;%_61 ve=v. Vrai Ry=Ry, in=ic Vi=V"  ic=-jCwlc
Vg Vrai a=1 Oui @ ﬁ %) Z1 3,1
RCd(;;s = —0, Ve Ui = v, Vs _jR1C’w @ iy = —;—52
C’est un temps Vg 1 @ %vs Non Ve @ %)
Vrai i1 =19 VT ov g 2—? 00 T sin(wt)
1kHz @ @ — R—Ect + K Faux 16 Faux Faux 1+ g—j

» |Réponses et corrigés page 237|
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OPTO1 Fiche d’entrainement n° 8 Optique

Sources lumineuses et lois de Snell-Descartes

Prérequis

Lois de Snell-Descartes. Notions de base sur les ondes lumineuses et leur
propagation dans un milieu. Notions de base de géométrie concernant les
angles.

Constantes utiles
— célérité de la lumitre dans le vide : ¢ = 3,00 x 10°m - s~ *

— constante de Planck : h = 6,63 % 1073475

Lois de Snell-Descartes

LB |[Entrainement 8.1/ — Conversions d’angles (I). L)

S0it araq la mesure d’un angle en radians, ageg sa mesure en degrés et aumin Sa mesure en minutes d’angle.

a) Exprimer oyaq en fonction de tdeg - vvvvvveiii i

b) Exprimer ain €n fonction de Gdeg -« - vvnevniiiii e

B |[Entrainement 8.2 — Conversions d’angles (II). 00

a) « = 35,656° Exprimer « en degrés et en minutes d’angle ............... ... .. ol

b) [ =98°15". Exprimer B en radians ...........c.ueiinitiieti e

¢) v =1,053rad. Exprimer v en degrés et en minutes d’angle ................. .. .. ...

LB |[Entrainement 8.3 — Un rayon incident sur un dioptre. o

On considére un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs nq et no.

Ce rayon fait un angle ¢ avec la normale au dioptre.

Tous les angles figurant sur le schéma sont non orientés.
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[Entrainement 8.4 — Un autre rayon incident sur un dioptre. 00

On considére un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs n; et no. Ce rayon fait un angle i avec la
normale au dioptre alors que le rayon réfracté fait un angle r.

On donne n; = 1,00 et no = 1,45.

a) Pour i =24,0° que vaut 7 en degrés? ........... i,

b) Pour i = 6,74 x 10~ ! rad, que vaut r en degrés? ....................

¢) Pour r =15,0°, que vaut i en degrés? ............ ..,

[Entrainement 8.5 — Déviation introduite par un dioptre. (]

On considére un rayon incident arrivant sur un dioptre séparant deux
milieux d’indices respectifs ny et ns.

Les angles définis sur le schéma ci-contre sont tous orientés.

On définit D, la déviation entre le rayon incident et le rayon réfléchi,
et Dy la déviation entre le rayon incident et le rayon réfracté.

a) Exprimer D; en fonctionded et r ...

b) Déterminer Dy ....ooinin i

[Entrainement 8.6| — Un peu de géométrie dans un prisme. 00

On considére un prisme d’angle au sommet A, repré-
senté ci-contre suivant une de ses faces triangulaires.

Un rayon incident en I sur une face du prisme émerge
en J.

On définit les angles aq, ag, r et 1’ sur le schéma.

Dans cet entrainement, les angles ne sont pas orientés.

On rappelle que la somme des angles dans un quadrilatére est égale d 2.

a) Exprimer 'angle A en fonction de oy €t g «vvvvviiiiiiii i

b) Exprimer I'angle A en fonction de r et de v/ ... ... ... .. ...l
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Autour des réflexions totales

[Entrainement 8.7| 00

On consideére un dioptre séparant deux milieux d’indices respectifs n; = 1,5 et ny = 1,3. Un rayon lumineux
arrive sur ce dioptre en formant un angle ¢ par rapport a sa normale.

n
On rappelle qu’il y a réflexion totale si L sin(z) > 1.
na

a) Pour i = 44° y a-t-il réflexion totale? ... ... .. ..

b) Donner, en degrés, 'angle i, tel qu’il y a réflexion totale si i >idp ................

[Entrainement 8.8| 000

On considére un rayon lumineux incident sur le dioptre nj/ns, faisant un
angle i avec la normale a ce dioptre, et le rayon réfracté, faisant un angle
r avec cette normale.

n
On donne n; = 1,37 et on rappelle qu’il y a réflexion totale si L sin(i) > 1.
no

a) Pour i =20,0° et 7 = 22,0° que vaub no 7 ...

b) Pour i = 60,0°, quelle est la valeur maximale de ny donnant lieu & une réflexion totale? ...

¢) On suppose que i = 40,0°. Peut-on observer un phénomeéne de réflexion totale? ...........

[Entrainement 8.9 — Condition de propagation dans une fibre optique. 000
Un rayon lumineux arrive sur un dioptre séparant Iair d’un
milieu d’indice n; au point A (voir schéma ci-contre). On
a donc :
sin(6;) = nq sin(6,). (1) n2 I
n=1
n |
Le rayon se propagera dans la fibre a condition qu’il y ait A ! A 81
) . . sl 2N T9s . , B - .o .
réflexion totale au point I situé a l'intersection du rayon 0;
lumineux et du dioptre ny/ns (avec ny > na).
On donne la relation correspondante :
nq sin(z
n sin(i) -1 (2)
n2

a) A laide de (1), exprimer cos(6,) en fonction de n; et de sin(6;)

b) A quelle condition portant sur cos(f,) équivaut e

¢) En déduire a quelle condition sur sin(6;) équivaut (2) ..............
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Sources lumineuses

|Entrainement 8.10) — Propagation de la lumieére.

Un laser vert émet une radiation lumineuse de longueur d’onde dans le vide Ag = 532 nm. Calculer :

a) la fréquence de I'onde

b) 1énergie d’un photon

|Entrainement 8.11

Une radiation lumineuse de longueur d’onde g passe du vide vers un milieu transparent d’indice n.

Quelles quantités sont inchangées ?
@ La longueur d’onde
@ L’énergie d’un photon

|[Entrainement 8.12 — Propagation dans un milieu.

@ La vitesse de propagation
@ La fréquence de I'onde

Un laser de longueur d’onde dans le vide Ay = 532nm se propage dans de 'eau, assimilée & un milieu

transparent d’indice optique n = 1,33.

Donner la valeur numérique dans 'eau de :

a) la vitesse de la lumiere

b) la longueur d’onde

Réponses mélangées

z- arcsin(Z—; sin(i)) 1,715tad @ 60°20  22,0°
Non 1,18 1- sz# arcsin(ﬂ sin(i))
nj ng
% X Qdeg sin(;) < \/n? —n3 60 X Qldeg (a1 +ag)—7
Non  cos(f,) > Z—f 3539 (D)et(d)  564THz
16,3° r—i 1,25 25.,5° 3,74 x 10719 J 4+

2,26 x 103m -s7!

T
——1
2

T—2
60°

400 nm

» |Réponses et corrigés page 242|
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OPTO02 Fiche d’entrainement n°9 Optique

Lentilles

Prérequis
Propriétés des lentilles minces dans les conditions de Gauss. Vergence.
Relations de conjugaison des lentilles minces.

Grandeurs algébriques

[Entrainement 9.1 — Diameétre apparent. 00

On considere le schéma suivant, montrant I’angle «, appelé

diametre apparent, sous lequel est vu un objet AB depuis o
un point O. 0 / A

a) Exprimer le diameétre apparent «, en radians, en fonction de OA et AB ................

b) Exprimer le diamétre apparent «, en degrés, en fonction de OA et AB .................

Un observateur situé a la surface de la Terre observe des astres, caractérisés par les données suivantes :

Soleil Lune
Diameétre 1,4-10%km 3,5 -10%km
Distance a la Terre | 150 600 - 103km | 384 400 km

Pour simplifier les calculs, on pourra utiliser que, quand « est un angle petit et exprimé en radians, on
dispose de Uapprozimation des petits angles : «a =~ tan(a).

¢) Calculer le diametre apparent de la Lune ay, en degrés ...

d) Calculer le diametre apparent du Soleil ag en degrés .........c..ooviiiiiiiiiiiiii...

e) Que vérifient les valeurs numériques ag et oy, ?

@Oxs>OLL @OLSQO[L @as<aL

f)  Quel phénomene astronomique la comparaison de aj, et ag permet-elle d’expliquer ?

@ Les éclipses
@ Les saisons

@ Les marées
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B |Entrainement 9.2 — Configuration de Thalés et grandissement. 0o
On consideére la situation représentée sur le schéma ci-dessous.
B
™~ O A’ N
A ~ ’
T~
~
~r
n’
On note 7 la valeur algébrique de la longueur x et on définit le grandissement  par la relation :
A'B’
vy
a) Donner la relation reliant OA, OA’, ABet A'B’ ..........................
b) Déterminer la valeur numérique de y ...
B |[Entrainement 9.3] — Schéma optique d’une lunette astronomique afocale. o
7 B
Beo Fl 0o
S o )
a— 1 Aq 2 o
Ay T L Al
T T
oy H2

Le schéma ci-dessus modélise une lunette astronomique afocale, ot un carreau correspond a une longueur

réelle de 2,5 cm.

Calculer les distances algébriques suivantes :

a) OlFll ..............................................................

D) 00 2 e

C) 0201 ..............................................................

Q) ALE
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|[Entrainement 9.4 — Grossissement d’une lunette astronomique afocale. 00

On considére la lunette astronomique afocale schématisée dans I’entrainement précédent.

Elle est constituée d’un objectif (lentille convergente L;) et d’un oculaire (lentille convergente Lo) alignés
sur le méme axe optique.

I ///rB\N
B F3 7
— Fs R
ya
= |0 Ay 02| /| 2 o
———— -
1 )
Ao \\\\\\{ - Al
\\
B, ]
Er by

On introduit les grandeurs suivantes :

e la distance focale image de 1'objectif, notée f;

e la distance focale image de 1'oculaire, notée f5

e 'objet lointain observé par la lunette, noté A, B

e I'image intermédiaire de I'objet par I’objectif, notée A;B;

e l'image & linfini de I'image intermédiaire par 1'oculaire, notée AL BL_

e le diametre apparent a de ’objet
e le diameétre apparent o’ de I'image

On définit le grossissement de la lunette, noté G, comme le rapport du diametre apparent de 1’objet observé
a la lunette sur le diametre apparent réel de ’objet.
Autrement dit, on pose :

G=—.
o

Dans cet entrainement, les angles ne seront pas orientés et on travaillera avec des longueurs plutot que des
valeurs algébriques.

a) Exprimer a en fonction de A1B; et d’une distance focale.
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Modeéle de la lentille mince

[Entrainement 9.5 — Conditions de Gauss. )

Parmi les situations suivantes concernant les rayons lumineux issus d’un objet et traversant une lentille
mince, indiquer celle qui ne permet pas de se placer dans les conditions de Gauss :

@ peu inclinés par rapport a @ passant par les bords de la @ passant pres du centre
I’axe optique lentille optique
[Entrainement 9.6 — Déviation de rayons lumineux. L)

On rappelle les propriétés suivantes :

e Un rayon passant par le centre optique de la lentille n’est pas dévié.
e Un rayon incident dont la direction passe par le foyer objet émerge paralléle a I’axe optique principal.
e Un rayon paralléle a I’axe optique principal émerge avec une direction passant par le foyer image.

Pour chacun des schémas suivants, préciser s’ils sont corrects ou incorrects.

a) c)
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|[Entrainement 9.7| — Construction de rayons lumineux. o

On considere le schéma suivant montrant un objet AB et son image A’B’ par une lentille convergente.

A
o) A’

A
~
-F/

On donne I’échelle du schéma : 8 carreaux sur le schéma correspondent & 10 cm en réalité.

a) Déterminer graphiquement la distance focale de la lentille ................

b) Calculer la vergence de la lentille ......... ... .. .. il

|[Entrainement 9.8 — Batailles de convergence. o

Quelle est la lentille la plus convergente ?

@ une lentille de vergence +8,0 § @ une lentille de focale objet —10,0 cm
@ une lentille de focale image +8,0 cm @ une lentille de focale image —8,0 cm
|[Entrainement 9.9 — Focale d’une lentille biconvexe. 00

La distance focale d’une lentille biconvexe symétrique de
rayon de courbure R, taillée dans un matériau d’indice n
et utilisée dans l’air est donnée par la relation suivante : R

Cy 0 Cy
I -
2(n — nair)’ R

=

ol N,y est 'indice optique de Dair.

On souhaite fabriquer une lentille biconvexe de vergence 6,09 afin de corriger une hypermétropie forte a
partir d’un plastique organique d’indice n = 1,67. On donne n,;, = 1,00.

a) Calculer le rayon de courbure & réaliser ........... ... . i i

b) Pour quelle valeur de l'indice n la lentille ne dévie pas les rayons lumineux ?
3 R
@nznair nzﬁnair @n: :
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Conjugaison par une lentille mince

[Entrainement 9.10| — Relation de conjugaison au centre optique. 00

Un objet lumineux est placé au point A, & 15,0 cm devant une lentille mince convergente de centre optique
O et de distance focale f' = 4,0 cm.

On rappelle la relation de conjugaison aux sommets de Descartes qui permet de faire le lien entre la position

OA de l'objet et la position OA’ de I'image :

1 1 1
OA” OA OF

a) Exprimer OA’ en fonction de OA et f/ ............cccooiiiiiiii...

b) Exprimer OA en fonction de OA" et f/ ...,

c) Exprimer f’ en fonction de OA et OA" ............. ...,

d) L’image est-elle située avant ou apres le centre optique O7 .........

[Entrainement 9.11] — Relation de conjugaison aux foyers. L)

Dans un dispositif optique convergent de distance focale f' = 12,0 cm, on souhaite qu’une image réelle se
trouve exactement a 5,0 mm apres le foyer image. On cherche la position ou I'on doit placer I'objet, dans
un premier temps par rapport au foyer objet F, puis par rapport au centre optique O.

On rappelle la relation de conjugaison aux foyers de Newton :

F'A" x FA = — 2.
a) Exprimer FA en fonction de f et F'A" .............................
b) Exprimer OA en fonction de FA et f/ .......... ...,
c) Cet objet est-il réel ou virtuel 7 ....... .. .. ..o
[Entrainement 9.12| — Grandissement. o
Un systeme optique donne d’un objet une image dont le grandissement est le suivant : v = —2,0.
a) Par rapport a 'objet, cette image est : b) Par rapport a 'objet, cette image est :

@ rétrécie @ agrandie @ droite @ renversée
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[Entrainement 9.13] — Projecteur de cinéma. 000

Un projecteur de cinéma contient une lentille convergente de distance focale f’ = 50,0 mm.

L’écran se situe a 15,0m de la lentille et on dispose d’une pellicule dont les vignettes sont de dimensions
36,0 mm x 24,0 mm.

a) A quelle distance algébrique de la lentille doit-on placer la pellicule? ............

b) Quelles sont les dimensions de I'image d’une vignette sur 'écran? ...............

[Entrainement 9.14| — Objets et images a 1’infini. o

a) Un objet lumineux tres éloigné, comme une étoile, peut étre considéré comme étant situé a l'infini.
Ou se situe 'image d’un tel objet par une lentille ?

@ dans son plan focal image

@ dans son plan focal objet

@ a 'infini

b) Un ceil « normal » (emmétrope) n’accomode pas lorsqu’il observe une image & l'infini. Dans ce but, on
souhaite projeter a 'infini, 'image d’un objet en utilisant une lentille.

Ou doit-on placer I'objet 7
@ dans son plan focal image
@ dans son plan focal objet

(¢) a I'infini

[Entrainement 9.15 — Loupe. 000

Une loupe est une lentille convergente utilisée dans des conditions particulieres. Dans cet exercice, la lentille
utilisée a une distance focale de 10,0 cm. On place un objet AB = 2,0 cm a une distance de 6,0 cm en avant
de la loupe.

a) Calculer la position de I'image formée par la loupe .................

b) Donner la nature de 'image ...

c) Calculer la taille de I'image formée par la loupe ....................

d) Cette image est-elle droite ou renversée? ...........................
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B |[Entrainement 9.16] — Méthode de Bessel. 00

Pour mesurer la distance focale d’une lentille, on peut utiliser la méthode de Bessel.

On considere un objet donné, et on fixe la distance D entre I'objet et ’écran. On s’assure que D soit
suffissamment grande pour qu’il existe deux positions ou intercaler la lentille entre I'objet et 1’écran, pour
lesquelles I'image sur 1’écran est nette. On note d la distance entre ces deux positions.

Position 1 Position 2 Ecran
A A’
—>
yi d \
N D 4

On peut alors montrer la relation suivante :

1 1 1
7 T Dtd = —(D-
f T+ (Dzd)

a) Exprimer f’ en fonction de D et d

D
b) Exprimer f’ lorsque d = N

~| o

c) Exprimer d lorsque f' =

Réponses mélangées

OA x OA’ OA x OF’
réel virtuelle —50cm droite @ O_X—O @ O_;O_
OA — OA/ OA + OF'
—10cm incorrect 0,22m @ @ OA = —5,02cm @
7 NG
(())_A = ‘i_ﬁ +20 6 arctan(é—i) correct 10,8m x 7,2m @ FA—f
__f12 ! AB
-/~ f—} 50m B 50em  (a) Cad 0,52°  40cm
F'A’ f2 2
2 _ 2 . ! /
apres u incorrect 20 cm OA’ = —15cm M @
4D f/— OA’
1
arctan(%) X 1:_;0 correct 4 g—f Al]fl -2 0,53° 0

» [Réponses et corrigés page 245|
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MCAO01 Fiche d'entrainement n° 10 Mécanique

Cinématique

Prérequis
Produit scalaire. Equations différentielles d’ordre 1. Projections de vecteurs.

Déplacements rectilignes

%{ [Entrainement 10.1] — Distance et temps de parcours. o

Une voiture se déplace en ligne droite & 90km - h™!.

Toutes les réponses seront exprimées en « heures-minutes-secondes », par exemple « 2h 32min 12s ».

a) Combien de temps faut-il & cette voiture pour parcourir 100km? ............

b) Quel serait I’allongement du temps de trajet si elle roulait & 80km -h='? ...

B |[Entrainement 10.2] — Distance parcourue. 00

Une voiture se déplace en ligne droite. Initialement a ’arrét, elle subit une accélération constante valant
ap pendant une durée 71, puis continue a vitesse constante pendant une durée 7.

a) Quelle est la vitesse v; du véhicule aladate t =717 ...l

b) Quelle est la distance parcourue durant 717 ...l

c) Quelle est la distance totale parcourue en fonction de ag, 71 et 727 ... ......

%L [Entrainement 10.3] — Longueur d’une piste de décollage. 000

Pour décoller, un avion doit atteindre la vitesse v4 = 180km - h™! en bout de piste.
Quelle est la longueur minimale L de la piste de décollage si I’avion accélére uniformément a la valeur
a=25m-s 27

(a) 300m (b) 450m (c) 500m (d) 650m

LB |[Entrainement 10.4] — Distance de freinage. L)

Une voiture roule & 110km - h™! en ligne droite. En supposant que les freins imposent une décélération
constante de norme a = 10m - s~ 2, déterminer la distance d’arrét de la voiture.

(a) 37.8m (b) 46,7m (c) 55,9m (d) 63,5m
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Coordonnées et projections de vecteurs

c'%k |[Entrainement 10.5| — Composantes de vecteurs.

On considére deux points A et B tels que la droite (AB) est paralléle a la
droite (Oy). Le vecteur OA fait un angle 6 avec axe (Ozx).

Exprimer les composantes des vecteurs suivants dans le repere (O, €, ey)
en fonction de a = ||OA , b= HABH et de I'angle 6.

d) OA-OB

L |Entrainement 10.6] — Les coordonnées cylindriques.

On considere le schéma ci-contre, dans lequel
e la base cartésienne (€, é,,e.)
e et la base cylindrique (e,, eg, €,)

sont définies.

Le point M est repéré par la donnée de r, 0 et z.

a) Ecrire le vecteur OM’ dans la base cartésienne
b) Ecrire le vecteur OM’ dans la base cylindrique
¢) Ecrire le vecteur OM dans la base cartésienne

d) Ecrire le vecteur OM dans la base cylindrique
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LB |[Entrainement 10.7| — Les coordonnées sphériques. 00

— —> —
€Cr,€Cqy, €

On considere le schéma ci-dessous, dans lequel la base cartésienne (e, ey, €2) et la base sphérique (e, €3, €,)
sont définies.

Le point M est repéré par la donnée de r, 0 et .

a) Ecrire la norme de OM’ en fonction de r et 6 .............................

R 1
- . ! s .
b) Ecrire le vecteur OM’ dans la base cartésienne ............................

- —_>
c) Ecrire le vecteur OM dans la base cartésienne ..................c.cooou...

d) Ecrire le vecteur OM dans la base sphérique ...,

e) Hcrire le vecteur €, dans la base sphérique ...............cooviiiiiii....

%L [Entrainement 10.8] — Jouons au tennis. 00

Un éleve regarde un match de tennis. Il filme un des échanges et décide d’étudier le mouvement de la balle
pour en déduire sa vitesse et son accélération.

Pour cela, il utilise un logiciel d’exploitation de vidéo et remplit le tableau suivant :

t(ens) | 0 [0,05]0,0] 0,15 [ 0,20
z(enm) | 0 | 035070 1,05 | 1,40
y(enm) | 1,5 | 2,09 | 2,66 | 3,21 | 3,74

a) Déterminer la vitesse vo (en km - h™') de la balle & I'instant initial ........

b) Déterminer 'accélération (en m -s~2) de la balle & I'instant initial ........
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Dérivée de vecteurs

c'%k [Entrainement 10.9] — Etude d’un mouvement hélicoidal. 00

Le point matériel M de coordonnées cartésiennes
(z,y,z) décrit une trajectoire hélicoidale, définie
par les équations :

z(t) = a x cos(wt)
y(t) = a X sin(wt)
z(t) =b x t.

a) Déterminer la vitesse ¥ (M) dans la base cartésienne ...............

b) Déterminer la norme de la vitesse .............cciiiiiiiiiiiiiia...

¢) Déterminer I'accélération @ (M) dans la base cartésienne ...........

d) Déterminer la norme de 'accélération ................c.cooiin..

[Entrainement 10.10| — Dérivation des vecteurs unitaires de la base polaire. 0

On considére un point M(¢) en mouvement dans le plan (zOy).

On note 7(t) et 6(t) les coordonnées de M(¢) dans le repére po-
laire (O, e, €g).

a) Exprimer le vecteur €, dans la base cartésienne (O, e,,€,) ..........

—>

d
b) En déduire la dérivée % dans la base cartésienne (0, é,,¢,) ......

c) Exprimer le vecteur €, dans la base polaire (O,€,,€5) . ....evv....

d) Exprimer le vecteur €, dans la base polaire (O, é,,€5) ..............

—>

der

dt

dans la base polaire ......

e) En déduire l'expression de la dérivée

Fiche n° 10. Cinématique 79



%& |[Entrainement 10.11| — Calcul d’une vitesse en coordonnées polaires. o

r(t)=axt

On considére un point M dont les coordonnées polaires sont {9 ) =b 2
=0 X .

La vitesse en coordonnées polaires s’écrit :
T(M) =re, +rbeg,

oll 1€, est appelée vitesse radiale et 0 eg vitesse orthoradiale.

a) Déterminer la dimension de @ ...

b) Déterminer la dimension de b ...

¢) Déterminer la vitesse radiale en fonction de a ................... ...

d) Déterminer la vitesse orthoradiale en fonction de a, bet ¢ .................

e) En déduire l'expression de T(M) ....oouniiiiiiiiiiiiiiiiii e

[Entrainement 10.12] — Mouvement en spirale. 00

Un point M(¢) décrit une trajectoire en forme de spirale. Dans le repére polaire (O, €., €g), les coordonnées
de M(t) sont :

r(t) =roe /7

0(t) = wt,
ou 19, T et w sont des constantes positives.

a) Déterminer la vitesse ¥(M) en coordonnées polaires.

On pourra utiliser la formule donnée dans l’entrainement précédent ...........

L’accélération en coordonnées polaires s’écrit :

a(M) = (i —rf?)ey + (270 + rb) .

b) Déterminer Paccélération @ (M) .........uiiniiiiiiiiiiii i

1

On donne les valeurs suivantes : w = 4,78 tours - min™ ", 7 = 2,0s et vy = 4,0 cm.

c) Dans ces conditions, Paccélération est-elle radiale ou orthoradiale? ........

d) Le mouvement de M est-il accéléré ou décéléré? ..........................

e) Déterminer I’équation polaire de la trajectoire de M .........
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Etude de quelques mouvements

[Entrainement 10.13| — Collision sur plan incliné. 0000

Deux billes évoluent sur un plan incliné faisant un angle a = 20° par
rapport a ’horizontale.

A ¢t =0, elles sont distantes d’une longueur L. Y
— > /
e La bille A posséde une vitesse initiale voey . VB z
Son accélération @ (A) = —ae, est constante au cours du temps. —
UA
Nous noterons va(t)e, sa vitesse a 'instant . NO‘
> T
e La bille B, quant a elle, n’a pas de vitesse initiale mais possede g7
une accélération constante @ (B) = aey.
Nous noterons vg(t)e, sa vitesse a l'instant ¢.
On donne a =3,35m-s 2 et v =3m-s .
a) Exprimer va(t) en fonction a, t €t vg «.vvvnini i
b) Exprimer vp(t) en fonction @ et ¢ ...
¢) Déterminer la position z’y de A en fonction du temps .....................
d) Déterminer la position 23 de B en fonction du temps .....................
e) Déterminer la distance L maximale (en cm) pour qu’une collision puisse avoir lieu.
[Entrainement 10.14] — Chute libre. 00

On consideére le point M de masse m et de coordonnées (z,vy, z) dans la base cartésienne (O, €,, €, €).

Il est lancé avec la vitesse vy = vgg€, + vo.€5 a partir de lorigine O du repére dans le champ de pesanteur
uniforme ¢ = —ge,.

Tout frottement étant négligé, I’accélération de M est égale & ¢ & tout instant.

a) Exprimer x(t) en fonction de v, et ¢ ..o

b) Exprimer z(¢) en fonction de v, g et t «.ooovniiiiii i

¢) En déduire I’équation cartésienne de la trajectoire z en fonction de x,

c’est-a~dire une relation entre x(t) et z(t) ...
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[Entrainement 10.15| — Pauvre gazelle. 00

Un lion chasse une gazelle. Il court & la vitesse constante de 5,0m - s~ 1. La gazelle apercoit le lion quand

il est & 10m de distance. Elle se met alors en fuite en accélérant & 2,0m - s~2. Pour rattraper la gazelle, le
lion se met aussi & accélérer au méme instant & 3,0m - s~ 2.

a) Combien de temps mettra le lion a rattraper la gazelle? .........................

b) Quelle distance aura parcourue la gazelle avant de se faire dévorer? .............

Réponses mélangées

aw(— sin(wt)e, + cos(wt)e,) + be. ) aé, + 2abt*ey at 1h 6min 40s
2 . ag X 7’12 T1 — . —
(aw)” + b2 orthoradiale — ag X T X (5 + 7'2) a(cos(f)e, + sin(f)e,)
det = 0(—sinfe, + cos bey) r=roe? T2 cos(0) e, — sin(0) eg
r(cos(6)e, + sin(f)e,) det = feg re, rsin(f)(cos(p)e, + sin(p)ey,)
1 1
8,0m - s 2 re, + ze, 2,9m 5(1252 +L roe” /7T (——e_,f + we_5>
T
— — . —> 7t/‘r 1 2\ — W\
—at + vg e, = cosfe, — sin 0eg roe = —w e — (2—) o
T T
1
cos fe, + sin fe, —iat2 + vpt Vot ae, aw? 67 cm 49 4km -h!
rsin(8) (cos()es + sin()ay) +reos(0)E &, =sinbe +cosfe;  17s 2= —25’2 22+ Zix
Ox 0z
décéléré |7 sin(0)] re, —be, —aw?(cos(wt)é, + sin(wt)e,)
b b
2abt?e; a(cos(@)e_; + (Sin(ﬂ) + a)e_;) a<2 cos(f)e, + (2 sin(6) + a)e_;)
r(cos(f)e, + sin(f)e,) + ze, —lth + vot = ag X T © 8 min 20s

» [Réponses et corrigés page 250
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MCA02 Fiche d’entrainement n°11 Mécanique

Principe fondamental de la dynamique

Prérequis
Projections. Coordonnées polaires. Equations différentielles simples.

Pour commencer

L |Entrainement 11.1] — Une relation algébrique. 0o

La vitesse v (en régime permanent) d’un mobile vérifie ’équation :

my(v —v1) + ma(v — va) = p.

Donner Pexpression de v (en fonction de my, ma, vi, va €t p) ...,

L |[Entrainement 11.2] — Un systéme de deux équations. 00

7r
Un probleme de mécanique fait intervenir une force d’intensité F' et un angle o € [07 5] En projetant la

deuxiéme loi de Newton sur deux axes, on aboutit au systeme d’équations suivant :

{TJr Fsina = mRw?

Fcosa =myg.

a) Déterminer F en fonction des données T, m, R, wet g ............o....

b) Déterminer a en fonction des données T, m, R, wet g ........ooven...

B |[Entrainement 11.3] — Quelques équations différentielles. 00

Résoudre les équations différentielles suivantes, sachant que v = 0 & t = ¢y et que les parametres ag et k
sont des constantes.

a) @—a

dt— 0 ..............................................
dv

b) &——kv ............................................
dv

c) a:—kv—i—ao .......................................
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Décomposition de vecteurs

%{ [Entrainement 11.4) — Des projections. 00

On considére les vecteurs unitaires suivants :

e e — (& — (&
71) 6] «
—> — —> —
a €z €x €x €x
«
—
C

a) T o, ) C i,
b) B o ) d .
LB |[Entrainement 11.5| — Sur un plan incliné. 00
a N
On considere la situation représentée ci-contre. €y N P
Décomposer dans la base (e,,€,) les vecteurs suivants en \/ €z -
— —
fonction de o et des normes respectives de P et N : P et N. P =
e ypP
a) B b) N o
L |[Entrainement 11.6| — Avec un pendule simple (I). 00

On considére la situation ci-dessous :

x P
Décomposer dans la base (€,,€3) les vecteurs suivants en fonction de 6 et des normes respectives de D et
T:PetT.
a) P c) P+T ...
b) T .o
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L |[Entrainement 11.7] — Avec un pendule simple (II). 00

On se place dans la méme situation que ci-dessus. Décomposer dans la base (€5, €,) :

a) P o c) ﬁ—&—? ........
b) T ool

Entre accélération et position

[Entrainement 11.8] — Du vecteur position au vecteur accélération. 0

On considére un point M en mouvement dont les coordonnées cartésiennes dans la base (e, &, €,) sont, a
1
chaque instant, z:(t) = §a0t2 + g, y(t) = —vot et z(t) = zo.

Donner 'expression des vecteurs :

a) position ...... b) vitesse ....... c) accélération ..

[Entrainement 11.9| — Du vecteur accélération au vecteur position. O

>
On considére un point M de masse m en chute libre soumis & son poids P = mge,. Ce point M a été lancé

Zo
avec une vitesse initiale vy = vge, et une position initiale Mg | vo
0
Donner 'expression des vecteurs :
a) accélération .............. ¢) position ...l

b) wvitesse ...,
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Autour des coordonnées polaires

Dans ce paragraphe, on considéere un point M repéré par la dis-
tance r et ’angle 8 en coordonnées polaires. La distance r et 'angle N

0 dépendent du temps t : le point M est mobile.

On représente la situation par le schéma ci-contre.

O
[Entrainement 11.10] — Trois calculs fondamentaux.
Décomposer dans la base (e, €,) les vecteurs :
Q) € e b) € eiiiiiiiii
En déduire (en dérivant) Pexpression dans la base (€, €,) des vecteurs :
d—> d—)
o) S )
dt dt
En déduire I'expression, dans la base (,, eg), des vecteurs :
de, deg
e) C f) =0
dt dt
[Entrainement 11.11] — Vecteur position en coordonnées polaires.

ey
Comment s’exprime le vecteur position OM en coordonnées polaires ?

(2) OM = ré; +6&; (b) OM = r&; + b3

(c) OM = ré;

[Entrainement 11.12| — Accélération en coordonnées polaires.

Déduire de ce qui précéde Iexpression, en fonction de e, et de eg :

a) du vecteur vitesse U ...,

b) du vecteur accélération @ ....................
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Etude de systémes en équilibre

[Entrainement 11.13| — Tension d’un fil. 00

Une bille d’acier de poids P = ||1_5|| = 2,0N, fixée a l'extrémité

d’un fil de longueu_{ ¢ = 50cm, est attirée par un aimant exercant T

une force F = ||F|| = 1,0N. A 1’équilibre, le fil s’incline d’un «

angle « et 'on a : N .
T+F+P=0, F

ot T est la tension exercée par le fil. P

Calculer les valeurs numériques de :

a) la tension T = ||T>|| du fil L

b) Tangle a (en radians) ...........ouiuii i

[Entrainement 11.14] — Masse suspendue. 000

Un objet qui pese 800N est suspendu en équilibre a
I’aide de deux cordes symétriques qui font un angle
0 = 20° avec la direction horizontale.

Le point A est soumis a trois forces :

?,J_J et F),

de normes respectives T', T” et F.

On note R = Ryé. + Ryé, la résultante des forces.

a) Exprimer la composante horizontale R, en fonction de 7', T" et 6 ...............

b) Exprimer la composante verticale R, en fonction de T', T, F et 0 ...............

¢) Déterminer la tension 7' en résolvant 1’équation RB=0 o

Mouvements rectilignes

[Entrainement 11.15 — Chute avec frottement. )

Un corps de masse m = 2kg tombe verticalement avec une accélération de a = 9m - s~2. Lors de sa chute,
il subit la force de pesanteur ainsi qu’une force de frottement due a I'air.

On prendra g = 9,8m - s~ 2 pour l'intensité du champ de pesanteur.

Combien vaut 'intensité de la force de frottement ? ........... ... ... ... ... ... ....
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[Entrainement 11.16| — Contact dans un ascenseur. ]

Un hgmme de masse m = 80kg est dans un ascenseur qui monte avec une accélération ¢ = 1m-s~2. On
note F' la force exercée par ’homme sur le plancher de I'ascenseur.

On prendra g = 9,8m - s~2 pour 'intensité du champ de pesanteur.

Combien vaut l'intensité de F PN

[Entrainement 11.17| — Calcul d’une action de contact. 00

Un bloc de masse m et de poids P glisse & une vitesse v(t), variable au cours du temps, sur un support
plan qui exerce une action de contact.

Celle-ci se décompose en deux actions :
e d
e une action normale a la surface f; ;
—
e une action de frottement f; opposée a la vitesse de glissement.

Le plan est incliné d’un angle «, comme figuré ci-dessous :

Déterminer (en fonction d’au moins une des données P = H]—D)H, v(t), m ou @) :

a) lintensité de 'action normale fi, ...,

b) Tlintensité du frottement fi ...... ..ot

([Entrainement 11.18| — Calcul d’une accélération. 000
Deux blocs By et By de masses respectives 2m et m R l—»
sont reliés par un fil. On passe le fil dans la gorge B, TQm) g
d’une poulie, puis on maintient le bloc By sur la table ! P
alors que 'autre est suspendu dans ’air. On libeére le ﬁ *
bloc By qui glisse alors sur la table. On note T3 et T5 J_g e_y>
les normes des tensions exercées par le fil sur les blocs, .
ay et as les normes des accélérations respectives des Py
blocs B; et Bs, et g la valeur du champ de pesanteur.

Ba(m)
Les frottements sont négligeables. F—)g

a) Exprimer a; en fonction de m et Ty ..ot

b) Exprimer accélération ay de Bs en fonction de m, get To ..o oot

Le fil étant inextensible et sans masse, on a a; = ag et 11 = Ts.

¢) En déduire 'accélération en fonction uniquement de g .............c.coiiiii. ...
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Réponses mélangées

—Psin(a)e, — P cos(a)é,

V(mRw? = T)? + (mg)?

a_ko {1 - e*k(t*t‘))] cos(a)e, + sin(a)e, ~Te, —sin(@)e, + cos()e,
1
cos(a)e, + sin(a)e, —sin(a)e, + cos(a)e, (vot + xo)€s + Yoly + igtze_;
Pe, (T" —T)cos 6 —m< 4 Psina Oeg _ 2 ge,
dt m
P cos(f)e, — Psin(6)eq voes + gte, 1,17kN 1,6 N g Ne, 0,46 rad
(P —Tcos(0))e, — T'sin(0)e, apte, — vo€y aopey (i —r6?)e; + (270 + rf)eg
T 1
ﬁ —T cos(f)e; — T'sin(0)e, §a0t2 + m0>e_x’ — vgtey + zo€s (T"+T)sinf — F
Pcosa 22N Pt vy 1 mave —sin(a)e, + cos(a)e, 864N
mi + meo
cos(f)e, + sin(f)e, ao(t — to) —be; —0sin(0)es + 0 cos(0)e,

mRw? — T
myg

arctan < ) re, + rfeg

(Pcos(0) —T)e, — Psin(0)eq

©

0 —0cos(0)e, — Osin(0)e,

» |Réponses et corrigés page 256|
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MCAO03 Fiche d'entrainement n° 12

Approche énergétique en mécanique

Mécanique

Prérequis
Systémes de coordonnées. Expression de forces (poids, force de rappel).
Travail d’une force. Théorémes généraux (dynamique et énergétiques).

Energies potentielles

[Entrainement 12.1] — La juste formule. 0
On considére un point matériel de masse m plongé dans le champ de pesanteur §. On se place dans
un repére cartésien (O, e,,¢€,,€2) tel que § = —gey, le point O étant pris comme origine de Iénergie
potentielle. Quelle est ’expression de 1’énergie potentielle de pesanteur ?
(@) mge (b) —mgy (©) mgy (@) mg=
%{ [Entrainement 12.2] — Plusieurs expressions de 1’énergie potentielle de pesanteur. 00

Déterminer la fonction énergie potentielle de pesanteur d’un point matériel de masse m associée aux
situations suivantes :

~

a) Epp(y)= .......... c) Epp(0)= ..........
b) Epp(z)= .......... d) Epp(¥)= ...
90
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[Entrainement 12.3] — La juste formule... le retour. L)

On considére un point matériel M de masse m astreint & se déplacer selon un axe (Oy) horizontal. 11 est
attaché a un ressort de raideur k et de longueur a vide £y. L’autre extrémité du ressort est fixée en O.

Quelle est expression de 1’énergie potentielle élastique du point M pour que celle-ci soit nulle lorsque
I’allongement du ressort est nul ?

@ 5 ® hy o) © H” — ) (@) — k(b0 —y)?

L |Entrainement 12.4) — Expression de ’énergie potentielle élastique. 000

Déterminer la fonction énergie potentielle élastique associée aux situations suivantes, ou tous les ressorts
sont de longueur a vide £y et de raideur k :

a) Epe(y =0)=0 b) Epe(A) =0
Y
M |
L
\B 3
v X
0]

_r
fmm e >
20y
a) Epe(y) = oo
b) Epe() = o
C) Epel) = oo
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Travail d’une force

[Entrainement 12.5| — Une force de frottement. 000
B —>

- — v —

On considere le travail Wap = / F - dl d’une force de frottement F — —hﬂ, ou v est le vecteur

U

A
vitesse du point matériel subissant la force et h est une constante.

Déterminer W pour les chemins suivants :

a) Un segment reliant A(0,0) et B(£,0) ..ot

b) Un arc de cercle d’angle av et de rayon R .........ooiiiiiiiiiiiiiiiiiiiiiinn..

¢) Un rectangle ABCD de cOtés @ €6 b . .vnvnininiii e

d) Un triangle ABC de cOtéS a,b,C . ..vvinin i

e) En comparant les résultats obtenus, peut-on dire que la force est conservative ?

@ Oui @ Non

Théoréemes énergétiques

[Entrainement 12.6| — Freinage et variation d’énergie cinétique. 00

On considére une voiture (assimilée & un point matériel de masse m) se déplagant le long d’une route
rectiligne horizontale et dont la vitesse initiale au début de la phase de freinage vaut v = vge,.

En freinant, le véhicule est soumis a une force de frottement F= —he,.
Quelle est 'expression de la distance d’arrét d de la voiture ?
2mug? mug> mug?
@ h @ h @ 2h

[Entrainement 12.7| — Pendule simple. 00

Un pendule simple est constitué d’un fil de longueur £ = 1,0 m auquel est accrochée une masse m = 100 g.

A t =0, on donne & cette masse une vitesse horizontale vy = vge,, ot vg = 2,0m - s7L.

On note 6y 'angle pour lequel la masse rebrousse chemin.

a) Exprimer cos(fp) «...c.ouiiiii

b) Calculer By . ...ooii
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[Entrainement 12.8] — Trampoline simplifié. 000

Un ressort de longueur & vide £y = 30 cm, de raideur k = 1,0 - 10> N - m ™!, sans masse, est posé sur le sol
a la verticale. On lache d’une hauteur H = 2,0m et sans vitesse initiale une masse ponctuelle m = 1,0 kg.
Apres une durée de chute libre sans frottement, la masse atteint le ressort, le comprime jusqu’a ce que
celui-ci la propulse vers le haut comme le ferait un trampoline.

En admettant que la masse quitte le ressort quand z = £y, calculer :

a) La vitesse de la masse lors du contact avec le ressort ...............

b) L’altitude minimale atteinte par la masse ..........................

¢) L’altitude maximale de la masse (en fin de remontée) ..............

[Entrainement 12.9| — Oscillateur vertical. 000

Un point M de masse m est accroché & une paroi horizontale fixe par l'intermédiaire d’un ressort de
raideur k£ et de longueur a Xide lo. Son mouvement s’effectue dans un liquide qui produit une force de
frottements fluides linéaire I' = —a ¥, ott a > 0. On néglige la poussée d’Archimeéde, on ne considére que
des mouvements verticaux dans le champ de pesanteur ¢.

;16 |7

a) On note z la position de M par rapport a O.

Déterminer, par une méthode énergétique, ’équation différentielle vérifiée par z.

b) On note a présent ¢ la position de M par rapport & sa position a I’équilibre.

Déterminer ’équation différentielle vérifiée par (.
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Mouvements conservatifs et positions d’équilibre

[Entrainement 12.10] — Profils d’énergies potentielles. 00

Les quatre profils ci-apres représentent la fonction énergie potentielle suivante :

a p
Ep(x):E_F?a

avec «, 3 des réels non nuls.

Energie potentielle n° 1 Energie potentielle n°® 3
By Ey
x
x
Energie potentielle n° 2 Energie potentielle n° 4
By Ep
x
x

Attribuer a chacune des figures ci-dessus les bons signes pour « et 3, en indiquant laquelle des réponses
suivantes est la bonne :

@a>0 et 5>0 @a<0 et >0
(b) a>0 et B<0 (d) a<0 et B<0
a) Energie potentielle n®l ............ ¢) Energie potentielle n°3 ............
b) Energie potentielle n°2 ............ d) Energie potentielle n°4 ............
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B |[Entrainement 12.11] — Autour d’une position d’équilibre. 000

On donne l'expression de potentiels E,, dans chacun desquels évolue un point matériel de masse m.

Déterminer dans chaque cas la position d’équilibre stable.

a) Pour E,(0) = mgl(1 — cos(9)) :

[Entrainement 12.12| — Etat 1ié ou état de diffusion ? )

On considére le profil suivant d’énergie potentielle (les abscisses étoilées et I'abscisse x3 serviront dans
Pentrainement suivant).

Pour chaque état suivant, étant donné les valeurs de I’énergie mécanique et de la position initiale d’un
point matériel, dire si ce dernier se trouve :

@ dans un état lié @ dans un état de diffusion

Ep(2) 4.

Fiche n°® 12. Approche énergétique en mécanique 95



|[Entrainement 12.13| — Analyse d’un profil d’énergie potentielle. o

On reprend le profil d’énergie potentielle de 'entrainement précédent.

Pour chacune des positions suivantes, déterminer si elle est stable ou instable, et si le mouvement au
voisinage de ces positions est périodique et/ou harmonique, en indiquant laquelle des réponses suivantes
est la bonne :

@ équilibre stable @ mouvement périodique
@ équilibre instable @ mouvement harmonique
Plusieurs bonnes réponses sont possibles.
a) Voisinagede z7 ................. c) Voisinage de a3 .................
b) Voisinage de x5 ................. d) Région entre xo et X3 ...........
|[Entrainement 12.14] — Vitesse a ’infini. o

On considere le profil d’énergie potentielle des deux entralnements précédents.

Un point matériel de masse m = 2,30 kg est abandonné avec 1’énergie F3 = 1,30kJ.

Calculer la vitesse du point matériel a U'infini ..........................

Réponses mélangées

kly?

® © © @ mlt-y) Olm 0 ky-l)- o
1 x * L ? .
@,@et@ O §k<m—eo> —5k(m—£o) @et@ O,65rad=37
58m-s ! @, @ et @ —(a+b+c)h 33,6m/s mgr(cos(¥) — 1) + Ey
2
@ @ —hRa @ mg(zsin(a) — H) @ 1- ;Lge —ht 2,0m

k Kt
—(2a + 2b)h b+%é+az=g+—£ 0 —mgRcos(d)  Eo+ k(z — )

N R CERC BRCRRC IR G,

» [Réponses et corrigés page 262
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MCA04 Fiche d’entrainement n°13 Mécanique

Moment cinétique

Prérequis
Coordonnées polaires. Projections. Produit vectoriel. Moment cinétique.
Moment d’inertie. Moment d’une force.

Projections préparatoires

c.;)k |[Entrainement 13.1| — Calcul de produits scalaires. 00
— —>
On considere les vecteurs suivants, ou P et T sont verticaux :
-
€0 R
N
ar e,
N
€y
0
=
exr P

—> —>
Calculer les produits scalaires suivants en fonction des normes (|| P||, ||T||, etc.) ainsi que des différents
angles apparaissant sur les schémas.

a) P& .. c) I_Q)e_y> e) N-&
b) N-g . A T-& .. fy N-&
c.;,k [Entrainement 13.2] — Projections dans une base. 00

En utilisant la formule donnant la décomposition d’'un vecteur ¥ dans une base orthonormée (ey, e3)
— — —\ — — —\ —
Uv=(v-e1)e;+ (V- e3) e,

décomposer les vecteurs de I'exercice précédent dans chaque base (e, €,) et (€/,€3).

a) P dans (2, €y) - e) R dans (2, €y) -
b) P dans (€r,€8) - f) R dans (€r,€8) -
c) T dans (€2,6y) . g) N dans (€z,€y) -
d) T dans (er,eq) . h) N dans (22,&) .
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Produit vectoriel

LB |[Entrainement 13.3] — Produits vectoriels & partir de décompositions. 0

En utilisant le schéma du premier exercice et les décompositions du deuxieme, donner ’expression des
produits vectoriels suivants. Comme d’habitude, on compleéte la base (e,,e,) par le vecteur €, suivant la
« regle de la main droite ».

a) PAR ... b) T Aé ... ¢) @& AN ..
LB |Entrainement 13.4) — Produits vectoriels & partir des coordonnées. 00

On donne les quatre vecteurs suivants de R® définis de maniére numérique :

N 1 N 6 N 1
A=1[2]|, B=|[5]|, C=[1 et =10
3 4 -1 0

Calculer les produits vectoriels et produits scalaires suivants :
a) AANB ... d) A-(BAG) oo
b) (B+A)AA ... ) ANBAC) .o
) @ (ANB) ... fy (A-O)B-—A-B)C ............
Moment cinétique
[Entrainement 13.5| — Bataille de moments cinétiques. 00

Parmi les quatre planetes décrites dans le tableau ci-dessous, laquelle présente le moment cinétique autour
du Soleil le plus important ?

Masse Distance au Soleil Vitesse sur 1’orbite
Mercure | 3 x 106 g 58 x 10° m 170 x 103 km - h™!
Vénus 5x10%" g 1,1 x 10" cm 35x10°m-s*
Terre 6 x 1021 ¢ 150 x 10% km 30km - s~ !
Mars 6 x 10*3 kg 230 x 10% km 87 x 10°cm - h™*
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[Entrainement 13.6| — Un moustique allumé. o

AN . . . T
On considére un moustique M de masse m dont le vecteur vitesse de norme v fait un angle o € 5; | avec

—>
le vecteur OM comme représenté dans le schéma ci-dessous.

-
— €0
v
—> Q —>
e:® er
_ M
ey r
9 \
> >
O €

Moments d’inertie

L |Entrainement 13.7] — Une porte d’entrée. 0o

On considére une porte de masse M, de longueur L, de
hauteur h et d’épaisseur e négligeable dont on veut calculer
le moment d’inertie par rapport a ’axe vertical passant par
O situé dans le coin inférieur gauche de la porte.

La masse est répartie de maniére homogene sur toute la
porte, de sorte que chaque petit volume dV = dz dy dz
ait pour masse :

dm = p dV,
avec p = 7.
Dans cette configuration, le moment d’inertie s’écrit :

L e h
IA:/// xzdm:p/ xdex/dyx/dz.
porte 0 0 0

Exprimer Ia en fonctionde M et L .......................
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B |[Entrainement 13.8) — Un baton de majorette. 0o

On considére un baton de masse M, de longueur
L et de section négligeable dont on veut calculer
le moment d’inertie par rapport & son centre O.

La masse est régulierement répartie uniquement z
selon une variable z, de sorte que le bout de
baton de longueur dx situé a une distance x du

. M
centre ait pour masse dm = T dz.
Pour une rotation par rapport a un axe (Oz)
orthogonal a laxe (Oz) du béton, et passant
par son centre, calculer en fonction de M et L

lexpression du moment d’inertie. C’est-a-dire,
calculer :

IA:/ xzdm:/ —2?dr =
baton —L/2 L

[Entrainement 13.9| — Une boule de bowling. 00

L

On considere une boule homogene de masse M et de rayon R.
Un élément de volume dV (valant dr xr df x rsin @ dy en coordonnées sphériques) correspond & une masse

M
dm =pdV, avec p = ——.
pav, P R
Ces éléments de masse sont situés & une distance rsin @ de I'axe (Oz) de sorte que le moment d’inertie par

rapport a cet axe peut s’écrire :

R T 2
In = /// (rsing)? dm = p/ r dr x / sin® 6 df x dep.
sphere 0 0 0

Exprimer I en fonctionde M et R ...............cooat.
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Moment d’une force

[Entrainement 13.10, — Fil accroché au mur. ]
On considére un mur auquel est accroché un filin
qu’on tire depuis un point A. Tl s’agit de trouver M
le moment de la force F' par rapport aux axes F ,
(Oz) et (Az) en fonction de F, £ et . €y
Calculer : e—»é

z —

€xr O A

a) MOZ(F) ....................... b) MAZ(F) .......................
[Entrainement 13.11] — Une planche de cirque. 00

On considere une planche homogene de masse m
appuyée sur un cylindre.

Calculer le moment du poids de cette planche
par rapport aux divers points intéressants du
systéme.

Exercice récapitulatif

[Entrainement 13.12] — Basculement d’une barre en T. 000
On considére trois masses m réparties aux trois sommets

d’un triangle OAB isocele en B et reliées par des tiges sans &
masse vérifiant :

OA =1B =a.

On note I le milieu du segment [OA].
On note G le centre de gravité des trois masses, qui est

situé sur le segment [IB] de sorte que GB = 30

On notera P et F' les normes des deux forces représentées
sur le schéma.

a) Ecrire le vecteur OB dans la base (EX,EY) wvneeieiiii i

b) Eerire le vecteur OG dans la base (€x,8Y) -« vvvvvererenenenenenn..

¢) Ecrire le vecteur P dans la base (£, 8) «vvnvnenrenenanenanens,
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d) Ecrire le vecteur F dans la base (€%, &y)

e) Calculer Mo (F) )

f) Calculer Mo (]_5)

g) En supposant qu’il y ait équilibre entre les deux moments, déterminer I’expression tan(«) dans ce cas.

Réponses mélangées

-7
sextger or(veosa)e || V(=i ) @+ cos(8 +7) )
-7
la Terre ge_X’—l—ae_y' —|IP|| cos® | V]| (cos(B) & + sin(B) &)
T =|Tl(~cos(y) & +sin() @) [Nl cosy+8) =7 aP(-52+ 2@
1 1 =
EML2 P(—sinaex —cosaey) §ML2 —|1T ey, —mg(f—%cosa)e_z’
cosae, IN|| cos(B) F(—cosaey +sinaey) P = —||P| e, SF T oP
—6 —6 7
-33 [Nl sin(8)  mrosin(a)ez —33 —[IT'|| sin(y) &2 ~14
24 24 7
—(F sin acos a | B||(cos(6 + a) & + sin(f + a) ey) -7 IRl sin(6 + )
2 T —
_mg(e_ écosa) @ MR 0 |P||Reos(6+a)e [T cos(y)
INllcos(y+8)&2 [ Bll(cos(a) & +sin(@) @) || Pl|(~sin(0) & — cos(6) &)

» [Réponses et corrigés page 268
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MAGO01 Fiche d’entrailnement n° 14 Electromagnétisme

Champ électrique

Prérequis
Projections. Coordonnées polaires. Développement limité.
Dérivation et intégration.

Pour commencer

L |Entrainement 14.1] — Projection d’une force. 00

Une charge électrique ¢ située en un point B(a,0) exerce une force F sur une autre charge qg située au
point A(0,y).

I_;v’ Y

Y - qo, A

&l

y \

Oé/\\ q, B

| 'Y T
T >
—a O €x a

a) Exprimer la distance BA en fonction de a et de y.

d) Décomposer le vecteur F dans la base (€2, €,) en fonction de sa norme ||F>H, a et y.

L |Entrainement 14.2] — Un combat d’interaction électrique. 0

On étudie une charge électrique gy positive. La valeur de la force F' qu’exerce une autre charge g sur ¢g est
telle que F = C % ou d est la distance entre les deux charges et ou C est une constante.

Laquelle de ces quatre charges attire le plus fortement la charge gg 7
(a) ¢=2,00C et d = 4,00mm (¢) ¢=-3,0mC et d =200 um
@q=—5,0kCetd:0,4m @q:lOOCetd:QOCm
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&y

Qb

Etude de charges ponctuelles

[Entrainement 14.3| — Force due a deux charges. o
La loi de Coulomb permet d’exprimer la force I 1/0 exercée par une
charge ¢ située en un point B sur une charge ¢q située en un point A : Y

2 1 qon

F = E) , Yy q0, A

VO e, BAZ T PA
€y

avec €g la permittivité du vide et €pa le vecteur unitaire munissant g2, C Y qi1, B
le segment BA. ¢ $ T

— — O e
On étudie les forces F'y/g et Fy/o exercées respectivement par les —a ¢z a

charges ¢ et go sur la charge qq.

— — —
Selon les différentes valeurs des charges qo, q1 et g2, déterminer si la résultante des forces F' = F'y o+ Fa /o
est orientée selon e,, —é,, €, ou —¢,.

) Q0 =q1 =2 «eueuerenn.. C) Q==L =0G2 «crenenenn..
1
b) —go=—q¢=¢q2 -.ov..... d) TR =D TG
[Entrainement 14.4] — Charge accélérée. 00

On considére une particule de charge ¢ et de masse m se déplagant le long d’un axe (Ox) sous l'action d’un
champ de potentiel électrique V (z).

On dispose de trois expressions de V(z) dont une seule est homogene :

@V(x):VO(;—l) @V(x)zvo<1— (z)2> ©) V(x) = Vo(a® - 2?).

a
La vitesse v(z) de la particule et le potentiel V(z) en un point z sont liés par la relation :

1 2 te

imv(x) +qV(z) = C'*. (3)

En x = 0, la vitesse de la particule est nulle.

a) Déterminer la seule expression de V' (z) homogene a un potentiel électrique .........

b) En utilisant la relation en x = 0, exprimer la constante en fonction de g et Vj ...

¢) Exprimer v(a) en fonction de g, met Vo ...

d) Exprimer v(g) en fonctionde g, met Vo ..o

e) Exprimer v(%) en fonction de v(a) ...
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Du potentiel au champ électrique

L |[Entrainement 14.5 — Potentiel électrique dii & deux charges.

Le potentiel électrique produit en un point M par une charge q; située en

— Er

un point B est : Y ef\/

(M) = 47:50 BT T A
Afin d’obtenir les potentiels V(M) et Vo(M) créés par les charges ¢; et go //:///,’/
telles que ¢ = @1 = —qo, ainsi que le potentiel total S0

o
V(M) = V3 (M) + Va(M),
. . . @ G|\ m B

on cherche a exprimer les distances BM et CM en fonction des coordonnées ~— —¢—— x
r et 0 du point M et de la distance a illustrées ci-contre. —a O a T
Exprimer les grandeurs suivantes en fonction des parametres indiqués.
a) BM en fonction de z,y, a.
On pourra utiliser les coordonnées des points B et M .............
b) 72 en fonction de z,.
On pourra chercher un triangle rectangle adéquat ................
¢) BM en fonction de r, z, a.
On pourra utiliser les réponses des questions a) et b) .............
d) xenfontionde @ ...
e) BM en fonction de r, a, 6.
On pourra utiliser les réponses des questions ¢) et d) .............
f) Vi enfonction de q,7,a,0 ...
g) CM en fonction de z,y, a.
On pourra utiliser les coordonnées des points C et M .............
h) CM en fonction de r, z, a.
On pourra utiliser les réponses des questions b) et g) .............
i) CM en fonction de r, a, 6.
On pourra utiliser les réponses des questions d) et h) ............
j) Ve en fonction de q,r,a,0 ...
k) V en fonction de q,r,a,0 ........ i
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&1

Qv

Qb

[Entrainement 14.6| — Approximation de potentiels électriques. o

Développer les expressions de potentiels électriques suivantes en calculant leur développement limité au
voisinage de 0 & I'ordre indiqué et selon la variable spécifiée.

a) A lordre 1 : V(%) = 473602(1 — %)4 ............................

N a 1 ¢ 1 1
b) Alordrel:V(-) = = -
) ordre (r) dmeg T <\/1 —Zcos(f) 1+ acos(0)>

R 1 0
c) AVlordre2:V(0) = y— gacos) CO;(
TEy T

d) A lordre 1 : V(g> = 473€Ogln<1 + E) ............................

r r
4a2
. 1 1+5+1
e) A lordre1: V(g) =1 KO TR
r TEQ T 1+ 4;122 _1
[Entrainement 14.7| — Calcul d’un champ électrique. 00

En coordonnées polaires, le champ E(M) au point M s’exprime en fonction du potentiel V(M) par la
formule :

sy VD L 19V(M)
EQMM) = or er r 00 €0

On donne :
0 =2885-1072CVIim™, ¢=6,0-107"C et a=40mm.

1 g¢sin(20
Dans cet entrainement, on suppose que V(M) = 4—(]7()
TEQ r

a) Exprimer E L

b) Exprimer E(M) pour M(r = g,@ = Tl') ...............

¢) A Paide des données, calculer ||E(M)H en V.am™! ...,

[Entrainement 14.8] — Bis repetita. 00
On reprend P'entrainement précédent avec les mémes données, mais un potentiel électrique différent.
1 gqacos(f
Dans cet entrainement, on suppose que V(M) = qi()
drey 12

a) Exprimer E(M) .......................................

b) Exprimer E(M) pour M(T‘ =a,0 = I) ...............

¢) A Plaide des données, calculer ||E(M)H en V.m™' ...
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Du champ au potentiel électrique

c'%k |[Entrainement 14.9| — Champ électrique produit par un condensateur. 000

Un condensateur produit un champ E=F (x)e, entre ses deux armatures positionnées en z = 0 et z = d.
La différence de potentiel entre les armatures est liée au champ de telle maniére que :

d
V(0) — V(d) = / B(z) da.
0
On considere que 'armature en x = d est la masse du circuit, son potentiel est donc considéré comme nul.

Exprimer le potentiel V' (0) pour les différentes formes de champ E(x).

Distributions continues de charges

c‘;x [Entrainement 14.10] — Charge d’une sphére. 0000

On souhaite déterminer la charge électrique totale () contenue dans une sphere de rayon R et de densité
de charges p(r, 6, ). Pour ce faire, on doit intégrer la densité de charges sur toute la sphére S en utilisant

la formule :
Q:///Sp(nf),so) dr.

On peut démontrer que le volume d’intégration élémentaire est dr = r?sin(f) dr df dey avec, pour une
sphere, r € [0, R], 8 € [0, 7| et o € [0, 27]. Ainsi, on a :

2m pm R
Q= / / / p(r, 0, 0)r?sin(6) dr df de.
o Jo Jo

Exprimer la charge électrique totale ) contenue dans la sphere en fonction de son rayon R pour les
différentes densités de charges suivantes.

Fiche n° 14. Champ électrique 107



B |[Entrainement 14.11] — Charge d’un cylindre.

On souhaite déterminer la charge électrique totale () conte-
nue dans un cylindre de rayon R, de hauteur h et de densité z
de charges p(r, 6, z). Pour ce faire, on doit intégrer la den-
sité de charges sur tout le cylindre C.

Comme on peut le voir sur la figure ci-contre, le volume
d’intégration élémentaire est :

dr =r dr df dz,

avec, pour un cylindre, r € [0, R], 6 € [0, 27] et z € [0, h].

Ainsi, on a :

h 27 R
Q= / / / p(r,0,2)r dr d6 dz. ’
o Jo Jo

dr =rdrdfdz

Exprimer la charge électrique totale ) contenue dans le cylindre en fonction de son rayon R et de sa

hauteur h pour les différentes densités de charges suivantes.

a) p(r0,2) =3 oo

b) p(r,0,z2) = (%)3 ..............................

c) p(r,0,z)= 2(}%)3(%)2sin<g> ................

Réponses mélangées

— qVo 4 —1 2 2
€ © ,/% 3,4-10*V.m (x—a)"+y? 3 Fod
1 q( 1
4 2 _ 2
\/m 70 "\ \/r2 — 2ar cos(0) + a («+ a)2 F 2

=)
\/7"2 + 2ar cos(0) + a?

1
%(2 cos(0)e, + sin(f)ep) Vr2 4+ 2az + a? 2 + 42 v(a)

~—

4dmeg 13 2
1 qacos(f) 8 q_, N 8 5 2qVy =
_-_gqacosy) __° 4 ° R Vi —&
dreg 12 dmey a? €0 ey 15 avo @ m . €
—i(sin(Qﬁ)e_; — 2cos(26)ep) V71?2 —2ax + a? /72 + 2ar cos() + a2 —7R3pg
dmeq 12 5
1 1 q 16 1 g¢q
~FEod - r2 — 2ar cos(0) + a? —R? ~eép
27 dmeo /12 + 2ar cos(0) + a? v (©) 5P dmeg a2’
8 1 qa 1 qa 1,5 4 1 q
—TR3 = —(1-=0 —7R?h
g dreg 12 dreg 12 ( 2 5" dmeo /12 — 2ar cos(0) + a?
[ P — : y a o
————(—ae; + ye 3TR°h FEyde
/a2 + yz( vey) /a2 + 2 /a2 + 2 0
1 ¢ r2 - 1 ¢ 2a 5 1 1
=In{1+ — — 11— — 0 271 . —FEod
Ameg v n( +a2> “ 47‘(’60’/‘( 7") rcos(6) 7107 V.m 370

» [Réponses et corrigés page 272|

108 Fiche n° 14. Champ électrique



MAGO02 Fiche d'entrainement n° 15

Particule dans un champ électromagnétique

Prérequis
Principe fondamental de la dynamique. Théoréeme de 1’énergie cinétique, de
I’énergie mécanique. Puissance, travail. Energie potentielle.
Force de Lorentz.
Constantes utiles
— charge élémentaire : e = 1,60 x 107°¢C

—s célérité de la lumiere dans le vide : ¢ = 3,00 x 10°m - s~ *

Préliminaires

|Entrainement 15.1| — Electron-volt.

Le produit d’une charge électrique par une tension est une énergie.

Electromagnétisme

En multipliant la charge élémentaire e = 1,6 x 1072 C par une tension de 1V, on obtient une unité adaptée

a la physique des particules, ’électron-volt, noté V. On a 16V = 1,6 x 1072 J.

a) Quevaut 1J en eV 7 oo

b) L’énergie d’un photon rouge est de 2,48 x 10719 J.

Convertir €11 €V ..o e

¢) L’énergie d’un photon violet est de 3,1€V.

Convertir eI J ...

d) Quel photon a la plus grande énergie ?

Le rouge ou le Violet 7 .. .o

[Entrainement 15.2 — Qui est le plus massique ? o
On considere les trois particules suivantes :
e le proton, dont la masse vaut mproton = 1,67 X 10727 kg;
e le kaon, qui est une particule dont I’énergie de masse vaut miaon X ¢ = 7,90 x 10" % erg;
e le tau, qui est une particule de masse my,, = 1777 MeV/c2.
On donne lerg=1g-cm? s 2 et 1eV = 1,6 x 10719 J.
Laquelle de ces particules est la plus massique? ...t
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Champ électrique et potentiel scalaire

[Entrainement 15.3] — Carte d’équipotentielles. o

On représente ci-dessous la carte des équipotentielles créées par trois charges électriques.

Une équipotentielle correspond a I’ensemble des lieux ou le potentiel électrostatique scalaire V' prend une
méme valeur numérique.

a) En norme, le champ électrique est le plus intense :

@enA @enB @enC

b) En M, le champ électrique est orienté :

@ vers en haut a droite @ vers en bas a droite

@ vers en haut a gauche @ vers en bas a gauche
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[Entrainement 15.4] — Potentiel scalaire. 00

Le potentiel électrostatique scalaire V' vérifie :

-
ou d/f est le vecteur déplacement élémentaire.

—
On rappelle les expressions du vecteur d¢ en coordonnées cartésiennes et en coordonnées cylindriques :

dl = dze; + dye, + dze;
= dre, + rdfeg + dze,.

En déterminant dV, puis en intégrant, exprimer le potentiel V(M) pour les champs E suivants :

a) EM)=FEés ... ¢) E(M):éa ................
b) E(M):%a ............... d) EM) =~(yes +aé]) -......

Force de Lorentz

On rappelle I'expression de la force de Lorentz : 1?5 = q(ﬁ + T A B))

[Entrainement 15.5| — Composante électrique de la force de Lorentz. L)

Dans la base (,,€,,¢.), exprimer (en fonction de g, de E et éventuellement de a et ) la composante
électrique de la force de Lorentz, définie par F'f, ¢iectrique = ¢E -

q<0 q¢>0

1 L g
0—_}» .__), ./OZ("U
v v
@) ® ()

—
a) FL,élcctriquc ........................................................

—
b) FL7électrique ........................................................

—
C) FL,électrique ........................................................
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[Entrainement 15.6] — Composante magnétique de la force de Lorentz. o

q<0 q>0
v
«@

<l

B

1)
ool

Dans la base (€, ey, ¢), exprimer (en fonction de ¢, de v, de B, et éventuellement de «) la composante
magnétique de la force de Lorentz, définie par F'f, magnétique = 40U A B.

— —
a) FL,magnétique ----- C) FL,magnétique -----

>
b) FL,magnétique .....

%{ [Entrainement 15.7| — Puissance de la force de Lorentz. 00

On se place dans une base (,,é,,€.), et on considére :
=
e un champ électrique constant dans tout ’espace : F = Fe, ;

— -

e un champ magnétique constant dans tout 'espace : B = Be,.

o)

On rappelle que la puissance d’une force i appliquée & une particule de vitesse ¥ est P = F-7.

Donner I'expression de la puissance des forces subies par chacune des particules A, B, C et D.
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Mouvement dans un champ électrique

[Entrainement 15.8] — Champ perpendiculaire a la vitesse initiale. 00

On étudie le mouvement d’une particule de charge ¢ >0 et de
masse m dans une zone ou régne un champ électrique E = Fe,).

A Tinstant initial, la vitesse est orthogonale au champ élec-
trique : U(t = 0) = vpe,.

L’étude du mouvement permet d’établir ’expression de la vitesse
en fonction du temps :

—>

- ——l
v (t) = vpeq + Etey.

a) A quel instant ¢y la particule double sa vitesse (par rapport a la vitesse initiale) ? ......
b) A quel instant ¢; Pénergie cinétique de la particule a quadruplé? ......................

¢) Quelle est la valeur de I'angle « = (e, ') a l'instant ¢; 7 ....

[Entrainement 15.9] — Champ colinéaire a la vitesse initiale.

Un proton de masse m, = 1,67 x 10727 kg entre en O, avec
une vitesse initiale négligeable, dans un condensateur plan.

Une tension U est appliquée entre les deux armatures sé; O
parées d’une distance d = 5,0 cm. Le champ électrique E
entre les plaques est supposé uniforme et orienté dans le

sens des x croissants. Sa norme est £ = —.

d

— — s
Cy lE -
& /
e—z> z e ’U(t)
qgQm =57
=57
At=0

000
d
777777777777777 e
Entrée des Sortie des
protons

protons

La variation d’énergie cinétique entre ’entrée O et la sortie S vérifie :

gc(s) - gc(o) = qU.

Le champ électrique de claquage de lair vaut Fpax = 3 x 107V -m™ !,

1

a) Quelle est la tension maximale Upax qui peut étre appliquée aux bornes du condensateur sans qu’il n’y

ait de claquage ? ... i

b) L’énergie cinétique du proton en sortie du condensateur est alors égale a :

(a) 6keV (b) 1,5MeV

(c) 0,24pJ

(d) 9,6mJ

(plusieurs réponses sont possibles)
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En associant I'un apres l'autre de tels condensateurs plans, on peut augmenter ’énergie cinétique des
protons : I’énergie cinétique &, a la sortie du condensateur n vérifie la relation :

gc,n - gc,nfl = qU

c) La suite (&), est une suite :

@ arithmétique @ géométrique @ arithmético-géométrique

d) En déduire l'expression de &, en fonctionden, get U .........................

On souhaite atteindre une vitesse v = 10’ ou c est la célérité de la lumieére dans le vide par une mise en

série de condensateurs.

e) Quel est le nombre de condensateurs plans nécessaires pour atteindre une telle vitesse avec une tension

U = 1MV aux bornes de chaque condensateur? .......... ...,

Particule dans un champ magnétique

|Entrainement 15.10| — Etude d’une trajectoire. 000
On consideére une particule de masse m et de charge ¢ < 0 =
. Lo . B s OB
placée dans un champ magnétique uniforme B = Be_. On
note U (t) le vecteur vitesse et vg sa valeur initiale.
—Z>
On représente la situation par le schéma ci-contre : vo

N
a) Exprimer I'accélération @ en fonction de q, m, ¥ et B.

On pourra négliger le poids de la particule ........ .. ..o i,

On admet que le mouvement est circulaire de rayon R et de centre C.

b) Exprimer la vitesse dans le repére de coordonnées polaires d’origine C ....

¢) En déduire I'expression de la force de Lorentz en coordonnées polaires .. ..

d) Exprimer laccélération en coordonnées polaires .................cocoein..

e) Reprendre le PFD pour exprimer le rayon R ..........c.ocoiuiiiiiiin...

f) Calculer la période T' du mouvement circulaire ...........................
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Particule dans un champ (E), E)

|[Entrailnement 15.11] — Mouvement uniforme. 00
E
Un électron de masse m et de charge ¢ < 0 adopte un N
mouvement rectiligne uniforme de vitesse 110' = vge, dans €y
une zone ou régnent un champ électrique £ = Ee, et un =
—
champ magnétique B = Be,. ©B
N

On représente la situation par le schéma ci-contre : Cx

O To

a) Exprimer la force de Lorentz F 1 dans la base cartésienne

b) A quelle condition 1’électron adopte-il un mouvement rectiligne uniforme? .......

Réponses mélangées

- E
quB cos(a)e, 1,55eV %Tf A B w=g —Ez+C @)
-5 aBE-wB)E  leBlE 3% ®  Rég - R6*e
qEe, nqU 5 violet qEv 0 g @ et @ Rée;
gRBE:  —yry+C  50x 10710 3o Yo 9
qE r lq|B
—quB(cos(a)e, 5
( % 6,3 x 1086V %qEv @
+sin(a)ey) ¢
qE(cos(B)e,
vBe, —Bln(r)+C 1,5MV (cos(B)2; tau
lqlvBey Bln(r) )
~n()e2)

» [Réponses et corrigés page 27|
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MAGO3 Fiche d'entrainement n° 16 Electromagnétisme

Champ magnétique

Prérequis

La force magnétique agissant sur une charge q de vitesse v, placée dans
Zng = - — N1

un champ magnétique B vaut Fmag = qU A B, ou B est un vecteur (ou

pseudo-vecteur) axial dont 'unité est le tesla (noté T).

Constantes utiles
— perméabilité magnétique du vide : po =47 x 107" T -m- A"

Pour commencer

[Entrainement 16.1 — A propos de la force magnétique. L)

N _,
La force magnétique agissant sur une charge ¢ animée d’'une vitesse U est Finag = qU A B.

a) A-t-on toujours Fyae L U7 ...... b) A-t-on toujours Fiags L B? ...
|[Entrainement 16.2| — Force magnétique connaissant le champ magnétique. L
z —
Un électron de charge —e posséde un vecteur vitesse v = vgey lorsqu’il B
est en O. 1l subit alors 'action d’un champ magnétique uniforme
B = By(e, +&2). 70 4
x
La force exercée sur 1’électron en O vaut :
@ F = evgBy(—¢, —e2) @ F = evgBy(—¢, + ¢2)
@ F = evyBy(e, + ¢2) @ F =evyBy(e, — €
[Entrainement 16.3| — Equilibre d’une boussole. 00

Une aiguille aimantée de centre O est libre de tourner sans frot-
tements autour d’un axe vertical (Oz). Elle s’oriente & 1’équilibre
suivant By = Bye,.

Un fil conducteur de grande longueur devant la taille de I'aiguille
est placé a la distance d = 2 cm au-dessus de O, parallelement &
laxe (Oz). Le champ magnétique créé en O par le fil vaut :

o /’LOI—>
Bﬁl(o) = ﬂey.

Lorsqu’un courant d’intensité I = 1,2 A circule dans ce fil dans le sens des x croissants, la boussole retrouve
une position d’équilibre en tournant d’un angle o = 30° comme indiqué sur la figure.

a) Exprimer By en fonction de pg, I, d €t ..o

b) Donner la valeur numérique de Br ........ouiniiit e
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Calculs de flux magnétiques

Le flux ® du champ magnétique a travers une surface S reposant sur un contour orienté et fermé s’écrit :
P = // B8,
S

oit le vecteur dS est orienté par la regle de Maxwell.

On sait par ailleurs que B est un champ vectoriel a flux conservatif : le flux de B sortant de toute surface
fermée est nul.

[Entrainement 16.4] — Flux d’un champ uniforme a travers une demi-spheére. 00

On consideére la surface suivante, une demi-sphére de rayon R et d’axe (Ox) :

Combien vaut le flux du champ magnétique uniforme B= Be, a travers cette surface ?

(a) =0 (b) ¢ =2B7R? (c) ¢ = BrR?

[Entrainement 16.5| — Flux d’un champ non uniforme a travers un disque. 00

On considére un champ magnétique B défini par : s
§ A
B(M):B()(l—m)ew, r U oy

ou M est repéré a ’aide des coordonnées cylindriques r, 6 et x.
Ainsi, r est la distance du point a l'axe (Ox).

On souhaite calculer le flux ¢ de ce champ a travers le disque de rayon R et d’axe (Ox) orienté comme

indiqué sur la figure. Il est défini par :
o= || B3,
S

ot dS = dS e, avec dS élément de surface du disque en un point M quelconque du disque.

On rappelle que I'expression de dS en coordonnées cylindriques est :

dS =r-df-dr.

Exprimer ¢ en fonction de R et By ..ovvvriiniiiiiiiiiiiiiii i

Fiche n° 16. Champ magnétique 117



[Entrainement 16.6] — Flux a travers un cadre du champ créé par un fil.

Considérons un fil rectiligne infiniment long suivant 'axe (0z), z

parcouru par un courant d’intensité I circulant dans le sens des 7
z croissants. Le champ magnétique créé par ce fil, en un point I
a

M & la distance r de 'axe (Oz), est : 0
3 /J'OI—> ,,,,,,,,,
B(M) = —egy.
(M) om0 D

—
€0

—

T €z
!
>

—>

Er

Nous souhaitons calculer le flux ¢ de ce champ a travers le cadre carré de c6té a orienté comme indiqué

sur la figure. Il est défini par :

e

ot dS = dSeg avec dS = dr - dz élément de surface du cadre en un point M quelconque du cadre.

a) Exprimer ¢ en fonction de a, D, pg et I ...

b) Donner un équivalent de ¢ sia K D ...

¢) Que vaut ¢ si le cadre est situé dans un plan perpendiculaire & (0z)? ....

Superposition de champs

[Entrainement 16.7| — Champ de deux aimants droits.

~
~

On approche le pdle Nord d’un aimant droit d’axe A
du péle Nord d’un aimant droit identique d’axe (z'z). ~.

On donne les champs créés par les aimants en O : _- ,?‘Z, S

]?1): Boe, et E): Boea avec By = 20mT.

Le champ magnétique résultant de la superposition de E; et Eg en O sera noté B (0).

a) Exprimer E(O) dans la base (e, ¢€,), en fonction de By et o ..............

b) Exprimer la norme B(O) de E(O), en fonction de By et cos(a) ...........

c) Calculer B(O) pour ar = 60° ... .ouiniiit e
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B |[Entrainement 16.8) — Champ magnétique créé par deux fils. 000

Deux fils colinéaires a 'axe (Oz) et parcourus par un courant d’intensité I coupent le plan (zOy) respec-
tivement en Op et Os, comme représenté ci-dessous :

B,

/ \
— ’ \
B2 // d d \\
/ \
7 \
Ol / \9 O \ 02
U N
I a a I
——>

Ces fils passant par O; et par Og créent, au point D(0, y), respectivement, les champs E) et E; vérfiant

Br = Bye; et Bs = By,

pol
On d By = —
n donne By = o

Le vecteur €7 est un vecteur unitaire orthogonal a la droite (O1D); de méme pour é3.

, ou d est la distance commune de D aux points O; et Os.

Le champ magnétique résultant de la superposition de E et E) en D sera noté Biot.

a) Exprimer d en fonction deaet § ........... .. i,

b) Exprimer €7 dans la base (€7,€5) «ooeeiiiiiiiiiiiiiaai

¢) Exprimer €3 dans la base (€5, €5) «oovvvunniiiiiiii

d) Exprimer Bior dans la base (€2, €,) en fonction de Byet 6 ..........

Le champ By peut se mettre sous la forme suivante :

e) Expliciter la fonction f(y) en fonctiondeaety ....................

f) Donner les valeurs de y pour lesquelles ‘ f(y)| est maximale .........
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Champs magnétiques créés par des courants

[Entrainement 16.9] — N fils sur un cylindre. o
On considére N fils rectilignes (N > 1) infiniment longs, 0280

. . ) . . ® © —>
uniformément répartis sur un cylindre de centre O, de @ © €9

| S .
rayon a et d’axe (Oz). Ces fils sont parcourus par le méme 3 [ Y e
courant circulant dans le méme sens. % (0] (SD M
Soit un point M & la distance r de O. ®@@®@®®
a) Pour la distribution des courants, le plan (M, €,,€,) est un plan :
@ de symétrie @ ni de symétrie, ni d’antisymétrie

@ d’antisymétrie

b) Le champ magnétique en M est alors :
@ dirigé selon e, @ dirigé selon e
@ dirigé selon eg

[Entrainement 16.10 — Champ créé par deux fils paralleles. 00

On considére deux fils conducteurs infinis paralleles
a laxe (Oz), & égale distance a de (Oz) et parcourus
par des courants de méme intensité I circulant en sens
inverse.

a) Lequel de ces trois plans est plan de symétrie pour la distribution des courants ?

@ le plan (zOy) @ le plan (yOz) @ le plan (z02)

b) L’analyse des symétries permet de dire que, en un point A de I'axe (Oz), le champ §(A) est :
@ parallele a (Ox) @ parallele a (Oy) @ parallele & (Oz2)

c¢) L’analyse des symétries permet de dire que, en un point D de I'axe (Oy), le champ B (D) est :
@ parallele a (Ozx) @ parallele a (Oy) @ parallele a (Oz)
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[Entrainement 16.11] — Champ créé par une spire circulaire. L)

On considére une spire circulaire de centre O, d’axe (Oz)
et de rayon R, parcourue par un courant d’intensité I > 0
constante circulant dans le sens indiqué sur la figure.

On cherche la direction du champ B créé par la spire en
un point M de laxe (Oz), puis en N & la distance r de M.

a) En un point M de l'axe (Oz), le champ créé par la spire est :

. Jol I . JoR > . ’ . N>
@ colinéaire a e, @ colinéaire a eg @ colinéaire a e,

b) L’analyse des symétries permet de dire que, en N, le champ B (N) est contenu dans le plan :

(a) (M, &, ) (b) (M, &, e2) (©) (M, &, e2)

[Entrainement 16.12] — Champ créé sur I’axe par une spire circulaire. 00

On reprend la spire circulaire de l’entraitnement précédent.

Le champ magnétique créé par cette spire en M(0,0, z) s’écrit :

. I
Baxe(M) = % sin®(a)ez,

ou « est ’angle orienté dans le sens horaire sous lequel M voit le rayon de la spire.

Le vecteur B,yx.(M) peut également s’écrire en fonction de z. Il prendra alors la forme suivante :

B (M) = Kol

Bue(M) = £ f(2)E2.

a) Exprimer sin(a) en fonction de zet de R ...l

b) Exprimer f(z) en fonction de z et de R .......cooviiiiii i,

On note B l'intensité du champ B,x.(M) quand z = R.

¢) Exprimer B; en fonction de g, [ et R ...

d) Pour quelle valeur de z > 0 a-t-on HBaxe(M)H =—7
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[Entrainement 16.13| — Champ créé par un solénoide.

On consideére un solénoide de longueur ¢ comportant n
spires par unité de longueur. Les spires sont traversées
par un courant d’intensité I.

12
Les extrémités du solénoide sont en z = j:§ et on

note O son centre.

2)

solénoide) a condition de :

@ négliger ’hélicité de ’enroulement

L

e

. 0
AL

I

@ supposer que £ — 0o

I

Tout plan qui contient ’axe (Oz) est un plan d’antisymétrie (pour la distribution des courants du

@ supposer que R </

b) En supposant la condition précédente vérifiée, 'analyse des symétries permet de dire que, en tout point
M de son axe, le champ B(M) créé par le solénoide est :

@ paralléle & e, @ parallele & eg @ parallele & e,

[Entrainement 16.14] — Expression du champ sur ’axe créé par un solénoide.

Le champ magnétique créé par un solénoide de longueur ¢
et de rayon R en un point M de son axe (Oz) s’écrit :

avec

BM) = Hot

(cos(amin) — COS(amax))v

ol (uin €t aupax sont les angles sous lesquels les extrémités
du solénoide sont vues depuis M de coordonnées (0,0, z).

solénoide

On rappelle que I est l'intensité du courant qui traverse chaque spire et n le nombre de spires par unité
de longueur. L’origine O de 'axe (Oz) se trouve au milieu du solénoide.

a) Exprimer B(M) en fonction de ug, n, I, R, £ et z

b) Que vaut B(O) pour ¢ quelconque? ...,

e
\ 2

f) ?
B(O)

¢) Que vaut le rapport

d) Vers quelle valeur tend B(O)
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Champs solutions d’une équation différentielle

[Entrainement 16.15| — Champ magnétique d’une plaquette supraconductrice. 000
z
En tout point M d’une plaque supraconductrice d’épaisseur 2e, Bo By
le champ magnétique est de la forme : > ¢ 2>
B — § z
BOM) = B(2)z,. 2@
g Y
B(z) est une fonction paire vérifiant 1’équation différentielle : z B(2)
4
d®B(z) B(z) >
- =0, —_— ¢ ——>
d22 62 — S
Bo BO

ou  est homogene a une longueur.

Le champ magnétique extérieur E; permet d’écrire B(—e) = B(e) = By par continuité du champ.

La fonction cosinus hyperbolique (cosh(x) = %) pourra étre utilisée.
a) Déterminer B(z) en fonction de By, 0, eet z ................

B(0
b) Calculer ©) pour € = /10 .o.iiiii i

0

B(0
c) Calculer (0) pour e =100 . ...

By
IEntrainement 16.16| — Evolution temporelle d’'un champ uniforme. 0000

On considére un champ magnétique uniforme et dépendant du temps B(t)e, et on suppose que la fonction
B(t) vérifie I’équation différentielle :
d?B(t) = wo dB(t)
de? Q dt

+wj (B(t) — By) =0, (%)

ol wy, @ et By sont des constantes. On suppose que @ > 1/2.

a) Quelle est 'équation caractéristique associée a (x)? ...

b) Combien vaut son discrimimant A7 ...................

c¢) Quelestlesignede A7 .. ... i

d) Donner une solution particuliére de () ................

e) Résoudre 'équation différentielle () ..................

Les conditions initiales du probléme sont : B(0) = 0 et B'(0) = 0.

f) Déterminer complétement B(t) ........coovviniiiiiia...
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Une analyse dimensionnelle

%{ [Entrainement 16.17| — Le magnéton de Bohr. 00

Le magnéton de Bohr pp, qui est homogene a un moment magnétique, s’exprime en fonction de e (charge
élémentaire), m, (masse de Iélectron) et h (constante de Planck) suivant la relation :

1
pp =-—e*-mP . h.
4m

On cherche a évaluer «, 5 et « par une analyse dimensionnelle. Pour cela, on utilise les deux données
suivantes :

e le systéme international d’unités impose que le moment magnétique s’exprime en A - m?;
e I’énergie d'un photon est proportionnelle & sa fréquence v : E = hv.

Donner la valeur de (o, 3, 7)

Réponses mélangées

/AR & 72

) R tol (1L,-1,1) (© A<0  208uT Lvar+ &2
VR? 422 4V2R 2 VR4 2

—2Bgsin(f)e, —sin(f)e, — cos(f)e, @ By(1 + cos(a))e, + By sin(a)e,
pol
4 T _ B V25/3 —1
© @ 34,6m 27d tan (o) 0 © R

mm[( z—i—é

2

R+ (2 +%)° ponlt pla®>  B(0)
.y e ™M %50 B, !
R §>2>
Bo+ef%t(>\cos(;—5\/4Q2—1~t) y
—sin(f)e, + cos(f)e, oui T

+ psin (‘2"—5\/4@ —1. t))
Bov/2(1 + cos(a)) @ oui @ gBOR2 @ ponl ? ~9x107°

0

(%)2(1 ~ 429 (\/R2R7j-22)3 cosa(H) ® @ '“2071;‘1 1“(3 i— Z;;)

oot wo 102 1. z
2+w0r+ 2 _ 4 . Bo(l e @ (COS(Q 4Q 1 t) 5 COSh(J)
' Q -0 oY ‘ +;sin(ﬂ\/4Q2—1't)) Ocosh(f)

402 — 1 Q )

» [Réponses et corrigés page 281|
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gla

MAGO04 Fiche d'entrainement n° 17 Electromagnétisme

Induction

Prérequis
Flux magnétique. Loi de Lenz. Force de Laplace.

Autour du flux d’un champ magnétique

Entrainement 17.1] — Flux propre d’un solénoide. 00

On forme une bobine en enroulant du fil de cuivre d’épaisseur e sur un cylindre de rayon R et de longueur
¢ en une seule couche de N spires jointives.

Le champ magnétique créé par un solénoide infini est :

-

B = Home—;

N
ou o est la perméabilité du vide, ¢ le courant parcourant et n = 7 le nombre de spires par unité de

longueur.

1
OOOOOOOOOOOOOSOOO

Y CIEIRI I CIRI I I EIRI I NI I I Y
4

Le flux propre dans cette bobine est ¢ = NBS ou S est la surface d’une spire.

Par combien est multiplié le flux propre & travers la bobine lorsque 1’on double :

a) lintensité du COUTAnt ........oo.iui it

b) la longueur du solénoide (fil de méme épaisseur) ............ocoiuiiiiiiiniinnin...

c¢) lépaisseur du fil (la longueur de fil restant la méme) ....... ...t

d) le rayon de la bobine (la longueur de fil restant la méme) ..........................
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[Entrainement 17.2| — Flux dans des circuits orientés.

Des boucles de différentes formes mais toutes de méme surface S = a?

sont placées proches d’un fil

infini parcouru par un courant /. On peut montrer que le champ produit par un fil infini est de la forme

B I => N . .
B(r) = %69 dans le repére cylindrique

Spire A

(avec Oz confondu avec le fil).

2a

Spire B

2
Spire C Spire D “

a) Quels flux sont négatifs ?

(a) éa (b) ¢8

b) A-t-on [ga] > |¢B|?

@ Oui
@ Non

[Entrainement 17.3| — Flux dans des polyédres (I).

c) A-t-on |¢c| > |¢p|?

@ Oui

@ Non

Soit le polyedre ci-dessous placé dans un champ magnétique uniforme B= Be,,. Déterminer les expressions
des flux magnétiques sortant a travers les différentes surfaces de ce polyedre.

A B AA'=BB' =CC' =a
AB=A'B' =b
a
A :A/ /
C/ A b B "y C C C
(0]
C
—
C B
x

a) ¢(§) pour ABC =

d) ¢(§) pour A’ACC’ =

b) ¢(B) pour A'C'B’ =

e) (b(E) pour CBB'C’ =

c) ¢(§) pour AA'B'B =

126
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[Entrainement 17.4] — Flux dans des polyédres (II). 000

Soit le polyedre ci-dessous placé dans un champ magnétique uniforme B= Be,. Déterminer les expressions
des flux magnétiques sortant a travers les différentes surfaces de ce polyedre.

EH=nh
h| E TE AB=BC=CD=DA=aq
A a B
o o
a S
v C
e
a) ¢(§) pour ABCD = ......... d) QS(E) pour DCE = ...........
b) ng(B)tOt e R e) ng(B) pour CBE= ...........
c) ¢(§) pour ADE= ........... f) ¢(§) pour BAE= ...........
[Entrainement 17.5| — Flux dans des polyédres (III). 00

Soit le polyedre ci-dessous placé dans un champ magnétique uniforme B=B e.. Déterminer les expressions
des flux magnétiques sortant a travers les différentes surfaces de ce polyedre.

A a B’
AB =B'C=CD' =D'A"=qa
s TE AA’=DD' = AD = A'D' = a
/ C/
D X b B y AB=DC=b
a aQ, 0
D C
x
a) ¢(§) pour ABCD = ......... d) ¢(§) pour ADD'A’ = ........
b) qS(E) pour BAA'B' = ... ... e) qﬁ(ﬁ) pour AD'C'B = .......
c) ¢(§) pour CC'D'D = ........ f) ¢(§) pour CBB'C' = ........
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Loi de Lenz-Faraday

[Entrainement 17.6] — Boucles imbriquées. o

Deux boucles circulaires se trouvent dans le méme plan.

Si le courant i(t) dans la boucle externe est dans le sens trigonométrique et augmente avec le temps, que
vaut le courant induit dans la boucle interne ?

@ Il n’y a pas de courant induit.
i(t) @ Le courant induit est dans le sens des aiguilles d’une montre.
@ Le courant induit est antihoraire.

@ La direction du courant induit dépend des dimensions des boucles.

[Entrainement 17.7| — Signe du courant induit (I). )

Dans chacun des circuits ci-dessous, la spire circulaire et/ou 'aimant sont déplacés dans le sens indiqué
par la double fleche. Le courant apparaissant dans la spire pendant le déplacement est noté i.

a) b) c)
N S N S S N
= = =

d) e) f)
N S s N N S
E—
= — —

Pour chacune des situations schématisées ci-dessus, dire si on a ¢ > 0 ou si on a 7 < 0.

128 Fiche n° 17. Induction



[Entrainement 17.8) — Signe du courant induit (II). 00

Des spires circulaires, orientées, perpendiculaires au plan de la figure, nommées (A), (B) et (C), sont placées
dans une zone de l’espace ol régne un champ magnétique (voir figure ci-dessous). Pour chacune d’elles, on
veut prévoir par des considérations physiques le signe du courant i lorsque les spires sont déplacées (les

déplacements sont indiqués par les fleches pointillées).
( . ) \ \ \

’ Mouvement (A) ‘

E /{ Mouvement (C') ‘

S A C S— A

Pour chaque mouvement considéré, établir si « le flux diminue », si « le flux augmente » ou si « le flux ne
varie pas ».

a) mouvement (A) ...

b) mouvement (B) .........iiiiiii

¢) mouvement (C) ...

Pour chaque mouvement considéré, en déduire si ¢ > 0, sii < 0 ousii=0.

a.;x [Entrainement 17.9| — Calcul de f.é.m. avec champ magnétique variable. 00

On plonge une spire de surface S(¢) dans une zone ou régne un champ magnétique B(t). Déterminer la

force électromotrice e = ——— induite pour les flux suivants :

dt

a) @1 = BpSoCoS(WE 4 0) vttt

3

b) @y = BySy x (1 n ;) XD E

c) @3 = Bo(1 —cos(2wt))Sosin®(Wt) «.oooiiiiiiii

d) P4 = Bgcos(wt)Sosin(3wt) ..o
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Force de Laplace

[Entrainement 17.10| — Rails de Laplace. o

Une tige métallique de longueur MN = d et de masse m est parcourue par un courant d’intensité constante /
et est lancée avec une vitesse initiale 75 = voe,. A la position x = 0, la tige entre dans une zone ol régne

un champ magnétique uniforme B= —Bé,,. On néglige les frottements et tout phénomene d’induction.
€y ,
I N
e_w) 7
e M
Exprimer :

a) La force de Laplace I qui s’exerce sur la tige en fonction de B, det I ...........

b) La norme v(t) de la vitesse en fonction du temps ........... ...,

c) La distance d’arrét D depuis la position initiale en fonction de vy, B, I, m et d ..

[Entrainement 17.11] — Résultante des forces de Laplace. 00

On consideére un cadre triangulaire parcouru par un courant d’in-
tensité I. Les trois cotés du cadre ont la méme longueur notée a.
On plonge ce cadre dans un champ magnétique extérieur orienté
. . . —> =1 —> e
suivant la direction e, : B = Be,. y

5¥e

On rappelle qu’un élément de longueur d¢, parcouru par un cou-
rant d’intensité I placé dans un champ magnétique extérieur B, _(
est soumis a la force élémentaire, appelée force de Laplace :

>
o P

df =Idl A B.

Exprimer les forces de Laplace sur chaque c6té de ce cadre :

a) FL.,AB:-H' C) FL.,CA:u'-

b) FL,BC:

Que vaut la résultante de ces forces?
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[Entrainement 17.12 — Couple des forces de Laplace.

On consideére un cadre carré parcouru par un courant d’intensité I. On plonge ce cadre dans un champ

L
magnétique extérieur orienté suivant la direction e, : B = Be,,.

€y D C
N\ 7
N e
N ,
N ,
N v
R €xr (0)¢ Al
z AN
z 7/ AN
// \\
4 AY
A a B

Exprimer les forces de Laplace sur chaque c6té de ce cadre :

a) FL,AB I T S
b) FL,BC T T T T

—
C) FL,C‘D T T T T T S

Q) B L DA = e

Que vaut la résultante de ces forces?

Calculer le moment des forces de Laplace par rapport au point O.

—>

£) MO (FLitor) = «eveeenee et e

On rappelle qu’un dipéle magnétique peut se caractériser par son moment_r}nagnétiqy)e m=1IS. En présence

d’un champ magnétique extérieur, le dipole magnétique subit un couple I' = m A B.

Exprimer m et T
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[Entrainement 17.13] — Equilibre d’un cadre. 000

ol
a1

Vue de diagonale

Un cadre conducteur, de forme rec-

tangulaire, de longueur b et de lar- ea

geur a, peut tourner sans frottement .

autour de axe A. !

La masse totale du cadre est m. N |

Un dispositif, non représenté sur la fi- g )
I

gure, impose une intensité du courant
i constante dans le cadre.

Vue de la tranche

Exprimer :

a) le moment magnétique m en fonction de a, bet i ...,

b) le couple magnétique I'a projeté sur 'axe A en fonction de a, b, i, Bet 6 .......

¢) le moment du poids par rapport a 'axe A en fonction de a, m, g, et 6 ...........

d) la position d’équilibre e en fonction de B, m, g, bet i .......................L.

Réponses mélangées

2ibB
—Ia*Be; 0 —Bac By Sow sin(wt + ) Le flux ne varie pas arctan(l—)
mg
1

()  IeBe&  —IaB& 0 IaB <§e_; + §e—y’> —gmg sinf i< 0

2—> . —> . . . - Ba2 .
Ia“e, iabeg 0 X2 >0 Oui i>0 i=0 —_— >0

Ba? V3, 1 !

Ta x2  IaB <—77¢ + Ee—;) 0O o0 0 -Bd Ba(b — a)
—IaBe, i<0 Le flux diminue Non @ et @ 0 x1/2 1<0
Ba? _ ¢ - Ba?
=~ —IBd&  BoSo—e ™7 —Bab T iabBeosd  i>0  —-

T
—Ia*Be; Ba? Bac 0 1<0 Le flux diminue 0 meg
IBd * 21Bd
—Tt + v — B Sow[2 cos(4wt) + cos(2wt)] —8BySow cos(wt) sin®(wt) 0 X2

» [Réponses et corrigés page 230|
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THMO1 Fiche d'entrainement n° 18 Thermodynamique

Gaz parfaits

Prérequis
La loi des gaz parfaits s’écrit PV = nRT, avec P en pascals, V' en metres
cubes, n en moles et T" en kelvins.

Constantes utiles
— constante des gaz parfaits : R = 8,314 J - K™ mol™*
— définition du bar : 1bar = 1 x 10° Pa
— conversion entre kelvins et degrés Celsius : T (K) = 6 (°C) + 273,15

Entrainement au calcul

c.;,k [Entrainement 18.1 — Quelques calculs de volume. 00

Calculer le volume (en L) occupé a T = 25°C et sous une pression P = 1,0 bar pour les gaz suivants.

a) 100g d’argon (Ma, =40g-mol 1) . i i

b) 32g de dioxygene Oy (Mo =16g-mol™ ) ... ...

¢) 1,2kg de dioxyde de carbone COy (Mg = 12g-mol™") ... .. ...,

[Entrainement 18.2| — Bouteille de butane. 00

Une bouteille de 30,6 L, maintenue a 20 °C, contient du butane (C4H1g) qui est sous la forme d’un mélange
liquide/gaz comprimé. Le contenu de la bouteille présente une masse m de 13kg.

On donne My = 1g-mol™! et Mg =12g - mol ™.

a) Combien vaut la masse molaire (en g-mol™!) du butane? .......................

b) Quelle serait la pression a U'intérieur de la bouteille si tout le butane était a ’état gazeux ?

¢) Quel volume occuperait le contenu de la bouteille, 8’il était entierement & I'état gazeux, sous une

pression de 1,0 bar et a la température de 20°C7 ... ... ... i

c‘;x [Entrainement 18.3] — Volume molaire. )

Calculer le volume molaire (en L - mol™!) d'un gaz parfait :

a) sous 1,00bar et & 25,0°C .. ...

b) sous 2,00bar et & 50,0°C ... ..
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%& [Entrainement 18.4] — Surchauffe ? o

Un pneu de voiture, de volume supposé constant, est gonflé a froid, a la température T3 = 20°C, sous la
pression P; = 2,0 bar. Apres avoir roulé un certain temps, le pneu affiche une pression P, = 2,3 bar.

Quelle est alors sa température (en °C) si 'on assimile air & un gaz parfait? ...........

%L [Entrainement 18.5)| o

Un récipient de volume V; enferme de l'air (assimilé & un gaz parfait) a la température 77 = 20°C et sous
une pression P; = 1,20 bar.

Que vaut la pression finale (en bar) si 'on augmente :

a) levolume de 20 707 . .

b) la température de 10°C 7 ...

Manipulations algébriques

%& |[Entrainement 18.6| — Faire le lien entre une formule et un graphe. o

a) Lequel de ces graphes représente la relation entre pression et température lorsque n et V sont fixés ?

® ® © @

Pression
Pression
Pression
Pression

Température Température Température Température

b) Lequel de ces graphes représente la relation entre pression et volume lorsque n et T' sont fixés ?

® ® © @

Pression
Pression
Pression
Pression

Volume Volume Volume Volume
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[Entrainement 18.7] — Masse volumique de ’eau. o

On considére un gaz parfait de masse molaire M, a la pression P et a la température 7'

a) Exprimer sa masse volumique p en fonction de M, Pet T ...............c.ooue.

b) La vapeur d’eau a pour masse volumique p = 0,595kg - m~2 & 100°C et 1013hPa. Sa masse molaire
est Mu,0 =18g- mol 1.

Est-ce compatible avec le modeéle du gaz parfait? ............ ... .o i

[Entrainement 18.8) — Compression d’un gaz. 00

Un gaz, initialement a la pression P; et a la température 77 = 25°C, est comprimé jusqu’a une pression
valant P, = 4P;. Sa masse volumique initiale est de p;.

Exprimer sa masse volumique finale po en fonction de p; si sa température T vaut :

a) T2 = T1 .........................................................................
D) T = 5000
|[Entrainement 18.9 — Mouvement d’un piston. 00

Une enceinte maintenue a une température 71" est divisée en deux parties d’égal volume V', par un piston
mobile sans frottement.

Initialement, le piston est bloqué, et chaque compartiment contient un gaz parfait de pressions respectives
P; et P,. On note nq et ng les quantités de matiere dans chaque compartiment.

Une fois débloqué, le piston se déplace librement de facon & ce que les pressions dans chaque compartiment
deviennent égales.

Etat initial Etat final
Gaz parfait Gaz parfait Gaz parfait Gaz parfait
P17Va ni P2a Va n2 P/a Vlanl Pla ‘/QanQ
transformation
A"

Déterminer :

a) la relation entre nq, ng, Pr et Po oo

b) le volume V; en fonction de V) Py et Py vvviuiininiii i
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[Entrainement 18.10| — Expression de la densité d’un gaz. o

La densité d d’'un gaz A est le rapport entre la masse volumique du gaz A et la masse volumique de 'air
sous les mémes conditions de pression et de température. Autrement dit, c’est :

d=LA
pair

On note M, la masse molaire de A et M,;, celle de 'air.

Exprimer la densité d en fonction de Ma et M,;, a l'aide de la loi des gaz parfaits ...

[Entrainement 18.11/ — Bulle de savon. 00

Une bulle de savon sphérique de rayon r enferme n moles d’air a la température ambiante Tj.

La pression qui regne a I'intérieur de la bulle de savon est donnée par :
4
P=P+
r

ou 7 est la tension superficielle de ’eau savonneuse et ou Py est la pression atmosphérique.

a) Donner lexpression du volume de la bulle en fonction r ...................

b) Exprimer n en fonction de Py, Tp, ¥ €6 7 «ovvniiii i

Mélange de gaz parfaits

Tous les mélanges de gaz seront considérés parfaits.

[Entrainement 18.12| — Un gaz sous pression. 000

Un gisement donné fournit du gaz naturel dont la composition (en fractions molaires) est :

e 81,3 % méthane (CHy) e 0,2% butane (C4Hip)
e 29% éthane (CyHg) e 14,3 % diazote (Ng2)
e 0,4 % propane (C3Hg)

On donne My = 1g-mol™!, Mc =12g-mol™! et My = 14g - mol ™.

Calculer :
a) la masse molaire du mélange .. .. b) la fraction massique de 'éthane .
[Entrainement 18.13] — Composition d’un mélange. o0

Un mélange de diazote Ny (My = 14g-mol™!) et de dioxygene Oy (Mo = 16g-mol™') présente une
masse volumique de 1,00g - L™ & 100°C et sous une pression de 1013 hPa.

a) Calculer la masse molaire du mélange ............. .. ... ... il

b) En déduire la fraction molaire en dioxygéne ...............c.oiiiiiiiia..
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|[Entrailnement 18.14] — Air humide. 00

L’humidité relative (ou l’hygrométrie) est le rapport :

pression partielle de vapeur d’eau
pression de vapeur saturante

H

La pression de vapeur saturante de l'eau a 25 °C vaut 3 166 Pa.

Quelle est la masse de vapeur d’eau (on donne My,o = 18g - mol_l) présente dans une piece de 400 m?*

contenant de Dair & 25°C un jour ot I'humidité relative est de 60 % ?

|[Entrainement 18.15| — Ajout d’un gaz. (]

Un récipient clos de volume V' enferme un mélange gazeux contenant deux espéces A et B & une température
T fixée. La pression totale vaut P = 1500 hPa et la pression partielle de A est de 1100 hPa.

a) Quelle est la pression partielle de B? .. ...

b) On ajoute une espeéce C au systéme de sorte que la pression totale augmente jusqu’a 1800 hPa.

Quelle est la nouvelle pression partielle de B? ....... ... ... . i

Réponses mélangées

4 Pyr® + 167yr? 3 2P,
64°C 62L 5,5 1% 65,6

3RT, o ® P hs 6%

68x102L  182g-mol™!  4p,  58g-mol ! % =5 400WPa  37p

1 1

4

gwr?’ 400 hPa non 1,00 bar 1,8 x 10% bar 25L 4,79% 1,24 bar
Ma MP

24,8L - mol~* —= k — -mol ™! 13,4L - mol~!

8L - mo Mo @ 5,5 kg T 30,6 g - mo 3, mo

» |Réponses et corrigés page 292|
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THMO02 Fiche d'entrainement n° 19 Thermodynamique

Premier principe

Prérequis ’
Notions sur les gaz parfaits. Equation d’état des gaz parfaits PV = nRT.
Constantes utiles

— constante des gaz parfaits : R =8,314J - K~ ' - mol™*

Calcul du travail des forces de pression

%L [Entrainement 19.1] — Les bonnes unités. o

Un étudiant doit calculer le travail regu par un systéme au cours d’une transformation. L’expression littérale
est la suivante :

W = —Py(V; — V).

Il sait que, pour faire I'application numérique, la pression doit étre exprimée en pascals et les volumes en
metres cubes.

On rappelle que 1bar =1 x 10° Pa.

a) Calculer W pour Py =1,5bar, V; =5Let V; =3L .................

b) Calculer W pour Py = 50mbar, V; =2cL et V; =120mL ..........

c¢) Calculer W pour Py = 150 bar, V; = 20 em? et Ve =10 em® oL

[Entrainement 19.2| — Suite de transformations. 00

Un systeme composé de n = 2 moles de gaz en contact avec un milieu extérieur a la pression Py = 1 bar
subit une suite de transformations.

Au cours de la premiére, son volume ne varie pas (transformation isochore).

Au cours de la seconde, la pression extérieure ne varie pas (transformation monobare) et son volume
initialement & V; = 1L augmente et se fixe a V; = 2L.

Les transformations étant quasi statiques, le travail des forces de pression se met sous la forme suivante :

Vfinal
W =— / Pexe dV.

Vinitial

a) Calculer W au cours de la premiére transformation .................

b) Calculer W au cours de la seconde transformation ..................
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%L [Entrainement 19.3] — Bataille de travaux sans calculatrice. L)

Considérons deux systémes A et B recevant de ’énergie du milieu extérieur. La puissance regue par le
premier durant 30s s’éleve a 50 W. Le second regoit une puissance plus importante (400 W) mais durant
un temps plus court (55s).

Quel systéme a recu la plus grande quantité d’énergie (sous forme de travail)? .............

&,L [Entrainement 19.4] — Calcul d’aires. 00

Pour une transformation quasi statique, le travail des forces de pression s’écrit sous la forme :

Viinal
W =— / Pdv.

Vinitial

Ce travail W correspond alors a 'opposé de 'aire sous la courbe P = f(V), pour Vinal > Vinitial-

a) Exprimer le travail W en fonction des variables b) Exprimer le travail W en fonction des variables
P07 Vvinitial et Vﬁna1~ Pl, P27 ‘/initial et Vﬁnal~
P P
Py

Py 0

|

I

|

|

1 1 1

| | |

I | |

I I Py I

| I I I

| | | |

1 1 1 1

I I I I
0+ ; ! !
‘/initia,l Vﬁnal 14 ‘/initial Vﬁnal 14

c'%k [Entrainement 19.5 — Différents types de transformations. 00

Un systéme est composé de n moles de gaz parfait, de volume V', de pression P et de température T

Nous souhaitons évaluer le travail recu par ce systéme au cours de transformations quasi statiques :
\%
W=-— / Pdv.
Vi

La loi des gaz parfaits assure que PV = nRT.

Transformation isotherme :
Au cours de cette transformation, la température du systeme ne varie pas et T = Ty.

a) Ecrire W en fonction de n, R, Ty, V; et Vi o

Transformation polytropique et quasi statique :
Au cours de cette transformation, on a PV* = constante (avec k > 1). Les pressions et volumes du systéme
a Vinstant initial seront notés P; et V;, et da l'instant final Py et V.

b) Ecrire le travail W en fonction de V;, Vi, Pi, Pretk ...............
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L

Variation d’énergie interne et d’enthalpie

[Entrainement 19.6] — Probléme d’unités. o

La capacité thermique massique de eau vaut ¢ = 4,2kJ - K~ . kg™ 1.
La masse molaire de ’eau vaut Muy,0 = 18g - mol L.

Une énergie peut étre exprimée en joules ou en kilocalories ; on donne la relation 1kcal = 4184 J.

a) Evaluer la capacité thermique molaire €, de I'eau en J-K~!-mol™! ... ... ...

b) En déduire sa valeur en keal - K~!-mol ™ ...

[Entrainement 19.7| — Variation d’énergie interne d’une phase condensée. o

Un opérateur chauffe une masse m d’eau liquide de capacité thermique massique ¢ = 4,2kJ - K~ - kg~ 1.
La température initialement a T; = 20 °C se stabilise en fin d’expérience a Ty = 30°C.

Il souhaite calculer sa variation d’énergie interne par I’application de la relation suivante :

Ty
AU = cdrT,
T;

ou C est la capacité thermique du systeme.

a) Donner AU pour le systéme, en fonction de ¢, m, T; et Ty ................

b) Calculer AU en kJ pour m = 1008 ...c.vvniniiniiiin i

|[Entrainement 19.8) — Etude d’un gaz parfait diatomique. 00

Soient n moles de gaz parfait diatomique évoluant d’un état initial caractérisé par T; = 60 °C vers un état
final & la température 7y = 90 °C.

Pour un gaz parfait diatomique, la relation de Mayer impose C'p — Cy = nR.
C
Pour un gaz parfait diatomique, on a v = C—P =14.
1%

a) Exprimer Cy (la capacité thermique & volume constant du gaz parfait) en fonction de n, R et ~.

. s
b) Evaluer AU = / CydT pour n=1mol ........coviiiiiiiiiiniinn...
T;

¢) Exprimer Cp (la capacité thermique & pression constante du gaz parfait) en fonction de n, R et .

P Tf
d) Evaluer AH = / CpdT pourn=1mol .............. ...,
T;
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%L [Entrainement 19.9| — Des variations d’énergie interne. 00

Suivant la finesse des modeles utilisés, la capacité calorifique a volume constant Cy, peut étre une fonction
Ty
de la température. Le calcul de la variation d’énergie interne AU = Cy(T) dT se fera alors en tenant
T;
compte de son expression.

Donner, dans chacun des cas suivants, I’expression de AU :

a) pour un gaz parfait (Cy est une constante) ........................

b) pour un gaz réel (Cy = AT + B, ou A et B sont des constantes) ...

c¢) pour un solide (Cy = DT?, ot D est une constante) ...............

[Entrainement 19.10| — Variation d’enthalpie lors d’un changement d’état. o

Dans cet entrainement, le systéme sera de ’eau : a ’état initial, 1 kg d’eau sous forme liquide, & la tempé-
rature de 0°C; & I’état final un mélange de 800 g d’eau sous forme solide, et 200 g d’eau sous forme liquide
a la température de 0°C.

On rappelle la valeur de I'enthalpie massique de fusion de 1'eau : L, = 335kJ - kg™

Quelle est la variation d’enthalpie du systeme? ........ ... oo,

Applications du premier principe

&,L [Entrainement 19.11] — Détente de Joule-Gay Lussac d’un gaz réel. L)

La détente de Joule-Gay Lussac est une détente au cours de laquelle 1’énergie interne du systéme est
constante : AU = 0. Pour n moles d'un gaz réel passant du volume V; au volume Vy et de la température
T; a la température T, on a alors :

1 1
= — 2 ) — 2 —_—— — =
AU —Cv(Tf TZ) n CL( 7 z) 0

Exprimer T en fonction de T;, Cv, n, a, Vi, Vi ool

c'%k |[Entrainement 19.12| — Température finale. 00

On applique le premier principe a un systeme subissant une transformation isobare. On a :

Ty
AH = | Cp(T)dT = Q.
T;

Dans chacun des cas suivants, exprimer T (en fonction de T;, @ et des parametres liés & Cp) :

a) Cp =C est une constante ................cooviiiuiiiiuninniianin..

b) Cp =

e[S

(ott A est une constante) .............iiiiiiiiiiiiiiii

¢) Cp = BT? (ol B est une constante) .....................ocoeooo...
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[Entrainement 19.13| — Transformations du gaz parfait. 00

Dans cet entrainement, le systéme correspond a n moles de gaz parfait de coefficient adiabatique v = 1,4.
Il subit différentes transformations suivant les questions, et nous noterons les variables dans 1’état initial
Py, Vi, T; et les variables dans I'état final P, Vi, .
\%
nR f
1(Tf—Ti) et W=— P dV pour une
Vi

On appliquera le premier principe AU = W + Q, avec AU =

transformation quasi statique.

Dans chacun des cas suivants, exprimer le transfert thermique @ recu par le gaz :

a) pour une transformation isotherme (& température constante) ......

b) pour une transformation isochore (& volume constant) ..............

c) pour une transformation adiabatique (sans transfert thermique) ....

[Entrainement 19.14) — Etude d’une enceinte divisée en deux compartiments. 00

Une enceinte est divisée en deux compartiments.

e Le compartiment A recoit un travail W; de lextérieur et
fournit un transfert thermique @1 au compartiment B.

e Le compartiment B regoit un transfert thermique @1 du
compartiment A et fournit un transfert thermique Q2 a l'ex- _ _YV 1 _ _)Q 1 _ _9 2
térieur.
On rappelle I'expression du premier principe pour un systeme : A B

AU =W + @, ou AU est la variation d’énergie interne du sys-
téme, et ou W et @ sont respectivement le travail et le transfert
thermique regus par le systeme considéré.

a) Exprimer AUy, la variation d’énergie interne du compartiment A .........

b) Exprimer AUg la variation d’énergie interne du compartiment B .........

c¢) Exprimer AU, la variation d’énergie interne des compartiments A et B, qui correspond a la somme

des variations d’énergie interne des compartiments Aet B ....................

Calorimétrie

[Entrainement 19.15 — Capacité thermique d’un calorimétre. 0

On considere un calorimetre de valeur en eau m = 10g. La valeur en eau d’un calorimetre est la masse
d’eau ayant la méme capacité thermique que le calorimetre vide.

On rappelle la capacité thermique massique de Peau liquide : ceay = 4,2kJ - K1 - kg™ L.

Que vaut la capacité thermique du calorimetre? ........................
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[Entrainement 19.16| — Evolution de la température d’un calorimétre. 00

Nous considérons ici un calorimetre initialement a la température Ty alors que l'air extérieur est a la
température T,.

Le calorimetre étant de capacité thermique C, sa température T évolue au cours du temps et obéit a

I’équation différentielle suivante :

dT h h
a Tl ol

a) Définir un temps caractéristique pour ’équation différentielle ....................

b) Résoudre I’équation différentielle et exprimer T en fonction du temps

B [Entrainement 19.17| — Evolution temporelle de la température. 00

En échangeant avec 'extérieur, la température d’un systéme varie et suit la loi d’évolution suivante :

T=T,+ (T, —T))e ~.

Quelle courbe correspond & cette évolution temporelle ?

T T

Ty T, +
Ta + Ty

0 0

O, t © t

T T

Ty + T, |
Ta Ta

0 0
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B |Entrainement 19.18/ — Maélange de liquides. 00

Dans un calorimétre, on mélange une masse m; d’eau liquide a la température T7 et une masse mo d’eau
liquide a la température T5.

a) A léquilibre, la température de Pensemble Toq vérifie I'équation :

mic(Teq — T1) + mac(Teq — To) = 0.

Déterminer Ty, en fonction de 17, 15, m1, ma

b) En réalité, des pertes thermiques @ sont observées durant I’évolution de la température.

La température T, vérifie alors I’équation suivante :

mic(Tog — Th) + moc(Teg — T2) = Q.

Déterminer Tiq en fonction de 11, 1o, m1, ma et Q

Réponses mélangées

A — P P V n. - ‘/ini i
T, e % STF =T+ B(Ty ~T,)  —100] (P + P 2ﬁ 2 o) Q1 — Q2
Vi nR n2a/ 1 1 9
—nRTyln( L Tt — — = Wy — 8,7 x 102J
" 0n<Vi> v-1 +CV<Vf Vi) @ .
B 18 x 103 keal - K~' - mol ! me(Ty —T;) an (Ty —To) 42J K1
P
R D
T, + % :_71 Cv(Ty—T)  (IF=T% 0 150] 3000 —268kJ
P;V; — PV; V
Wi — Qs all A4 BbEAL} 62x102J  0J  nRT,In( L —0,57
k—1 Vi
T, + (Ty — Ty)e™ ¢ 42kJ  76J-K ' -mol™t (b)) —Po(Viinal — Vinitial)
mi1T1 + moTs Q miTy +moTh c 3 3Q 13
+ =~ TP+ =2
my + mo (mq 4+ ma)c mi + mo h B

» [Réponses et corrigés page 290|
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THMO3 Fiche d'entralnement n° 20

Second principe et machines thermiques

Thermodynamique

Prérequis

Equation d’état des gaz parfaits (PV = nRT). Premier principe de la ther-
modynamique (AU = W + Q). Fraction molaire. Activité d’une espéce chi-
mique (en phase gazeuse, en phase condensée). Loi de Dalton.

Constantes utiles
— constante des gaz parfaits : R = 8,314 J - K™™' mol™*
— conversion entre kelvins et degrés Celsius : T (K) = 6 (°C) + 273,15

Pour bien commencer

[Entrainement 20.1] — Compression d’un gaz parfait. 00

On comprime un gaz parfait de capacité thermique isochore Cy = 1,04J - K~! par 'apport d’un travail
W =100J. Il passe alors de T; = 20°C & Ty = 25°C.

La variation d’énergie interne de ce gaz parfait vérifie le premier principe AU = W + @Q et la premiere loi
de Joule AU = Cy AT.

Calculer le transfert thermique @ (en joules) ...

[Entrainement 20.2| — Bataille de chiffres. L)

On chauffe, sur deux réchauds identiques de puissance P = 1500 W, une masse d’eau sur 'un et une méme
masse d’huile sur I'autre, pour les emmener de 20°C & 70 °C. Qui chauffe le plus vite ?

(a) Teau (ceay =4180J - K" -kg™") (b) I'huile (chuite =2000J - K~ - kg™)

[Entrainement 20.3] — Identités thermodynamiques. 000

On rappelle I'identité thermodynamique :

dU =TdS — PdV.

a) Exprimer dH en fonction de T', V', dS et dP sachant que H = U + PV.

b) A Taide de la premiére loi de Joule, déterminer I'expression de dU pour un gaz parfait suivant une
transformation isotherme.

¢) En déduire I'expression de dS pour un gaz parfait suivant une transformation isotherme en fonction
den,R,V et dV.
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[Entrainement 20.4] — Variation élémentaire d’énergie interne. 00

On considére un systéme fermé dont I’énergie cinétique et 1’énergie de pesanteur ne varient pas entre 1’état
initial et ’état final et qui recoit uniquement un travail des forces de pression extérieures.

On notera Peyt la pression extérieure et P la pression du systéme.

Dans chacun des cas suivants, écrire la variation élémentaire d’énergie interne donnée par le premier principe
de la thermodynamique (dU = 6W + Q) :

a) pour une transformation adiabatique .......... ... ... i

b) pour une transformation adiabatique et réversible .............. ... ... ...,

¢) pour une transformation iSOchore ...t

L’entropie

[Entrainement 20.5| — Variation élémentaire d’entropie. 00

Dans chacun des cas suivants, écrire la variation élémentaire d’entropie donnée par les principes de la
thermodynamique :

a) pour une transformation adiabatique .......... ... ... i

b) pour une transformation adiabatique et réversible ........................

¢) pour une transformation isochore ............ ... . . i i,

[Entrainement 20.6| — Retrouver les lois de Laplace. o0

Un gaz parfait évolue des conditions initiales données par (T;,V;, P;) vers un nouvel état donné par
(T, Vs, Pr). Son entropie varie alors de AS, qu’on peut exprimer de trois manieres différentes :

_ nR Ty Vi
AS_fy—lln<Ti>+ann(Vi>
- nRv Tf Pf
_’y—lln(Ti> ann(H
nR Py nRy Vi
= In( —= In( = ).
Pn(F) 5

Sachant que la transformation est isentropique (on a donc AS = 0), établir la relation entre :

a) Tf, ﬂ, Vf et V; ....................................................

b) Tr,T;, Pret Py oo

c) P Pr, Viet Ve oo
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L |Entrainement 20.7| — Manipulation des lois de Laplace. 00

Un gaz parfait évolue de sorte que :
PV =,

On peut déduire de cette identité d’autres relations du méme type.

Pour chacune des relations suivantes, exprimer I’exposant x en fonction de ~.

a) TVE=C .............. d) PIT*=C* ..............

b) PT*=C' ............... e) P*TY"=C% ..............

c) PPT=C* ... ............

[Entrainement 20.8] — Bilan d’entropie. 00

On chauffe 1 mol de vapeur d’eau assimilée a un gaz parfait de pression initiale P; = 1 bar a volume constant
de T; = 120°C a Ty = 130°C.

On rappelle la seconde identité thermodynamique dH = T'dS + V dP et ici Cp = gnR.

Calculer :
a) la pression finale Py ......... b) la variation d’entropie AS ...
[Entrainement 20.9] — Calcul d’entropie créée (I). 00

On chauffe une mole d’un gaz parfait de coefficient v = 1,4 initialement & une température T; = 500K en
le mettant en contact avec un thermostat a la température Ty = 550 K de maniére isochore. Au terme de
la transformation, la température finale du gaz vaut Ty = Ty = 550 K.

T
a) Calculer la variation d’entropie du gaz AS = nk ln<f) ................

v—1 T;
b) Calculer 'entropie échangée au cours de la transformation S, = TQO .........
¢) La transformation est-elle réversible? .......... .. .. .. .. . i,
[Entrainement 20.10] — Calcul d’entropie créée (II). 00

On considere la détente de n moles d’un gaz parfait selon le dispositif de Joule Gay-Lussac.

Le gaz de volume initial V) se détend dans le vide pour atteindre un volume final 2Vj. Cette détente est
isoénergétique.

Exprimer Uentropie créée Se ... ...
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[Entrainement 20.11] — Un autre bilan d’entropie. 000
On chauffe une masse m = 1,00 kg d’eau sous une pression Fy = 1,00 bar de T; = 80,0°C a Ty = 120,0°C.

On indique que ’eau se vaporise a Ty = 100 °C sous 1 bar.

On donne les capacités thermiques massiques :

Coan =4180J - K1 - kg™*
CP vapeur = 2010J - K_l . kg_l

ainsi que I’enthalpie massique de vaporisation :

AvapH® =2257k] - kg™t

La variation d’enthalpie AH de I’eau lors de cette transformation peut s’écrire :

AH = mceau(Tl - TZ) + mAvapHo + mCP,Vapeur(TS - T4)

a) Quelle est la valeur de 77 7

@ Ty ® T © Ty

b) Quelle est la valeur de T5 ?

@To @Tz @Tf

c) Quelle est la valeur de 757

@ Ty ® T © 1y

d) Quelle est la valeur de Ty ?

@To @Tz @Tf

La variation élémentaire d’entropie pour un échauffement & pression constante s’exprime :

T
ds = mc}a?,

et la variation d’entropie de vaporisation s’exprime :

AvapH?

AVa ° =
pS TO

e) Déterminer numériquement la variation d’entropie AS de l'eau lors de cette transformation.
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[Entrainement 20.12| — Contact entre deux solides. 000

On met en contact thermique :

e une masse m; = 200g de cuivre, de capacité thermique massique ¢y, initialement a la température

Ty =500K;
e une masse my = 400g de fer, de capacité thermique massique co, initialement a la température
T, = 300 K.

Le systeme constitué des deux solides est isolé.

La capacité thermique molaire des deux solides est C,,, = 3R. On donne :

M (Fe) = 55,8g -mol™! et M(Cu)=63,5g mol™’.

a) Déterminer ¢1 .................. b) Déterminer ¢y ............o.....

c) Exprimer la température finale Ty commune aux deux solides en fonction de T4, Ts, m1, mq, ¢1 et ca.

Autour du rendement

[Entrainement 20.13| — Machine frigorifique. 00

On considére une machine frigorifique fonctionnant avec une source froide de température Tp = 4°C et
une source chaude de température T = 20°C.

Elle utilise une énergie journaliere W = 17 MJ et présente une efficacité (ou COP) égale a 1,2.

a) Exprimer le transfert thermique journalier QF avec la source froide.

¢) Exprimer puis calculer le transfert thermique Q¢ avec la source chaude.
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[Entrainement 20.14] — Moteur réel. 00

Un moteur cyclique ditherme évoluant entre une source froide de température Tr = 400K et une source
chaude de température T = 650 K produit 500 J par cycle pour 1500J de transfert thermique fourni.

L’efficacité de Carnot de ce moteur est ncarnot = 38,5 %.
a) Calculer le transfert thermique Q avec la source froide.

(a) —1000J (b) 1000J (c) 2000] (d) —2000J

b) Calculer efficacité n de ce moteur réel ........ .. ... i

[Entrainement 20.15| — Pompe a chaleur. 00

On considére une pompe a chaleur fournissant un transfert thermique hebdomadaire de 3,0 GJ avec une
efficacité (ou COP) égale a 3,0.

a) Exprimer ’énergie hebdomadaire W nécessaire au fonctionnement de cette pompe a chaleur.

c) Convertir 1kWh en joules ......... ...

d) Calculer le cotit annuel de fonctionnement de cette pompe & chaleur en supposant qu’elle tourne la
moitié de 'année. On considérera un prix moyen de dix-sept centimes d’euro au kilowatt-heure.

[Entrainement 20.16| — Calcul de la puissance d’un moteur. 000

On considére un moteur thermique évoluant entre une source froide a Tr = 126,85 °C et une source chaude
a To = 326,85 °C. On suppose que ce moteur suit le cycle de Carnot et qu’il libére un transfert thermique
de 600 J par cycle. On indique que ce moteur tourne & un régime de 2 000 cycles/ min et qu’un cheval-vapeur
(cv) vaut 736 W.

Tr

On rappelle que le rendement de Carnot est donné par n =1 — T
c

a) Calculer le rendement de Carnot 1 de ce moteur .......................

b) Exprimer le travail W libéré par ce moteur lors d’un cycle en fonction de Qr et 7.

c) Donner la valeur numérique de ce travail W ............ ... o

d) Calculer la puissance de ce moteur en ¢v .......... ...l
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Les dérivées partielles

c'%k [Entrainement 20.17| — Calcul de dérivées partielles. 00

On définit le coefficient de compressibilité isotherme. C’est :
_ 1oV
Xr="v\or),

a) Exprimer yr pour un gaz parfait en fonction de P

On définit le coefficient de dilatation isobare. C’est :
IRAC/S

b) Exprimer « pour un gaz parfait en fonction de T

On considere Y le produit défini par :

¢) Calculer Y pour un gaz parfait

Réponses mélangées

3937 - K1 . kg! z=vy—1 () 33% AS =754]-K~! 3,6 MJ
TP =T P 113 TV =Tt dH =TdS+VdP
nRIn2) dS=0 v jv) dS=5S. 361K  1,03bar
dU=0  PV;"=PV n=33% Non 1GJ n9r —295]

(1—mn)
dU = 6Q 13,4cv r=1-—7 6390] - K~} 0,31 -K~! (@)

- 1
c;gg ©  -9483 o LK 204MJ 475K kg
T T 1-
macily + maca s @ @= =7 B 12x10%euros  —37,4MJ
micy1 + MacCa qv Y
W x COP ds = nR7 -1 1,897 - K ! dU = 6W = —P. dV
o _Q

dU = 6W = —-PdV Non ds

T +68S, @

(1-7)

» [Réponses et corrigés page 300
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THMO04 Fiche d'entrainement n°21 Thermodynamique

Statique des fluides

Prérequis

Pression dans un gaz et dans un liquide incompressible. Poussée d’Archi-
mede. Bases de la mécanique. Equations différentielles.

Constantes utiles

— champ de pesanteur : g = 9,8m - s 2

— constante des gaz parfaits : R = 8,314J - K" - mol™*

Pour commencer

%{ [Entrainement 21.1 — Quelques conversions. o

On rappelle que 1atm = 1013,25 hPa.

Un fluide exerce sur une paroi une pression de 750 kPa. Convertir cette pression en :

a) N-cm™2 ..... b) bar ........... c) atm ..........

[Entrainement 21.2] — Champagne ! L

Dans une bouteille de champagne, le gaz est maintenu sous une pression p = 6,0 bar grace & un bouchon
cylindrique de diametre 20 mm.

a) Quelle est U'intensité de la force pressante qui pousse le bouchon vers le haut? .........

b) Quelle est la pression intérieure si 'on incline la bouteille de 30°7 ......................

%L [Entrainement 21.3| — Est-ce au moins homogéne ? o

On consideére un fluide dont la pression p dépend de l'altitude z (comprise entre 0 et zpax). Pour z = 0,
la pression vaut pg. Apres analyse et résolution du probléme, quatre étudiants obtiennent quatre résultats
différents pour l'expression de p(z).

Indiquer le ou les résultats qui ont le mérite d’étre homogenes :
(a) p(z) = po + 2
® ) =1 -7 .
Zmax
(©) p(z) = —=—po

Zmax T %
2

(@) p(z) = S 5 o

1- Zmax — Zmax
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Pression dans un liquide

[Entrainement 21.4] — Quelle est la formule déja ? o
L 2
On considere un liquide incompressible de masse volumique liquide (p)
p en équilibre dans le champ de pesanteur ¢ uniforme et
soumis a une pression pg a sa surface. ho
—>
Comment s’exprime la pression au point M dans le liquide ? g *M(z,y, 2)
0
O—Y
x
(a) p(M) = po(1 — pgz) (c) p(M) = po + pgho
(®) p(M) = (po + pgz) uZ () p(M) = po + pg(ho — 2)
[Entrainement 21.5| — La pression dans différents repéres. 00

On note p la pression dans l’eau, supposée incompressible et de masse volumique p, et pg la pression de
lair a linterface eau/air.

22
A Z3
Po 01“ air
cau ()
H
l? B 102
h
O3 QL
NN N Y NN NN N

21

Exprimer p dans les différents systemes de coordonnées :

a) p(z1), en fonction de pg, de get de 21 «.ooveniiii i

b) p(z2), en fonction de pg, de g, de zo de Hetde h ...,

c) p(z3), en fonction de pg, de g, de zsde Hetde aw «...ovvviiiiiiiiiiiiiii ..
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%& [Entrainement 21.6| — Projection de vecteurs. 0

On considére un solide situé au fond de ’eau.

Exprimer, dans la base orthonormée (e, €, €.),
le vecteur unitaire normal a la surface de I'objet
et orienté dans le sens de la force pressante de
I’eau sur 'objet :

a) EnA ...l c) EnC ...
b) EnB ...l
[Entrainement 21.7| — Dans un tube en U. 000
|7
On verse dans un tube en U, dont la section a pour T i huile
surface s, une certaine quantité d’eau puis un volume
Vi d’huile. Les liquides se répartissent comme indiqué Z T
ci-contre.
On cherche a exprimer la différence de hauteur entre
. ) ) d2
les deux niveaux d’eau de part et d’autre.
<t— eau dy
On note p,im la pression atmosphérique, p, la masse
volumique de I'eau et py celle de 'huile.
C B
a) Que peut-on dire de la pression en A ?
Vh Vh —

(&) pa = Pam + peg— (B) pa = Pam + Prg— (©) PA = Patm + pegch
b) Que peut-on dire de la pression en B?

@ bB :Pacm+chd1 @ PB —patm‘}'peg(‘/h‘i’dl) @ pB :pAJFchdl

S

¢) Que peut-on dire de la pression en C?

(&) pc = pn () PC = Patm + A (©) PC = Patm + pegda
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[Entrainement 21.8] — Immersion et pression. 00

Un récipient cylindrique de section de surface S contient Do Po
un liquide sur une hauteur H : c’est la situation @

On immerge completement un cylindre solide de section
de surface s et de hauteur h que I’on maintient grace a I lﬁ h
une potence : c’est la situation (b).

On note p la masse volumique du liquide et g le champ liquide (p) liquide (p)
de pesanteur. 4

® ®)

Exprimer la pression au fond du récipient en fonction des données :

a) Situation @ . b) Situation @ .

Poussée d’Archimede

[Entrainement 21.9] — Immersion de volumes. 00

La poussée d’Archimede T subie par un corps submergé ou immergé g)ans un fluide est une force dont
I'intensité correspond & celle du poids de fluide déplacé par ce corps : ||HH = MAuide X §-

On connait les masses volumiques suivantes, a 25°C :

Matériau aluminium | eau | fer | glycérine | plastique | savon liquide
Masse volumique (en g-cm™?) 2,7 1,0 | 7,9 1,2 0,9 2,5

Calculer, a 25°C, l'intensité de la poussée d’Archimede qui s’exerce sur :

a) un cube de fer de coté a = 10 cm totalement immergé dans de la glycérine.

¢) un cylindre de plastique de rayon ¢ = 10cm et de hauteur 4a immergé verticalement aux deux tiers
dans de l'eau.

[Entrainement 21.10| — Flottaison d’un glagon. L)

Un glacon de masse volumique pg et de volume Vg, déposé dans un fluide de masse volumique pr et de
volume V7, s’immerge d’un volume Viy,. Comment sont reliées ces grandeurs 7

(@) prVs = psVimm (d) psVimm = pLVs
@ pLVimm = PSVS @ pLVYimm = PLVL
@ pS‘/imm = PSVS @ Vimm = VS
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[Entrainement 21.11] — Euréka !

Un bloc solide qui a la forme d’un cube d’aréte a est plongé
dans un liquide de masse volumique p.

Il est soumis a des forces pressantes sur chacune des faces.

On note ﬁ la résultante de ces forces.

Exprimer les composantes de R dans le repére orthonormé (O, z,y, z) :

a) Ry .... b) Ry .....

[Entrainement 21.12] — Mesure de densité.

Un morceau de métal de volume inconnu est suspendu
a une corde.

Avant immersion, la tension dans la corde vaut 10 N.

Une fois le métal totalement immergé dans 1’eau, on
mesure une tension de 8 N.

a) Calculer I'intensité de la poussée d’Archimede ............................

b) En déduire la densité du métal par rapport & 'eau ........................

[Entrainement 21.13| — Ligne de flottaison.

Un bloc en forme de parallélépipede, de masse volumique pg,
de base S et d’épaisseur h, flotte a la surface d’un liquide de
masse volumique py > ps.

On note D le poids du solide, I 1a poussée d’Archimede, ¢ le
champ de pesanteur et x la hauteur de la partie émergée.

Enfin, on note E=P+1.

a) Exprimer R en fonction de T, hy S, ps, pret G oo

b) En déduire la valeur de = quand le bloc est a I’équilibre .........................
¢) On exerce une force verticale F supplémentaire sur le glagon pour le maintenir totalement immergé.

Que vaut ||I_?>|| G

00
0] air Yy
T &
R liquide (p)
g
ZlpFp-=--=-=-=-=-- +
—| a l—
Z9Fk--=-=-=-=-=-= T
z
¢) R, .....
00
T
|7
cau (ps)
00
i

<
—

solide (ps) | | x
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[Entrainement 21.14] — Iceberg conique. 000

Un iceberg en forme de cone, de masse volumique ps, de hauteur h, flotte a la surface de 1’eau de masse
volumique p.. On note x la hauteur de la partie émergée.

<

can (pe)

1
On rappelle que le volume d’un cone de section de surface S et de hauteur h vaut gSh.

a) Parmi les résultats faux suivants, indiquer ceux qui ont le mérite d’étre homogenes :
. 1h—
@x:h(l—pb> @ z=22t
Pe 3 pe

s/ Pps x = h(ps — pe)
@xz P @

Pe

b) Exprimer le volume immergé en fonction de S, het @ ....... ... ... ..

¢) En déduire z en traduisant ’égalité entre la poussée d’Archimede et le poids de iceberg.

[Entrainement 21.15] — Quand Archimeéde fait mal a la téte. 0000

Considérons deux verres identiques A et B. On remplit le verre A d’eau jusqu’a une certaine hauteur h.
a) Dans le verre B, on met quelques glagons, et on compléte avec de I'eau jusqu’a la méme hauteur h.
Les masses ma et mp des deux verres vérifient :

@mA<mB @mAsz @mA>mB

b) Dans le verre B, on remplace maintenant les glacons par des boules de polystyréne de méme masse que
les glagons mais de densité inférieure.

Par a rapport a la hauteur initiale, le niveau dans ce verre :

@ augmente @ reste le méme @ diminue

¢) On remplace les glagons par des boules en fer de masse identique aux glagons dans le verre B.

Par a rapport a la hauteur initiale, le niveau dans ce verre :

@ augmente @ reste le méme @ diminue
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Equation de la statique des fluides

LB |Entrainement 21.16/ — Musculation sur le gradient. 0

On donne l'expression du gradient en coordonnées cartésiennes :

— op_, Op_, Op_,
grad(p) = a—iex—i— a—zey—i— a—zez.

Exprimer grad(p) pour les champs de pression suivants :

a) p(x,y,z) =po+ Az, ol pg et A sont des constantes ................

b) p(z,y,2) = Bxy? + Ce**, ot B et C sont des constantes ............

[Entrainement 21.17| — Atmosphére de Mars. 000

L’atmosphere de Mars est composée de 96 % de dioxyde de carbone, 2 % d’argon, 2 % de diazote et contient
des traces de dioxygene, d’eau et de méthane.

La pression et la température moyennes a la surface de Mars sont pg = 6 mbar et T = —60 °C.

On donne les masses molaires des éléments suivants :

Elément H C O N Ar
Masse molaire (en g-mol™) | 1 12 16 14 40

a) Quelle est la masse molaire M de 'atmospheére martienne? ..................

On consideére 'atmosphére martienne comme un gaz parfait, et on note p sa masse volumique.

b) Estimer p a la surface ....... .. i

Dans le référentiel martien d’axe (Oz) vertical ascendant, la pression vérifie I’équation :

dp _

dz —pPg-

La température est considérée uniforme dans toute I'atmosphere.

¢) La pression p(z) dans Patmosphére de Mars, qui vérifie p(0) = pg, s’écrit alors :

z RT z RT

@ p(2) = po <1 - Zo) avec zg = Mg @ p(z) = po exp(—ZO) avec zg = Mg
z Mg z Mg
@ p(2) = po exp <_Zo> avec zg = RT @ p(2) = po <1 - Zo) avec zg = BT

Le champ de pesanteur sur Mars vaut ¢ = 3,72m - s~ 2.

d) Estimer I’épaisseur H de 'atmospheére, qu’on assimilera & 52¢ ................
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%L |[Entrainement 21.18] — Une expression infinitésimale.

On considére un fluide dont la pression p dépend de l'altitude z (comprise entre 0 et zpax)-

On suppose que cette pression vérifie la relation suivante :

p(z+dz) —p(z) = ———p(z) d.

Zmax

On souhaite trouver l'expression de p(z) en fonction de z et de pg (qui est la pression en z = 0).

a) Donner 'équation différentielle vérifiée par p ..........

b) Donner 'expression de p(z) en fonction de pg .........

[Entrainement 21.19] — Résoudre I’équation de la statique.

Un fluide en équilibre dans le champ de pesanteur ¢ = —ge, vérifie I’équation :
grad(p) = p9,

ou p est la masse volumique du fluide, qui dépend éventuellement de la pression.

Dans chacun des cas suivants, déterminer le champ de pression p(z,y, z) sachant que p(z,y,0) = py et que

les parameétres a, b, ¢ et g sont des constantes :

([Entrainement 21.20] — Attention ¢a déborde !

Un récipient cubique contenant un liquide incompressible de
masse volumique p est soumis a une accélération uniforme Hl
— —>
a = —aey,.
Dans le référentiel lié au récipient, la pression vérifie I’équa- o)
tion : N

grad(p) = p(7 — @),

8l

avec p(0,0,0) = pp.

*M(z,y,2)

liquide (p)

a) Déterminer p(x,y, z) dans le liquide ...

b) En déduire I’équation de la surface libre ............................

Fiche n° 21. Statique des fluides

159



Forces pressantes

[Entrainement 21.21] — Pression sur un barrage. 000

Un barrage rectangulaire de hauteur h et de largeur L baigne d’un c6té dans lair et de 'autre dans de
leau.

On modélise la situation & ’aide du schéma suivant :

z
7
F,
e \
C

P
I

O x

La fonction p = pg(h — z) correspond & la surpression exercée par l’eau a altitude z, étant donné la masse
volumique de ’eau p et l'intensité du champ de pesanteur g.

Calculer :

a) la résultante des forces pressantes Fj, = // p(z)dydz ..o

barrage

b) le moment en O des forces pressantes M,, = / zp(z)dydz ..o

barrage

¢) la position du centre de poussée z¢ tel que My, =zc x Fp ...

Réponses mélangées

— dp 2p _ a, _
@ _ey @ & - _Zmax 75Ncm ’ 7’5bar p0+3(e bgz_]')

0 2N h(l - 3 &) (pe — ps)Shyg 1,9 x 102N poe—aQZ/po @

e

pg(H — z3sin(a)) + po 0 @ 7,4 atm 12 N 43,6g - mol~* Ae; @

h — 3
po + pg(H — h — z2) %u In 5 ®) ®) Po +pg(H+ %h)

h? 3
1 - R -,
@ §ngh2 h(%) [psh — pe(h — 2)]S g —Py 6 bar

po — agz + beg (1 - e_z/c) poe 2/ play—gz)+po  po+pgH 82N

55 km 14,8g-m™3 @ z = Ey —pga’ By?e, + 2Bxye, + 2Ce**€; @
g

1 — — pth 1 — — 1 3
—(Vaz+e) N A @ ~pgLh

5 (\/—6 +ey s \/5(6 &) pot+pgn (@) (c) 6P9

» [Réponses et corrigés page 307|
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CHI01 Fiche d'entralnement n° 22 Chimie

Fondamentaux de la chimie des solutions

Prérequis
Pour cette fiche, on utilisera les masses molaires des éléments suivants :

Elément H C 0 F Ca

Masse molaire (en g-mol™") 1 12 16 19 40
Mg Mc Mo Mr Mca

On rappelle la masse volumique de l'eau : pa,0 = 1,0 X 10° kg/m3
Constantes utiles
— nombre d’Avogadro : Na = 6,02 x 10** mol "

Avant toute chose

[Entrainement 22.1| — Morceau de sucre. o

Un morceau de sucre est un corps pur qui contient 6,0 g de saccharose C13H32011. Calculer :

a) La quantité de matiére n de saccharose dans le morceau de sucre .........

b) Le nombre N de molécules de saccharose dans le morceau de sucre ........

[Entrainement 22.2| — Atomes de carbone dans le diamant. 00

Le diamant est un cristal contenant uniquement des atomes de carbone, de masse molaire M = 12 g - mol .
Sa valeur est évaluée par sa masse en carats. Un carat est équivalent & 200 mg. Le plus gros diamant jamais
découvert 1'a été en 1905 avec une masse de 3 106 carats. Calculer :

a) La masse m d’atomes de carbone contenue dans ce diamant ..............

b) La quantité de matiére n d’atomes de carbone dans ce diamant ...........

¢) Le nombre N d’atomes de carbone dans ce diamant ......................

[Entrainement 22.3| — Un verre d’eau a la mer. 00

On verse un verre d’eau de volume V' = 24,0 cL contenant initialement Ny molécules d’eau dans la mer, et
on suppose qu’il est possible d’agiter vigoureusement pour obtenir une répartition homogene de ce verre
d’ean dans P’ensemble des mers et océans du globe qui représentent un volume total Vior = 1,37 x 10¥ m?.

a) Calculer NG ...ttt

V
Vvtot
¢) Sion remplit alors le verre d’eau dans la mer, combien de molécules N contenues initialement dans le

b) Calculer le rapport R =

VEITE TEETOUVE-T-001 7 ottt ettt et et e e e e e e e e e e e
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%& |[Entrainement 22.4| — Combat de masses volumiques. 0

On considére un morceau de cuivre de 20 cm?® pesant 178 g et un morceau de fer de 3dm? pesant 24 kg.

Qui a la masse volumique la plus élevée? ......... ...,

[Entrainement 22.5| — Calcul autour du pH. 00

0°T),

Le pH d’une solution aqueuse est défini par pH = —logq(ag,0+) = — 1og10(

On rappelle que C° = 1mol - L1,

a) Calculer le pH d’une solution aqueuse contenant [H3O+] =0,1mol-L7t ...

b) Exprimer puis calculer la concentration en H3OT en fonction du pH si celui-ci vaut 7 ..

On considére une solution dont la concentration en H3O" vaut z, et on note pH, son pH.

c¢) Exprimer en fonction de pH, le pH d’une solution pour laquelle la concentration en H;0" a été

multipliée par 100 ... ...

[Entrainement 22.6] — Diagramme de prédominance. 000

L’acide malonique, ou acide propanedioique, de formule HOOC — CHs; — COOH, est caractérisé par les
constantes pK 4; = 2,85 et pK 4, = 5,80. Il sera noté HyA par la suite.

On rappelle la constante d’équilibre de Pautoprotolyse de 'eau K, = 1014,

® ®) ©

a) Identifier les valeurs de @ et @ .........................................

b) Identifier les especes correspondant & @, @ et @ .......................

¢) Quelle espéce prédomine dans une solution de pH = 4,27 .................

d) Quelle espece prédomine dans une solution de concentration [H30+]éq =1,0 x1072mol - L™! en ions

OXOIUITL 7 oottt ettt e ettt e e et e e e e

e) Quelle espeéce prédomine dans une solution de concentration [HO™ J¢q = 1,0 x 1075 mol - L™! en ions

hydroxyde T ..o
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S

Concentrations, dilutions

[Entrainement 22.7| — Combat de concentrations.

Qui est le plus concentré ?

a) 8g de sel dans 3cL d’eau ou 3kg de sel dans 1 x 10°L deau? ...oooooiiiii .

b) 3mol de sucre dans 10mL d’eau ou 400 kmol de sucre dans 2m?® d’eau? .........

[Entrainement 22.8 — Du sucre dans votre thé ?

On prépare 20 cL de thé sucré en y ajoutant 3 morceaux de sucre, constitués chacun de 6 g de saccharose

de masse molaire M = 344 g - mol~!. Calculer :

a) La concentration en masse C,, de saccharose dans le thé ..................

b) La concentration en quantité de matiere C' de saccharose dans le thé ... ...

[Entrainement 22.9 — Dilution homogéne.

On mélange un volume V; = 10 mL de solution aqueuse d’ion Fe?t a Cy = 0,10mol - L~ et Vo = 10mL

de solution aqueuse d’ions Sn*" & Cy = 0,10mol - L1,

On souhaite donner la composition du systéme en Fe*™ avant toute réaction.

a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d’étre homogenes ?

C
@) [P =

@ [F€3+]i = ClVl

b) Etablir I'expression littérale correcte donnant [Fe*]; dans le mélange ... ..

[Entrainement 22.10] — Un café au lait sucré.

On mélange 100 mL de café a la concentration en masse de caféine C; = 0,7g - L' avec 150 mL de lait

sucré & la concentration en masse de sucre Cy = 40g - L™

a) Calculer la concentration finale en masse Cf en caféine ...................

b) Calculer la concentration en masse C4 en sucre dans le mélange obtenu ...
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B |[Entrainement 22.11] — Mélange de solutions. 0

On mélange deux bouteilles d’eau sucrée de volumes respectifs V7 et V5 dont les concentrations en mole de
sucre sont respectivement C; et Co. On veut exprimer la concentration en quantité de matiere C' du sucre
dans le mélange en fonction de Vi, Vs, Cy et Cs.

a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d’étre homogenes ?

Gy
C=c—rr
O Vi+Va
(b) C =C1Vi+ CoVa

B CoVh

LB |[Entrainement 22.12| — Manipulation de formules. 00

Soit C' la concentration en quantité de matiere et C, la concentration en masse d’un soluté en solution.

On note n, m et M la quantité de matiére, la masse et la masse molaire du soluté et V' le volume de la
solution.

Exprimer :

a) Cpoenfonctionden, M et Vo oo

b) La quantité de matiére n en fonction de C,,, V et M

c) Le volume V en fonction de M, C et m ...,

%L [Entrainement 22.13| — Préparation d’une solution par dilution. o0

a) On dispose d'une grande quantité d’une solution meére d’acide acétique & la concentration en masse
C =80g-L™!. On souhaite préparer 100 mL d’une solution & la concentration en masse de 20g - L™! par
dilution.

Quel volume V; de la solution mere doit-on prélever? ...................

b) On préléeve 20mL d’une solution mére de permanganate de potassium a la concentration en masse
C,, =40g -L™! que l'on verse dans une fiole jaugée de 250 mL et que 1’on compléte ensuite jusqu’au trait
de jauge avec de l'eau distillée.

Calculer la concentration en masse Cy de la solution finale .............
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Dissolution

Prérequis

On rappelle qu’on dit qu’une solution est saturée lorsque la concentration
du soluté correspond & la concentration maximale que ’on peut dissoudre
(la solubilité) & cette température.

[Entrainement 22.14) — Dissoudre du sel ou du sucre. 00

Une solution aqueuse saturée en sel a une concentration en masse de sel valant 358 g - L~!. Une solution
aqueuse saturée en sucre contient 2,00 kg de sucre par litre de solution.

a) Quelle est la masse de sel contenue dans 20 mL d’une solution saturée en sel ?

[Entrainement 22.15| — Saturation du carbonate de potassium. 00

On peut dissoudre au maximum 1220g de carbonate de potassium KyCO3 dans 1,0 d’eau. On indique
la masse molaire du carbonate de potassium M = 138 g - mol .

Calculer :

a) La quantité de matiére n de carbonate de potassium dans 250 mL d’une solution saturée en carbonate

de POtaSSIUIN ..ot

b) La quantité de matieére n; en ions potassium KT o

¢) La quantité de matiére ny en ions carbonates CO3~ dans la solution ... ...

[Entrainement 22.16| — Fluorure de calcium. 00

On dissout 10,0 g de fluorure de calcium CaFs dans 500 mL d’eau. Calculer :

a) La quantité de matiére de fluorure de calcium dissoute ....................

b) La quantité de matiere en ions calcium Ca®* ... ... ............. ... ...,

¢) La masse en ions fluorures dans la solution ...............................
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Autour de la masse volumique

Prérequis

On rappelle que la densité d d’un liquide correspond au rapport entre sa

masse volumique et la masse volumique de ’eau.

[Entrainement 22.17] — Le sel.

On dissout une masse m = 10g de sel dans un volume V = 20mL d’eau a 25°C. La solubilité du sel a
cette température est s = 330g - L™1. On suppose que cette dissolution s’opére & volume constant.

a) Calculer la masse de sel qui reste sous forme solide ............

b) Calculer la densité d de la solution finale ......................

¢) La densité expérimentale de la solution est dexp, = 1,35.

Le volume de la solution a-t-il diminué ou augmenté lors de la dissolution? ...

[Entrainement 22.18] — Densité et température.

Le graphe suivant présente ’évolution, en fonction de la température, de la densité de I’eau pure, de I'huile
de tournesol et de I’éthanol. La pression est la pression atmosphérique.

quulde Tsolidiﬁcation (OC) Tébullition (OC)
0.9 | Eau 0 ?
= Ethanol —117 78
Huile 3 230
0.8 | Températures de changement d’état (P = Pam)

®

| |
—100 0 100 200
T (°C)

a) A quelle courbe correspond la densité de I'eatt pure? ............ooeeeeeeii i,

b) A quelle courbe correspond la densité de Phuile ? .........eeeeee i

¢) Retrouver, par lecture graphique, la température d’ébullition de I’eau pure.

(a) 0°C (b) 50°C (¢) 100°C
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Titre massique

Prérequis
On rappelle que le titre massique ¢ correspond au rapport, exprimé en pour-
centage, de la masse de composé dissous sur la masse de la solution.

[Entrainement 22.19] — Acide chlorhydrique. 00

Une solution d’acide chlorhydrique concentrée posséde un titre massique en HCI de 37 % pour une densité
d =1,19. On donne Myc; = 36,5¢ - mol L.

Calculer :

a) La masse m d’un litre de cette solution ................cooioiiiiii..

b) La masse mpc) d’acide chlorhydrique pur contenu dans ce litre de solution.

¢) La concentration en quantité de matiere C en acide chlorhydrique de cette solution.

[Entrainement 22.20| — Acide sulfurique. 00

Une solution d’acide sulfurique concentrée posséde une concentration en quantité de matiére C' = 18 mol - L1
en HySOy4 pour une densité d = 1,84. On donne My, 50, = 98g - mol '

Calculer le titre massique t en acide sulfurique de cette solution ........

[Entrainement 22.21| — L’éthanol. 00

On prépare V = 10000 L d’éthanol de titre massique ¢ = 95,4 % par distillation fractionnée. Cette solution
posséde une densité d = 0,789 et on indique que I’éthanol, de formule brute CoHgO, présente une masse
molaire M = 46,07 g - mol .

Quelle est la quantité de matiere n d’éthanol dans cette solution ?
(a) 163 x 10% mol
(b) 461 x 10> mol
(c) 439 x 10° mol
(d) 7,53 x 10° mol
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Réponses mélangées

1 nx M _ _ _ ao—
0,26 mol - L 5 34¢g 119kg  (a)=HA, (b)=HA et (c)=A
2,2 mol 12mol - L1 1,75 x 10722 3,12 x 10% GV + Cals 72¢g
V xC b ChV;
—1 X Um 2 1vV1
@ 486g 32g-L Aucune 25mL —r AT
[H307] = 10" "mol - L! 1400 0,44 kg V=25 T i Le premier
1,1 x 10%2 @ 621 g 600 g (© 0,128 mol 1 pH, — 2
18 mmol HA™ 4,4mol HA 2,2mol 0,128 mol 1,33
(@) (X)) =285t (¥) =580 90g-L7! 0,28g-L7! 8,01 x 10%*
Il a diminué 51,8 mol @ Le premier 24g-L71 Le cuivre 96 %

» [Réponses et corrigés page 315
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CHI02 Fiche d'entrainement n°23 Chimie

Fondamentaux de la chimie en phase gazeuse

Prérequis
Equation d’état des gaz parfaits (PV = nRT). Fraction molaire. Activité
d’une espéce chimique (en phase gazeuse, en phase condensée).
Loi de Dalton.
Constantes utiles
— constante des gaz parfaits : R = 8,31J - K™' mol™!

Corps pur a I’état gazeux

Entrainement 23.1| — Volume molaire d’un gaz parfait. L)
g

On considére un échantillon gazeux de n moles contenues dans un volume V a la température 7" et a la
pression P. Le gaz est supposé se comporter comme un gaz parfait.

Exprimer le volume molaire V,,, (en fonction de R, T et P) ......ccccvivviiiiiiin....

[Entrainement 23.2] — Calculs de volumes molaires. 00

Pour chacun des jeux de conditions de pression P et de température T' suivants, déterminer le volume
molaire (en litres par mole) d’un gaz se comportant comme un gaz parfait.

On rappelle que T(K) = T(°C) + 273,15.

a) P =1,00bar, T = 150K ... ..ot

b) P=1,00bar, T =300K ......ooouim i

¢) P =5000KkPa, T =25°C .0t

d) P =500mbar, T = —123°C ... .. ittt

[Entrainement 23.3| — Bataille de chiffres. 000

On donne les masses molaires suivantes :

Elément chimique Hydrogéne | Hélium | Azote | Oxygene

Masse molaire (en g-mol ') 1 4 14 16

Dans les conditions de pression et de température identiques, quel est ’échantillon gazeux (supposé étre
un gaz parfait) ayant la masse la plus importante ?

@ 5L d’hélium @ 1000 cm?® de diazote
@ 750 mL de dioxygene @ 0,1 hL de dihydrogene
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B |Entrainement 23.4] — Expérimentalement parfait. 00

L’équation d’état des gaz parfaits résulte de la combinaison de différentes lois expérimentales traduisant des
relations de proportionnalité entre les grandeurs d’état P, V', n et T. Identifier la représentation graphique
associée a chacune des lois expérimentales caractérisant un gaz parfait.

® ® © @

Pression
Volume
Volume

Pression

Volume Température Quantité de matiere Température

a) Loi de Charles : le rapport V/T est constant si P et n sont fixés ..........................

b) Loi d’Avogradro : la grandeur V,,, est constante si P et T sont fixées ......................

¢) Loi de Gay-Lussac : le rapport P/T est constant si V et n sont fixés ......................

d) Loi de Boyle-Mariotte : le produit PV est constant si n et T sont fixés ....................

[Entrainement 23.5| — Une bouteille de plongée. 00

Une bouteille de plongée standard est une bonbonne de 12 L qui contient de I'air a la pression de 200 bar. Un
détendeur permet de fournir au plongeur de l'air a la pression standard. En supposant que la température
de lair en entrée et en sortie du détendeur est constante, et que ’air se comporte comme un gaz parfait,
on peut estimer que le plongeur dispose d’une réserve respirable de :

(a) 12L d’air (c) 6L d’air
(b) 2400L d’air (d) 200L d’air

[Entrainement 23.6] — Un gaz mystérieux. 000

Une expérience réalisée & température ambiante (7' = 25°C) et sous la pression ambiante (P = 1,00 bar)
permet de produire un volume V' = 9,0mL d’un gaz, que 'on admet étre un gaz parfait. L’échantillon
gazeux est caractérisé par une masse m = 0,70 mg.

a) Calculer la masse volumique p dugazen g-L™1 ... ... ........... ... ...

b) Calculer le volume molaire en L-mol™ ... ...

c¢) Calculer la masse molaire du gaz en g-mol™" ............... ...

d) Identifier 1e Gaz .......ouii e e
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%L [Entrainement 23.7| — Parfait... mais pas uniquement.

Pour la modélisation d’un gaz, on consideére les deux modeéles suivants :
e le modele du gaz parfait : PV = nRT;
e le modele de van der Waals : <

a) Exprimer PV,, pour un gaz parfait

b) Exprimer PV, pour un gaz de van der Waals

an

P+ ‘i;gf

¢) Que valent a et b pour un gaz parfait ?

Mélanges gazeux

n

|[Entrainement 23.8) — La bouteille de gaz.

On dispose de trois bouteilles de gaz de méme volume remplies avec des gaz différents (supposés parfaits)

et & des pressions différentes.

) <V — b) = RT, ol a et b sont des constantes.

Si on transvase (sans aucun changement de température) toutes les bouteilles dans une unique bouteille
de méme volume que les autres, que vaut la pression dans cette bouteille ?

@ 1350kPa
@ 450kPa
(¢) 600kPa

.
e ®
300 kPa

600 kPa
s o

450 kPa

777 kPa
° % e
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[Entrainement 23.9] — Cocktails gazeux.

Un systéme de production industriel permet de transvaser dans un unique flacon de volume V[ un ensemble
de N volumes V), de différents gaz dont les pressions respectives sont notées P,. On note P la pression du
mélange obtenu dans le flacon. L’ensemble du systéme est maintenu a une température T constante, et
on admet que tous les gaz sont modélisables comme des gaz parfaits.

Exprimer la pression dans le flacon dans le cas :

a) général ...

b) ou Vk:%/N et P =Py oo

C) OfleZVbeth:kPO ..............................

. noRTy
d) Ol Vi = o
) o V=5
[Entrainement 23.10] — Des fractions molaires aux pressions partielles.

Au cours de la respiration, des échanges chimiques permettent aux poumons de prélever le dioxygene de
I’air et de rejeter du dioxyde de carbone. Tous les gaz sont supposés parfaits.

e Mélange inspiré :

Espéce chimique Ny Oy CO4 total
Quantité de matiére | 119 mmol | 32mmol | 0 mmol a)
Fraction molaire b) c) 0 mmol 1,000
Pression 800 mbar d) Ommol | 1013 mbar
e Mélange expiré :
Espéce chimique Ny O CO» total
Quantité de matiere | 119mmol | 24 mmol e) 151 mmol
Fraction molaire 0,788 f) 0,050 1,000
Pression 798 mbar g) h) 1013 mbar

Compléter les valeurs manquantes dans les deux tableaux.

8) Miot = oereeeniin e)
b) Tins(No) = ..o, f)
) ims(02) = oo g)
d) Pus(O2) = ..o h)
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[Entrainement 23.11] — Proportions dans un mélange gazeux. 00

On considére une enceinte fermée contenant un mélange de deux gaz parfaits différents. Indiquer si les
propositions suivantes sont vraies ou fausses : « Les quantités de matiére sont différentes si ...

a) les pressions partielles sont égales » .. ¢) les masses des gaz sont égales » ......
b) les fractions molaires sont égales » ... d) les volumes des gaz sont égaux » .....
[Entrainement 23.12| — Atmospheéres et pressions partielles. 00

Le tableau suivant présente la composition de différentes atmospheéres de planétes du systeme solaire.

Planéte | Pression en surface | Composition atmosphérique (fractions molaires)
Vénus 9MPa dioxyde de carbone (96 %), diazote (4 %)

Terre 1000 hPa diazote (78 %), dioxygeéne (21 %)

Mars 600 Pa dioxyde de carbone (95 %), diazote (3 %)

Calculer les pressions suivantes en bar :

a) Py, sur Vénus ............... d) Pco, sur Vénus .............
b) Py, sur Terre ............... e) Pco, sur Mars ..............
c¢) Pn,surMars ............... f) Po, sur Terre ...............
[Entrainement 23.13| — Pression et avancement. 000

On considere la réaction chimique de synthése de ’'ammoniac, modélisée par ’équation chimique suivante :
N3 (g) +3Hy () = 2NHs ().

Les quantités initiales valent ny, = n mol et ny, = 3n mol. On considére un état intermédiaire quelconque
de la réaction, qui est réalisée a température constante dans un volume constant. On considére que tous
les gaz se comportent comme des gaz parfaits. Exprimer les grandeurs suivantes uniquement en fonction
de la pression initiale totale P; du mélange et/ou de la quantité de matiére n et/ou de 'avancement ¢ de
la réaction.

a) Quantité de matiere totale .......... ... . i

b) Pression totale ...... ...

¢) Pression partielle en amoniac ......... ... .o

d) Pression partielle en diazote ...t

e) Pression partielle en dihydrogéne .............. ...
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Activité chimique et constante d’équilibre

[Entrainement 23.14] — Activité d’un gaz. o

On considére un mélange de gaz parfaits confiné dans une enceinte de 2m? & la température de 25°C. Ce
systeme contient du dioxygene présent a hauteur de 10 moles. Son activité doublera si :

@ on ajoute 20 moles de dioxygene @ la température passe a 323 °C
@ I’enceinte est agrandie & 4 m? @ la température passe a 50°C
[Entrainement 23.15| — La juste puissance. o

Pour chacun des quotients de réaction suivants, déterminer la puissance a laquelle est élevée la pression de
référence P° apres avoir simplifié au maximum.

ny P 2 ) £ 3
Nty P° Ny P°

a) le , RN R PP

v a-(22) () (2r) (@)
4 Mo po Co Moo Po o) e
[Entrainement 23.16| — Des quotients de réaction. 00

Pour chacune des réactions chimiques suivantes, exprimer les quotients de réaction en les simplifiant au
maximum, c¢’est-a-dire en faisant apparaitre le moins de fois possible les facteurs P° et/ou C° correspondant
respectivement & la pression de référence 1bar et & la concentration de référence 1 mol - L1,

a) N2 (g) + 3H2 (g) = 2NH3 (8) “vvrrr

b) 4H(g) + O, () = 2H20(Z) ....................................

C) CHy (g) T 20, (g) = CO, (aq) T QHQO(g) ......................

d) HQO(@) + CO4 (g) = H>CO3 (AQ) +vrerrr e
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[Entrainement 23.17| — Un soda pétillant. 00

Les boissons gazeuses contiennent du dioxyde de carbone dissous et sont pressurisées avec ce méme gaz
pour leur stockage et leur transport.

On considére une boisson qui contient 7,0 - L' de dioxyde de carbone (de masse molaire 44 g - mol™") et
dont le gaz en haut de la bouteille (uniquement du dioxyde de carbone) est & une pression de 3,0 bar.

En supposant 1’équilibre chimique atteint, la constante d’équilibre de la réaction COy(g) = COg(aq) a la
température considérée vaut :

(a) 2,3 (c) 0,050
(b) 19 (@ 21

Réponses mélangées

Ho @ faux QL—fpi @ 495L - mol ! vrai @ 2g-mol~!

NnoRTO [COQ](PO)3 a ab
164 mb. _ _— -1 RT +bP — — + —
mbar Vo Pon, P3,C° © AR VA7)
2 _
"2—1151% 0,788 (@) 6 x 1073 bar 9 x 10! bar RT 249L - mol !
Py, (P°)?
—s L 0,078g - L7t 0,21 0,162 24,8 L - mol~*
PP, g © ®
(P°)® N(N +1)
2 -2 4n —2 b P
Pi o, + n—2  0,78bar 0 5 o ()
o RT L
12,5 L - mol faux 523 faux @ 8 mmol 2 x 10™* bar

an
[HoCO3)P° (n—¢)
Pco,C° in

1 & 3(n—¢)
4 bar Py 7 Z PV, 151 mmol R 0 0,21 bar
0 r=o

249L-mol ! 51 mbar p; 213 mbar

» |Réponses et corrigés page 320|
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Fiche d'entrainement n° 24

CHI03 Chimie
Réactions chimiques

Prérequis

Tableaux d’avancement, avancement (§) et avancement volumique (&,) d’une

réaction. Loi d’action de masse. Définition du pH, constante d’acidité.

Constante d’autoprotolyse de 1’eau.
Pour commencer

B [Entrainement 24.1] — Ajuster des équations de réaction. 00
Ajuster les équations des réactions suivantes.
a) CO4+02=0C0g .c.ovviiiiiiiiiiiiiiiiiiin.
b) Agt + Cu=Ag+Cu®" ...
c) NO+CO=No+COq «oovviiiiiiiiiiiiiiin.
d) S0 +1°=S07 +1y cooiiiiiiii,
e) CgHig + O3 =COy +HO ...l
f) MnO; + H' + Fe?* = Fe** + Mn?T 4+ H,0 .....
[Entrainement 24.2| — Tableau d’avancement. ]
On considere le tableau d’avancement en quantité de matiere suivant :
Na) + 3Hag = 2NHs
Etat initial n1 No 0
Etat final Q 8 vy

ou nj et no sont des quantités de matiére. A I'instant final, ’avancement molaire de la réaction vaut &.

Déterminer en fonction de ny, no et £, les quantités suivantes :
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[Entrainement 24.3] — Dimension de la constante thermodynamique d’équilibre. L)

On considere la transformation d’équation :
SO2Clag) = SO2(g) + Cla(y).

Trouver, parmi les formules suivantes, I’expression de sa constante d’équilibre K° :

o P(802)eq X P(Cly)eq o P(SO2Cly)eq x P°
@ K= P(S05Cla)eq @ K= P(SO3)eq X P(Cla)eq

@ K° — P(SOQClg)eq @ K° — P(SOQ)eq X P(Clg)eq

o P(SOQ)Cq X P(CIQ)Cq P(SOQCIQ)Cq x P°

[Entrainement 24.4] — Expression de la constante thermodynamique d’équilibre. L

On considere la transformation d’équation :
Cd(OH)Q(b) + 4 NHg(aq) = [Cd(NH3)4]2+(aq) + 2 HO’(aq).

Trouver, parmi les formules suivantes, I’expression de sa constante d’équilibre K° :

o [HOT], x [[CA(NH, )] o [HOTZ, X [[Cd(NH,).2H]
OR [CA(OH), ], x [NHa], @ &= [NH;],, x C°

eq

[HO™]?,  [[Cd(NH,)4)**]

® K= 2 ® &

[Ho—](’fq x [[CA(NH),**], x C°

[CA(OH),],,, x [NH];, x (C°)? N INHa]",
12 ° 4 o
© Ko - [HO™], x [[CA(NH,)4**] < (C°)? @ K° = Z[NHg]eq x C
1 _
[CA(OH),],, x [NHz];, [HO ]eq x [[CA(NHy)4J?*],,
[Entrainement 24.5 — Expression et calcul de la constante d’équilibre. 00

On considere la réaction acide-base entre le chlorure d’ammonium (NHZr ; C17) et 'hydroxyde de sodium
(Na™t; HO™) :
NHI(aq) + HO™ (aq) = NH3(aq) + H20¢y).

a) En utilisant la loi d’action de masse, exprimer la constante d’équilibre K° de la réaction en fonction
des activités des différentes especes physico-chimiques intervenant dans la réaction.

b) La constante d’acidité K4 du couple NH] /NHj3 est la constante d’équilibre de la réaction

NHY (4 + H20 = NHj (o) + H30" (o).

Exprimer K 4 en fonction des activités des especes pertinentes
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¢) La constante d’autoprotolyse de ’eau K, est la constante d’équilibre de la réaction

2H20(Z) = HSO+(aq) + HO_(aq).

Exprimer K, en fonction des activités des especes pertinentes ..........

d) Donner 'expression de K° en fonction de K4 et Ko ................

e) A 25°C, on donne pK 4 = —log;o(K4) = 9,25 et pK, = —log,o(K.) = 14.

Calculer KO .o

Composition finale d’un systeme siege d’une réaction chimique

[Entrainement 24.6] — Sens d’évolution d’une réaction. 00

On consideére la transformation d’équation :
CchOOH(aq) + F(_aq) = CHgCOO(_aq) + HF(aq)

dont la constante d’équilibre & 25°C est K° = 1015,

On réalise cette réaction en partant de différentes concentrations initiales de réactifs et de produits.

Pour chacun des cas ci-dessous, déterminer le sens d’évolution de la réaction.

a) [CH3COOH], = [F7] =1x10""mol-L™" et  [CH3COO~], = [HF], =0mol-L~"
@ sens direct @ pas d’évolution
@ sens indirect

b) [CH3COOH], = [Ff}l = [CHgCOOji =1x10"'mol- L7} et [HF], = Omol - Lt
@ sens direct @ pas d’évolution
@ sens indirect

¢) [CH3COOH], = [F~], = [CH3COO™], = [HF], = 1,0 x 10" " mol - L™!
@ sens direct @ pas d’évolution
@ sens indirect

d) [CH3COOH]; =8,0 x 10 *mol - L™* et [F7]. = [HF]; =4,0 x 10"*mol - L™"
et [CH3COO™], =2,0 x 10" mol - L'

@ sens direct @ pas d’évolution
@ sens indirect

178 Fiche n° 24. Réactions chimiques



[Entrainement 24.7] — Détermination du réactif limitant. L)

On considére la réaction entre les ions fer (III) et les ions hydroxyde, formant un précipité d’hydroxyde de
fer Fe(OH)3(g), aussi connu sous le nom de rouille. L’équation de la réaction est :

Fe3+

(aq) + 3 HO(_aq) = Fe(OH)3(S).

A Dinstant initial, on mélange une solution de chlorure de fer (III) (Fe*; 3 C17) avec une solution de
soude (hydroxyde de sodium (Nat; HO™)) de sorte a obtenir les conditions suivantes :

Fedt Cl Na* HO™

Quantité de matiére initiale | 3,0 x 1072mol | 9,0 x 1072 mol | 6,0 x 1072 mol | 6,0 x 1072 mol

Déterminer le réactif limitant.
@ F€3+(aq) @ HO™ (aq) @ FG(OH)g(S) @ Il n’y en a pas

[Entrainement 24.8| — Transformation totale. 00

On considére la réaction de combustion du butane & 1’état gazeux suivante, ainsi que les concentrations
initiales des réactifs :

2 C4H10(g) + 13 Og(g) — 8 COQ(g) + 10 HQO(g).
C4Hio 02 CO2 | HyO

Quantité de matiére initiale | n; = 0,10mol | no = 0,65mol | Omol | Omol

Sachant que la réaction est totale, déterminer :

a) L’avancement maximal &yax pour cette transformation .............. ...l

b) La quantité de matiére de dioxyde de carbone (CO3) & Iétat final ..................

|[Entrainement 24.9] — Une autre transformation totale. 00

On s’intéresse a la réaction des ions argent avec le cuivre selon 1’équation de réaction :

2 Ag?;q) + Cuggy — Cu%;;) + 2 Ag(s).

Cette réaction est totale. On mélange initialement un volume V' = 20 mL d’une solution contenant des ions
argent (Ag™) & la concentration C' = 0,25mol - L™! avec une masse m = 0,254 g de cuivre solide (Cu).

On donne la masse molaire du cuivre Mg, = 63,5g - mol ™! et celle de 'argent Ma, = 107 g - mol .
a) Quel est le réactif limitant ?

@ Ag?;q) @ Cuy) @ Il n’y en a pas

b) A la fin de la réaction, la quantité de matiere de Cug) vaut :

@ 1,5 mmol @ 2,5 mmol @ 0 mmol
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[Entrainement 24.10| — Loi d’action de masse et composition a I’équilibre. 000

A linstant initial, on mélange un volume Vi d’une solution aqueuse d’ions benzoate (PhCOO™) a la
concentration C7 et un volume V5 d’une solution aqueuse d’ions oxonium (H30+) a la concentration Cs.

On donne I’équation de la réaction et son tableau d’avancement en quantité de matiere :

PhCOO, , + H?,o(*aq) = PhCOOH( + HyO(
Etat initial iV C5 Vs 0 exces
Etat final CiVi —¢€ CoVy — € 3 exces

a) A Taide de la loi d’action de masse, exprimer la constante d’équilibre K° associée & cette réaction, en
fonction de Cq, Co, Vi, Vo, C° et &.

|[Entrainement 24.11 — A la recherche de 1’équilibre. 00

La loi d’action de masse permet de déterminer 'avancement & ou l’avancement volumique &, a 1’équilibre.

Mettre ces différentes lois d’action de masse sous la forme d’une équation du second degré en & ou &,.

2

W K = Ty e e
o »(C v

b) K :m ...........................

erT\?

c) K°= ((m‘f)RT(): z("zvﬁ)RT) ...............

oo TV
(<n—2V£>RT)

I
((7:;255) P
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B |[Entrainement 24.12] — Calcul de ’avancement a ’équilibre. 000

Dans chacune des situations suivantes, une réaction se produit dans le sens direct. On indique que son
avancement maximal est £, max = 1,0 X 10" mol - L1,

La loi d’action de masse donne I’équation dont est solution I’avancement volumique &,.

Calculer &,.

K° =20

2(1—K°) 4+ &,K°(C1 4+ Cy) —K°C1Cy =0
a) &( )+& (Ch 2) 12 avec (72:201:1,0><10_1mol-L_1

K°=10""7
Ci=10x10" mol - L7}

b) & +&,K°C° — K°CiC° =0 avec {

Autour des réactions acido-basiques

B |[Entrainement 24.13] — pH d’une solution. 00
a(HO™) x a(H30™)
a(f,0)?

vaut K, = 107 4 25°C.

La constante d’autoprotolyse de I'eau K, =

Calculer le pH de la solution dans les cas suivants.

a) Une solution telle que [H30T] =50 x 107 2mol - L™ ...

b) Une solution telle que [HO™] = 1,0 x 107 2mol - L™ ... ...

c.;,k [Entrainement 24.14) — Quelques combats de concentration. 000

Pour chacun des cas suivants, déterminer quelle solution possede la plus grande concentration en ions
oxonium.

a) Premier cas

@ Une solution de pH = 1,0. @ Une solution de pH = 2,0. |:|

b) Deuxieéme cas

@ Une solution avec [H301] = 5,0 x 1072 mol - L. @ Une solution de pH = 3,0.

¢) Troisieme cas

@ Une solution avec [HO™] = 2,0 x 10> mol - L™

@ Une solution avec [HO™] = 8,0 x 10" ?mol - L1,

d) Quatriéme cas
(a) Une solution avec [HO™] = 1,0 x 10~ mol - L™".
@ Une solution de pH = 9,0.
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[Entrainement 24.15 — Constante d’acidité. 00
On considere le couple NHJ /NHj.
Sa constante d’acidité K 4 est la constante d’équilibre de la réaction :
+ _ +
NHY (5q) + H2O) = NHz(aq) + H30™ (aq)-
On donne K4 = 10722 4 25°C.
a) A l'aide de la loi d’action de masse, exprimer le pH en fonction de pK 4 = —log;o(K4) ainsi que des

concentrations [NH[ ] et [NH;].

b) Sachant qu’on a [NHJ] = 2,0 x 10 mol - L™! et [NH3] = 1,0 x 10~

solution.

[Entrainement 24.16| — Equilibre acido-basique.

3mol - L™!, calculer le pH de la

On introduit un volume V = 20,0 mL d’une solution d’acide éthanoique CH3COOH a la concentration
C = 2,00 x 107*mol - L™! dans un bécher contenant un volume V' = 20,0mL d’eau distillée.

Un équilibre s’établit selon ’équation de réaction :

CchOOH(aq) + HQO(@) = CH3COO,, ) + H30+

(aq

(aq)

La constante d’équilibre de cette réaction est K4 = 10~*® & la température de I’expérience.

a) Etablir équation du second degré vérifiée par Pavancement volumique &, a I'état final d’équilibre.

b) Calculer [CH;COOH],, & I'équilibre ................o.oiiL,

¢) En déduire le pH de la solution a I’équilibre ........................
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Réponses mélangées

a(NHgz)eq X a(H20)eq
a(NH] )eq X a(HO ™ )eq

4K°€? — 5(4K°n + 1;;) +K°n?=0

3,6 x1072mol - L~}

5,0 x 1072 mol
2CgHgs +2505 = 16 CO5 + 18 HL,O
E2(4K°P + P°) — ((4nK°P +nP°) + K°n*P =0

2 2NO +2CO =N, + 2 CO,

n—¢
MnOj + 8HT + 5Fe*" = 5Fe®t 4+ Mn?" +
a(HO™ )eq % (I(H30+)eq

8,8 x 10 *mol - L~!

® ®

(K"
NH
O ® ® pH = pK4 + log;q ( [[NHZ]

E2 —£(C1 V1 4 CoVi) + C1Co ViV —

’II2—3§

2CO 4+ 03 =2C04

a(NHg)eq X a(H30+)eq
a(NH] )eq x a(H20)eq

3,9 1,3 (©

4 £,(Cy + K°C°) — K°C1C° =0

—1)—€¢K°(ny +n2) + K°ning =0

[C°(Vi + Va))?
Ko
4H,0 7,6 x 1072 mol - L7!

(C°(Vi + Va))°

3]

=0

@ a(H20)2, (C1V1 = &) x (CaVa = ¢)

(&  S$05 +2I" =250+, (& (&  10%7
1 —K°)+&Ko(CL+Cy) —K°C1Cy =0 12 &+ KaC°&, — KaCiC° =0
@ 89 2 Agt + Cu =2 Ag + Cu?t 40x107'mol (b))  K°= I;(A

» |Réponses et corrigés page 326|
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CHI04 Fiche d'entrainement n° 25

Cinétique chimique

Prérequis

Chimie

Avancement. Spectrophotométrie. Catalyse. Equations différentielles.

Vitesse de réaction et notion d’ordre

[Entrainement 25.1) — Constante de vitesse.

On consideére une transformation chimique modélisée par la réaction d’équation :

A — B.

On suppose que la réaction admet un ordre, on note k la constante de vitesse et v la vitesse volumique de

réaction.

a) On suppose que k s’exprime en s~ !.

Parmi ces relations fausses, laquelle a au moins le mérite d’étre homogene 7

b) La constante k s’exprime en L? - mol =2 -

Quel est 'ordre probable de la réaction ?

1
@ 0 3

-1

(o) -1
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[Entrainement 25.2] — Exprimer des vitesses de réaction. L)

On considere I'équation de la réaction de formation de 'ammoniac NHs a partir du diazote Ny et du
dihydrogene Hs, en phase gazeuse :

Na(g) +3Hz(g) = 2NHz ).

a) Exprimer la vitesse volumique de formation du produit en fonction de sa concentration.

d[NH 1 d[NH
@ Uform(NH?)) =+ [dt 3] @ Uform(NH3) = 5 [dt 3]

d|[NH: d|{NH
@ Vtorm (NH3) = — [dt 3] @ Vtorm (NH;z) = 2 %

b) Exprimer la vitesse volumique de disparition de Hs en fonction de sa concentration.

@ vdisp(H2) = — %d[d}%] @ vaisp(Hz) = 3 d[dl—%]
d[Hy] d[Ho]

@ UdiSP(H2) = dt @ 'Udisp(HQ) =-3 ai

¢) Choisir les bonnes réponses parmi les propositions suivantes définissant la vitesse volumique v de
réaction.

1 d[NH;] d[N,]
@v=35"g ©v=-"4
1 d[NH] 1d[H)
@U__§ dt @U__§ dt

d) Exprimer la vitesse de disparition des réactifs et la vitesse de formation du produit en fonction de la
vitesse volumique v de réaction.

@%v;v;v @’U53W§2U
@v;—3v;—2v @U§—U;—U

[Entrainement 25.3| — Notion d’ordre. o

Indiquer si les réactions suivantes possedent un ordre global et, si oui, préciser sa valeur.

a) NOQ(g) + CO(g) = NO(g) + COQ(g) v =kxX [N02]2 e

b) CO(g) + Cla(e) = COClay ; v =k x [CO][CL]*/2 ... .

k x [Hg][BI‘Q}l/z
C) HQ(%) + Br?(g) =2 HBr(g) ;U= W .......

1+k x ——
[BI‘Q]
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[Entrainement 25.4] — Déterminer graphiquement des vitesses. 00

On considére la transformation chimique d’équation suivante :
3CLO™ (aq) — ClO3™ (aq) + 2CL (ag)-

Le profil de concentration des réactifs et des produits est présenté ci-dessous :

|+ [cto]
45 —=— [CLO;7]
~‘ -' —e— [C(7]

351 N

25| .

¢ (en mmol - L™1)

05 ¢ .

Déterminer graphiquement, a I'instant £ = O min :

a) la vitesse de disparition des ions hypochlorite C/O™ ......................

b) la vitesse de formation des ions chlorate C£O3 ...t

c) la vitesse de formation des ions chlorures C/™ ............. ...,

d) la vitesse de réaction U ........... i
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Autour de la loi d’Arrhenius

La constante de vitesse k& d’une réaction est donnée par la relation d’Arrhenius :

kAxeXp(}?;), (%)

ou A est le facteur de fréquence indépendant de la température, E, ’énergie d’activation de la transfor-
mation (en J-mol™!) et R = 8,314J - K~ -mol ™! la constante des gaz parfaits.

c‘;x [Entrainement 25.5| — Exploiter la loi d’Arrhenius. 00

a) A laide de (), exprimer E, en fonction de k, A, Ret T ...........

La valeur de k double entre 77 = 25°C et T = 35°C.

b) Déterminer la valeur de E, ..ot

c.;)k [Entrainement 25.6| — Exploiter la loi d’Arrhenius linéarisée. 00

Dans cet entrainement, la constante de vitesse k est exprimée en L - mol ™1 - s 1.

a) A laide de (), exprimer In(k) en fonction de E,, A, Ret T ........

On considere la régression linéaire ci-dessous.

[ J
@ points expérimentaux
4 —— modélisation
2 —
S
Z 07
—2 y=ax—+b
a = —21796,0
4 b =270
T T T T T T T T

T T
095 1 105 11 115 12 125 13 135 14 145 15
1/T (en K1) 10~

b) A T'aide de cette régression, déterminer la valeur de Iénergie d’activation E, . ...

c) A Taide de cette régression, déterminer la valeur du facteur de fréquence A ......
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Autour des réactions admettant un ordre

On consideére une transformation chimique modélisée par la réaction d’équation :
aA — BB,

ou A et B sont des composés chimiques et ol « et 3 sont les coefficients stcechiométriques correspondants.

La constante de vitesse de la réaction est notée k.

%L [Entrainement 25.7| — Etablir une loi d’ordre 0. o0

a) Donner 'expression de v, la vitesse volumique de réaction, en fonction de [A].

¢) En déduire, par intégration, la concentration [A] en fonction du temps.

On notera [A]y la concentration initiale.

%L [Entrainement 25.8 — Etablir une loi d’ordre 1. o0

a) La réaction est supposée d’ordre 1 par rapport a A. Quelle est 'autre expression de v ?

b) En déduire, par intégration, la concentration [A] en fonction du temps.

On notera [A]g la concentration initiale.

%L [Entrainement 25.9] — Etablir une loi d’ordre 2. o0

a) La réaction est supposée d’ordre 2 par rapport a A. Quelle est 'autre expression de v ?

1
b) En déduire, par intégration, ’expression de — en fonction du temps.

(Al

On notera [A]y la concentration initiale.

¢) En déduire I'expression de [A] en fonction du temps.
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B |[Entrainement 25.10 — Exprimer un temps de demi-réaction. 00

On consideére une transformation chimique modélisée par la réaction d’équation :
aA — BB,

ou A et B sont des composés chimiques et ot «a et 8 sont les coefficients stoechiométriques correspondants.

On appelle temps de demi-réaction et on note t;/9, le temps au bout duquel la moitié du réactif limitant
a été consommée. On note [A]y la concentration initiale en A.

Exprimer le temps de demi-réaction ¢,/ pour chaque expression de [A] :

Détermination expérimentale d’ordre

[Entrainement 25.11] — Appliquer la méthode du temps de demi-réaction. 00

On considere la réaction d’isomérisation ci-dessous dont on a mesuré le temps de demi-réaction ¢/, pour
différentes concentrations initiales en réactif :

(=42

[Alo (en mol-L™1) | 2,66 | 3,24 | 4,03 | 4,87
t1/2 (en's) 877 | 876 | 878 | 877

On rappelle ci-dessous les expressions des temps de demi-réaction pour des réactions d’ordre 0, 1 ou 2.

Ordre 0

—_
[\

ty)2 T

a) Déterminer lordre de la réaction

b) Calculer la constante de vitesse
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[Entrainement 25.12| — Appliquer la méthode de la dégénérescence de ’ordre. 000

On étudie dans cet entrainement la réaction de transformation du 1-bromo-2-méthylpropane (noté RBr)
en 2-méthylpropan-1-ol (noté ROH) par I'hydroxyde de sodium en solution aqueuse.

L’équation associée a cette réaction, de constante de vitesse k, est :

RBT(aq) + HO_(aq) — ROH(aq) + Br™ (aq)*

Pour étudier sa cinétique, on mesure la concentration en réactif [RBr| au cours du temps, durant une
expérience pour laquelle la concentration initiale en ions hydroxyde est [OH | = 1,0 x 10~ mol - L1,

Temps ¢ (en min) 0 20 70 | 140 | 280
Concentration ¢ (en 10~3mol/L) | 1,00 | 0,80 | 0,50 | 0,25 | 0,06

a) Déterminer le temps de demi-réaction ¢/, a I'aide du tableau.

(a) t1/2 = 20min (¢) t1/2 = 140min
(b) t1/2 = 70min (d) t12 = 280 min

b) On suppose que lordre partiel par rapport & chacun des réactifs est de 1.
La loi de vitesse peut s’écrire (plusieurs réponses sont possibles) :
(a) v = k[RBr][HO™] (©) v = kapp[RB1] avec kayp, = K[HO ]
(b) v = kapp[HO™] avec kapp = k[RBr]o (d) v = k[RBr]”

¢) Indiquer le graphique a tracer pour déterminer la valeur de la constante apparente kapp.

@ [RBr] en fonction du temps

@ In ([RBr]) en fonction du temps
1
[RBr]

exp ([RBr]) en fonction du temps

en fonction du temps

® ©

d) On trouve k,pp = 1,0 x 102 min~*. En déduire la valeur de k.
(a) k=1,0x10"%mol - L™ - min~" (¢) k=1,0%x10""mol-L™" - min~"
(b) k=1,0x10"*L-mol ™" - min~" (d) k=1,0x10""L-mol™" - min~"

190 Fiche n° 25. Cinétique chimique



[Entrainement 25.13] — Appliquer la méthode différentielle. 000

On étudie la synthese du sulfure d’hydrogéne HaS(,) a partir de vapeurs de soufre S, et de dihydrogene
gazeux Haz (g suivant la réaction d’équation :

S(g) + Ha(g) — HaS(y).

On suppose que la vitesse initiale est de la forme vg = k x [S]o" x [Ha]o™.

Deux séries d’expériences ont été effectuées afin de déterminer les ordres partiels par rapport a chacun des
réactifs.

Série 1
[S]o (en 102 mol - L) 1,67 | 1,67 | 1,67
[Ha]o (en 10~2 mol - L) 0,62 | 1,24 | 1,86
vo (en 107 *mol - L™ -min~") | 0,75 | 1,50 | 2,25

a) Déterminer la valeur de m par exploitation des données expérimentales de la série 1.

La deuxiéme série d’expériences donne la régression linéaire suivante pour [Ha]o = 1,86 x 10> mol - L.

-7
@ points expérimentaux
—— modélisation
—7.5
=
S -8+
=
—8,5 y=axr+b
a="7
b= —-5,19
_9 T T T T T T T T

1
-7 -68 -66 -64 -62 -6 -58 -56 -54 -52 -5
111([5}0)

b) Exprimer In(vg) en fonction de In[S]y et montrer que ces entités sont reliées par une fonction affine.

¢) Exploiter la régression linéaire afin de déterminer la valeur de n

d) Déterminer la valeur de la constante de vitesse k

Fiche n° 25. Cinétique chimique 191



Réponses mélangées

m=1 kAP k(@ % 1,8 x 102kJ - mol !
[A]iak n = % @ % 1,7mmol - L™! - min~! 3,3mmol - L™ - min~!
1,7mmol - L™! - min~? In(A) — % 3,00 LY/2. mol~'/2. min~! 53kJ - mol~*
1 Oui : g Non 7,90 x 1074571 [A]o x exp(—akt) Oui : 2
RT(In(A) — In(k)) ﬁ + akt @ 5,0mmol - L™ - min~* @ et @
©® ® @ Uy © 0 ©
% [Alo—akt  53x10"L.-mol™'-s™'  w=kA] (0 ®

» |Réponses et corrigés page 333|
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GAL02 Fiche d'entralnement n° 26

Chiffres significatifs et incertitudes

Prérequis

e Les incertitudes sont & donner avec deux chiffres significatifs.

e Toutes les incertitudes fournies sont des incertitudes-types.

Ainsi, si le résultat d’une mesure de vitesse est de 30 metres par seconde

avec une incertitude-type de 1 meétre par seconde, on notera cette vitesse :

v=(30,0+1,0)m-s"".

Résultats numériques

Généralités

a.;wk |[Entrainement 26.1| — Ecriture scientifique. O
Réécrire les nombres en utilisant 1’écriture scientifique. On veillera a garder les chiffres significatifs.
a) 31,5 . e) 20239 ...l
b) 0,0019 ................... £) 7300 ...
c) 0,8120 ..o, g) 330 x10% ... ...l
d) 1600002 ................. h) 70,22x107% ... ........
L |Entrainement 26.2] — Combien de chiffres significatifs ? LY
Indiquer le nombre de chiffres significatifs des grandeurs mesurées suivantes :
a) une intensité électrique de 0,39 A .. ¢) une vitesse de 12,250km -h=' ... ..
b) une tension de 12,84mV ........... d) une longueur de 0,0020m ..........
L |Entrainement 26.3] — Opérations et chiffres significatifs. {

Effectuer les calculs en gardant le bon nombre de chiffres significatifs.

a) Combien de kilomeétres sont parcourus en 6,0 min par une voiture roulant & une vitesse moyenne

v=80km - hT

b) Quel est le périmetre d’un rectangle de largeur 6 mm et de longueur 15cm? .. ...

Ry

Le gain d’un pont diviseur de tension vaut G = —————. On effectue le montage avec une résistance

Ry = 0,9k et une résistance Ry = 100 €.

c¢) Quevautlegain G? ...,

Ri+ Ry
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[Entrainement 26.4] — Incertitude et chiffres significatifs. o

Une mesure de focale donne pour résultat f = 12,016 835 7 cm avec une incertitude-type de 32,316 648 2 mm.
Quel sera votre résultat numérique final ?

(a) f'=(12£3)em (© f'=(120+32)em
(b) f" = (120 + 65) mm (@) f' = (120 % 33) mm

Propagation des erreurs

Prérequis
On considere z et y, deux grandeurs expérimentales indépendantes, et on
considére z = f(z,y) une grandeur calculée.

L’incertitude-type u(z) est reliée a celles de = et y via les relations :

u(z)? = a® u’(z) 4+ b° v’ (y) si z=azx+by

() - () or() o e
z x Yy

ou a, b et ¢ sont des parametres fixés.

[Entrainement 26.5 — Pour commencer. 000

On mesure z = (10,0 £0,2) m et y = (9,1 £0,3) m.

Calculer :

Y I

[Entrainement 26.6| — Dosage d’une solution. 00

On dose une solution acide de concentration c4 inconnue. Le volume de la solution dosée est V4, et la
solution utilisée pour le dosage est de concentration cg. A 1’équivalence, un volume Vg de base est versé

et 'on a :
cp X VB

Va
La base est préparée de sorte & avoir cg = (100,0 + 2,0) mmol - L1,

De plus, on mesure les volumes V4 = (20,00 £ 0,10) mL et Vz = (11,80 + 0,10) mL.

Cp =

Quel résultat obtient-on pour ¢4 ? (en mmol - L™1) ...
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%L |[Entrainement 26.7| — Puissance électrique dans une résistance. 00

On désire mesurer la puissance dissipée par effet Joule dans une résistance, donnée par P = U x I = RI°.

Donner la puissance (exprimée en watts) et son incertitude pour les mesures suivantes :

a) U=(2382+0050)V et I=(0,500%0010)0A .....ocovvvrieiiieiiii

b) I=(0,500+00100A et R=(470+E0,14)Q ....ooeiiieiii ]

¢) Ces deux mesures sont-elles compatibles ?

@ Oui @ Non

a.;wk [Entrainement 26.8) — Diamétre d’un tube. 00

On mesure ’épaisseur d’un tube cylindrique au pied & coulisse.
Le diamétre intérieur du tube est d = (6,8 £ 0,1) mm et le diameétre extérieur D = (10,3 & 0,1) mm.
a) Exprimer I’épaisseur e du tube en fonction de d et D.

(@) m(D* - &) b-d © VD + & a-D

2

b) En déduire expression de l'incertitude-type sur ’épaisseur u(e) en fonction de D, d, u(d) et u(D).
1

® LD © VD) +

© () (F) © (%) (7

¢) En déduire le résultat de la mesure de e.

(a) e = (1,75+0,07) mm (¢) e=(1,8£0,1)mm
(b) e = (1,75 +0,10) mm (d) e = (1,750 £ 0,071) mm
L |[Entrainement 26.9] — Analyse d’une figure de diffraction. 00

On mesure la figure de diffraction obtenue en interposant un cheveu entre un écran et un laser. La distance
entre le cheveu et 'écran est D = (3 + 10 x 107®) m, la longueur d’onde du laser A\ = (632,80 4 0,10) nm,
et ’on observe une tache de diffraction de largeur ¢ = (5,10 £ 0,30) cm.

Le diametre d du cheveu peut alors se déduire de ces mesures via la relation :

AD
d=2—r.
4

a) Exprimer 'incertitude u(d) en fonction de d, A, D, ¢,

et de u(A), u(D) et u(l) ..ooiii

b) Quel résultat obtient-on pour d? (en pm) .............
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Incertitudes expérimentales

[Entrainement 26.10 — Série de mesures. 00

On procede & n = 10 mesures d’une tension. Le tableau ci-dessous recense les résultats :

Mesure n° 1 2 3 4 5 6 7 8 9 10
U; (en' V) | 4,955 5596 4271 4,955 5,164 5371 4,671 4,736 5,393 4,183

1
a) Que vaut la moyenne arithmétique m = — Z U; de la série? .............
n -

(3

2.i(Ui —m)?

b) Calculer écart-type expérimental de la série oy = {/ =—— .......

n—1
L’incertitude-type de m est donnée par u(m) = v
vn
c) En déduire le résultat final de la mesure .............. ..ol
[Entrainement 26.11] — Focométrie. 00

On procede a des mesures d’une distance focale (notée f’); le tableau ci-dessous recense les résultats :

| f(encm) [ 246 245 251 251 253 254 249 248 249 254 253 249 |

Donner le résultat final de la mesure ........... ...

[Entrainement 26.12| — Résistances en série. 00

On dispose de n résistances identiques, dont I'incertitude relative est donnée & 1 %. On les monte en série.
Ainsi, la résistance totale est égale a la somme des résistances individuelles.

Quelle est I'incertitude relative pour la résistance totale lorsque n =57

(a) 044% (b) 1% (©) 2,2%

[Entrainement 26.13| — Mesure au pied a coulisse. 00

On mesure le diameétre d d’un fil de cuivre au pied & coulisse (on prendra u(d) = 0,050 mm) :

1 2 3 4
il i
0 10

a) Que vaut le diametre? ... ...

b) En déduire la section droite du fil (en mm?) .............ccooiiiiiiiii...

196 Fiche n° 26. Chiffres significatifs et incertitudes



Autour du z-score

Prérequis
On appelle écart normalisé (ou z-score) entre deux grandeurs z; et x2,
connues avec des incertitudes-types u(z1) et u(z2), le nombre réel positif
défini par :
|z2 — z1]

u(z1)? + u(z2)?
Par convention, les deux valeurs x1 et x3 sont dites compatibles si z < 2.
Comme c’est un indicateur a comparer a 2, on ne garde qu’'une décimale
lors de sa détermination.

On utilise en particulier cette définition dans le cas ot une des grandeurs, par
exemple x1 peut étre considérée comme une référence, avec une incertitude
négligeable. On a alors u(z1) < u(z2) et la formule approchée plus simple :

;o |z~
u(z2)
[Entrainement 26.14] — Z-scores et compatibilité. o

Dans chaque situation, deux valeurs d’'une méme grandeur sont obtenues indépendamment.
Indiquer, en calculant leurs z-scores, si ces valeurs sont compatibles :

a) La vitesse du son dans l'air est déterminée expérimentalement & (349,0 +2,3)m -s~'. Une table de
référence donne (344,08 4 0,69)m - s~ 1.

@ Oui, elles sont compatibles @ Non, elles ne le sont pas

b) Une température est mesurée par deux groupes en TP. Le premier groupe obtient (52,900 & 0,060) °C,
le second (53,100 £ 0,060) °C.

@ Oui, elles sont compatibles @ Non, elles ne le sont pas

¢) Une lentille est vendue pour avoir une focale de 25 cm. Lors d’une séance de TP, cette focale est mesurée
a (24,05 £+ 0,85) cm.

@ Oui, elles sont compatibles @ Non, elles ne le sont pas
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Réponses mélangées

3,30 x 108 8,0km (1,191 4 0,035) W 1,0 x 107! 7,300 x 103 0,472V
(® 5 49295V 4 (@) 0,910 + 0,035 (19,10 4 0,36) m
@ ® ® 702x107  315x 10 (@  (T44+44)um

(91,0 4+ 3,5) m? (©) et @ 2 31lcm d\/($> + <@> + (#)

2 1,600002 x 108

(2,49 + 0,14) mm?
8,120 x 10~ *

(4,93 +0,15)V

(59,0 + 1,4) mmol - L™*

@

2,0239 x 10° (1,175 4 0,059) W

(0,90 +0,36)m (1,780 = 0,050) mm

®

1,9x 1073 (25,017 + 0,092) cm

» |Réponses et corrigés page 337|
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Ficl 5T C onS

Réponses
1.la)............. 1-10'm
1.1Db) . 2,5-10°m
1 I ) 3-10%m
1.1d) ..o 7,2-10"%m
1le)oonn... 52-107?m
1.1f)........... 1,3-107"m

Lab)

1.2d) .. 1,20- 107" m
1.2€). i, 2,3-10"*m
1.2€) .. 4,1-107"m

1.6a)........... 1,99 - 10° Rg
1.6b)........... 1,99 -10° Qg

1.6¢)........... 1,90 - 10° Rg
1.6d)................ 1,90 Qg

1.10a)...... 1,03 x 10° TWh|
1.10b). oo,
1.10¢C) e
1.10d) ..o
1.10€) . oo
110 ) oo,

10g) e
110h). ..o,

A1 lor

112 8)ee ..

1.12 b).... [0,000 000 000 1m\

1.13a).......... 4,43-10%m

1.13b)........ 4,43 - 10" km
1.14a)............ 10 000 m?

1.14¢) . .n.....
1.14d). ...
1.14¢). . oin. ...
1146) ..o

1.17b)...... 16 x 10° kg/m® |
118
119 oo
1.20 ..o

1.22a)....... 0,017 tour /min
1.22b)......... 0,001 7rad/s

1.22 ¢).. | 1,90 - 10~° tour/min |

1,99 - 10_7rad/s‘
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Corrigés

1.3 a)

également deux) :

2% 1,6-10-19C x 150V
9,1-10 31 kg

=7,3-10°m/s.

11 faut bien penser & garder le bon nombre de chiffres significatifs (deux ici car les données en possédent

1.4 OnalWs=1Jdonc1Wh=23600J donc 1kWh = 3,6 - 10° J.
Ainsi, on trouve T' = 0,67kWh = 2,4 - 10° J = 2,4 M.J.

1.5 On calcule R = ‘ —— =55-107°Q
1 caletie 50-10°S/m x 3,1 - 10-6 m?
1.11 Pour comparer ces abondances et trouver la plus petite, on peut les convertir dans la méme unité, par
exemple en ppm :
Silicium Or Hydrogeéne Fer Oxygéne Cuivre
2,75-10° ppm 21073 ppm 1,4-10° ppm 5,0 10* ppm 4.6 - 10° ppm 50 ppm

lan x 365,25 jours/an x 24h/jour x 3 600s/h x 3,00 - 10° m/s = 9,47 - 10"° m.

La distance entre Alpha du Centaure et la Terre est donc 4,7 x 9,47 10" m = 4,4 - 10% m.

Réponses et corrigés
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La masse volumique de la farine est

0,25¢g
0,4cL

= 0,625kg/L = 625kg/m”.

Le volume du cube est (10cm)® = 1 000 cm®. Sa masse est donc :

11,20g/cm® x 1 000 cm® = 11,20 - 10° g = 11,2kg.

4 ) X P
Le volume de la boule est §7T(15 em)® =14-10%cm® = 1,4- 1072 m®. Sa masse est alors :

19 300kg/m® x 1,4-10"*m® = 270 kg.

119 Onag 12013n§1m3 = figji =2g/L.

120 ........ On a 1 10 k m/h : 30 m/s .......................................................................................................
121 . a) .. On res ume les . Cal Culs d ans l e tableau S mvant ...........................................................................
20km/h | 10m/s | 1année-lumiére/an 22mm/ns 30dm/s | 60cm/ms
5,56m/s | 10m/s 3,00-10°m/s 2,2-10"m/s | 3,0m/s | 600m/s
121 . b) . VOI r 1 es Vl tesses mdlqu ees danSIe Com ge precedent ....................................................................
122 . a) . On a 1 t Our/60 mm : 0,0 17 tour/mm .......................................................................................
122 . b) . On a 1 t Our/60 mm : ZWrad/S 6OOS : 0’ 001 7rad/s ...................................................................
1226) Onaltom/lan = ©towr/(1an x 36525 /an x 241/ x G0min/h) = 190 10 tome/min.
122d) Ona Ltour/Tan = 2 rad)/(Lan x 36525 /an x 24h/j x 60rmin/h x 60s/amin) = 109 10" rad/s.
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IF'iche n° 2. Signaux]|

Réponses
2L 8) — sin(a)
2.1b) — sin(«)
2.00C) e cos(a)
2.1d) cos(a)
2.208) 2 cos(2t)

2.2b)... |—2sin(t +4)cos(t + 4) = —sin(2t +8) |

2.2C) i ’cosQ(t) — sin’(t) = cos(2t) ‘
w1 — Wy w1 + w2
2.3a)....... 2A cos t) cos t
2 2
w2 —wr LWt w
2.3Db)....... 2A sm( t) sm< t)
2 2
24 ... ’ Asin(p) cos(wt) + A cos(p) sin(wt) ‘

2.5 8) oo
2.5 D)
2.5 C) et
2.5 d)

2.6 (©)
2.7 8) oo
2.7 D) oo grad
2.7 C) e

2.8 C) i —%ﬂ rad
2.908) L us(t)
2.9 D) e ui (t)
2.9 C) et us(t)
2010 8) e [0]
2.10D) oot %

2.1208) %
U(]
2.12D) o -
V2

2.5 8) i

Réponses et corrigés

2,15 D) i
215 C) e |25in(3,9t — 132 + 0,37) |
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Corrigés

2.1 a)
En utilisant le cercle trigonométrique, on voit directement que :
sin(a + 7) = —sin(a).

Remarquons qu’on peut également utiliser les formules trigonométriques :

sin(a + 7) = sin(a) cos(m) + sin(7) cos(a) = — sin(«).

pour obtenir  cos(a + b) + cos(a — b) = 2cos(a) cos(b).

Ona:
_w1+w2t
a+b=uwt a= 2
- w1 —w
a—b=wst b= 12 2y

On en déduit :

Acos(wit) + Acos(wat) = 24 cos(wl ;‘W2 t) COS(UJl §w2 t).

wy + w W) — w
Ainsi, C =24, Q = % et w= — 3 2 conviennent.
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2.3 b) On somme les formules trigonométriques :

{ cos(a +) = cos(a) cos(b) = sin(a) sin(b) pour obtenir  cos(a — b) — cos(a + b) = 2sin(a) sin(b).

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

On a
_w1+w2t
a—b=uwit a= 2
<
a+b=wat po w2 w,
5 .

On en déduit A cos(wit) — A cos(wat) = 24 sin(% t) sin(% t).

2.4 On utilise la formule trigonométrique : sin(a + b) = sin(a) cos(b) + cos(a) sin(b).
On a Asin(wt + ¢) = A[sin(wt) cos(p) + cos(wt) sin(p)] = Asin(p) cos(wt) + A cos(p) sin(wt).
Ainsi, B = Asin(p) et C = Acos(p) conviennent.

2.5 a) On a sin(0) = 0. La courbe 2 est la seule courbe passant par le point (0,0) et est donc la seule courbe

compatible. On vérifie aussi que la courbe 2 est comprise dans l'intervalle [—1, 1] et que sa période est égale & 2.

2.5 b) On a cos(0) = 1, ce qui est cohérent avec les courbes 1, 3 et 4. Ce n’est donc pas suffisant pour déterminer

quelle courbe correspond & la fonction cosinus. Mais on sait de plus que cos(z) € [—1,1], ce qui correspond a la
courbe 4. On vérifie également que la courbe 4 a une période égale a 2.

2.5 ¢) On a 1+sin(0) = 1 et 1+ sin(z) € [0,2]. Cela correspond a la courbe 3. On vérifie également que la
courbe 3 a une période égale a 2m.

2.5 d) On a cos®(0) = 1 et cos®(x) € [0,1]. Cela correspond & la courbe 1. C’est aussi la seule courbe qui a une

2.6 On peut mettre Asin(wt + ¢) sous la forme B cos(wt) + C'sin(wt) avec B = Asin(p) et C = Acos(y).
On a donc ici :

Asin(p) =1

Acos(p) =1

En faisant le rapport des deux équations, on obtient = tan(yp) = 1, ce qui correspond & ¢ = %

On utilise alors la premiére équation : Asin(

Z)z%zl.Donc,A:\/i.

Finalement, cos(wt) + sin(wt) = v/2sin(wt + 7/4), ce qui correspond & la réponse @
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2.9 ¢) Le signal u1(t) a pour période T1 = 300 ps. Le signal us(t) a pour période 1o = fi = 125 ps. Enfin, le
2

2
signal us(t) a pour période T3 = T 628 ps. On classe donc les trois signaux par ordre croissant de période :
w

3
T> < T1 < T3 puis, par identification : us(t) +— Voie A ; u1(t) «— Voie B; uz(t) «— Voie C.

2
2.10 b) Par définition, on a Ueg = \/—/ )2 dt. On calcule donc : Ueii® = —/ UO (%t) dt.

Pour calculer cette intégrale, il faut linéariser le cosinus au carré. Pour cela, on peut utiliser les formules trigono-
métriques :

cos(2z) = cos®(z) — sin®(z) = 2cos®(z) — 1 donc cos®(z) = H#s@x).
D’ou :
cos 4—7Tt T 2 T 2
2_Ui/Tl _\1T ) Us f/ %/ (41) _ U
UefffT | 2+ 5 dt = 5 Todt +2T0cos Tt dt72.
[ Sy ——
=0

Ainsi, Uegg = %

V2

2.11 a) On lit graphiquement que la période est T' = 4s et que, sur une période, le signal prend les valeurs :

3VsilOs<t<l1s
t <4s.

1) =
ult) ‘1Vsils<

On calcule donc :

2.11 b) On a toujours T’ =4s et :
3Vsils<
1Vsils<

~

u(t) = ‘

On calcule donc :

Uett® —i(/gdw/ldt) Loz = 142:3\/2.

Donc, Ueg = V3 V.
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2.12 a) On calcule :

2.12 b) On calcule :

=
:Ql\')
|
Nl =
N
S—
ﬂ
™
S
&
_|_

T 2
/ 0dt> _ U
T/2 2
. Uo
Ainsi, Ueg = —.
ft NG

2.13 a) Le délai entre Iéclair et le tonnerre est dii a la durée nécessaire pour que le son se propage entre I’endroit

ou ’onde sonore a été émise et I’endroit ou se tient ’observateur. On a donc :
d=cs x At = 1,7km.

On garde uniquement deux chiffres significatifs car At est donné avec deux chiffres significatifs.

2.13c¢) La durée 7 est trés inférieure & la précision de la mesure de 0,5s, on peut donc considérer que la

propagation de la lumiere est instantanée.

2.14 On lit graphiquement que la vague a avancé de 300 m en 1 minute, donc sa célérité est :
02@25 s™' = 18km/h

60

2.15b) Onal=cT =48cm.

2.15 ¢) Compte tenu de la vitesse de propagation, on trouve :
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[Fiche n° 3. Etude des circuits électriques

Réponses
B M)
3.2
3.3a) i
33Db) i
8.3C) it [0]
34da)....oiiii 80mA
34b). 30mA
3.4¢C).
3.58) i
3.5b) .. U —E
3.5C) i E—-U,

Corrigés

3.1

w
%
=

2| o

AR(R+ R')

3-10 ............ W
3112) i
311Db) i
311C) i [0]

I

3.2a) . ?O

R

3.12b)........... RlTQRQIO

1

3.13 a) ........... ERZ‘FRZ:L

13
3.13b)......... 4 Ri = 3Ry

Calculons le nombre d’électrons transférés pendant une seconde :

e 5 000 électrons durant 1 ms correspond a 5-10%s™*;

e 0,2mol d’électrons durant 1an correspond &

518 [

ER,q
Ri+ Ry + Rs + Ry

E(Ry + R3)
Ri+ Ry + Rs + Ry

—FRy
Ry + Ro+ Rs+ Ry

0,2mol x 6,0 - 1072 molfl/(365j0ur can”' x 24h - jour™" x 3600s - hfl) =38-10"%s7";

e 20 milliards d’électrons durant 1 min correspond a

20 x 10° min~*!
60 min/h™"

Par conséquent, c’est le courant @ qui donne la plus grande intensité.

=3,3-10%s7".
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3.2 La quantité de charge transférée vaut g = I x At = 4 x 107> A x 10s = 40 mC. Cette quantité de charge
correspond & un nombre d’électrons N = ¢g/e = 40 X 1073 C/1,6 x 1071 C =2,5- 10" électrons.

3.5 b) Les points A et C sont au méme potentiel, ainsi que les points B et D. Par conséquent, la tension
Uap = Ucp = —Upc = —U. Donc, Upag = U; — E.

OB QO

Dans la maille surlignée et parcourue dans le sens indiqué, on trouve la relation 12 — Us — 5 = 0, ce qui donne
Us =TV.

3.7 a) La loi d’Ohm s’écrit u = Ri en convention récepteur et © = —Ri en convention générateur. Ici la

résistance est fléchée en convention générateur. Ainsi, on trouve ¢ = —u/R.

3.7 b) La loi d’Ohm donne v = 2Ri, soit ¢ = 2

2R
3.7 ¢) La résistance est fléchée en convention générateur : on a u = —(3R) x (—i), d’olt i = %
R R 5
38&) Req—§+§—6R
1 2 3 5
3.8b = — —_ = — t Req =
) R.TRVTERT Rt R
1 1 1 N R
3.8 = = — = —,dou Reqg = —.
) pLTRTotRpTRpdotla=g
N fois
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3.8 d) La résistance équivalente Req est telle que :

L — —l<1+ L )—l(lJrL)_l 3a
Req R R(+4+a) R(1-a) R l1+a 1—a/ R 1—a2) R\1-a2)

2
On en déduit Req—R<1 4 )

3 —a?

3.9 a) En associant les deux résistances en série, on se raméne a deux résistances de 2k() en paralléle, ce qui
est équivalent & une résistance de 1 k(2.

3.9 b) En répétant la méthode précédente plusieurs fois, on arrive au méme résultat.
RR' AR(R+ R’
3.10 La résistance équivalente du dipole AB vaut Req = 2R + BRI R soit Req = ﬁ

3.11 a) On doit résoudre :

4R(R+R) . 2 b o . A
SRR = O soit 4R’+4RR =6R’+3RR’ dou RR =2R’.

Comme R # 0, on obtient R’ = 2R.

3.11 b) On doit résoudre :

4R(R+ R')

SRR gR soit 12R*+ 12RR' = 16R> + 8RR’ dou 4RR' =4R’.

Comme R # 0, on obtient R’ = R.

3.11 ¢) Résolvons I’équation :

4AR(R+ R')

SRR~ MR soit AR + ARR' = 4R® + 2RR' dou 2RR' =0.

Comme R # 0, il faut nécessairement R’ = 0.

3.12 b) Isolons I :
R1[+R2(Io+f) = 2Rsly
(R1 + RQ)I + Rolp = 2Rslp
(R1 + RQ)I = Ralp

E— iRi—Ril =0 soit E= iRi—i—Ril.
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3.13 b) Appliquons la loi des mailles en parcourant la maille dans le sens ABDE :

1 1
E— JRi—3R(i—i)=0 dot E= I?)Ri — 3Ri;.

3.14 a) Additionnons les deux relations aprés avoir multiplié par 3 la premiére :

] ] donnent ainsi  16Ri = 16E dou i = E
13Ri — 12Ri; = 4F R

{ 3Ri+ 12Ri; = 12F

3.14 b) Dans la premiére relation, remplacons i par E/R :

3.15 a) Rappelons la régle du diviseur de tension :

Dans un circuit o N conducteurs de résistances Ri, ..., Ry sont placés en série, la tension Uy qui régne aux bornes
de la résistance Ry est donnée par la formule :

N
Uk_R1—|—R2+--~—|—RNU avec U—;Uz.

Ry
Ri+Ro+Rs+ Ra’

Ici, cela donne U; = E X

3.15 b) Ici, on cherche la tension aux bornes de l’ensemble des résistances { Rz, R3} placées en série et donc
Ry + Rs
Ri+Rs+ Rs+ Ry’

équivalent a Rz + R3. La regle du diviseur donne alors Us = E X

3.15 ¢) Attention, ici il y a un piege. La loi du diviseur de tension donne Us = UR1 o ou U est

la somme algébrique des tensions orientées dans le méme sens que la tension que ’on cherche. Aussi a-t-on U = — F
Ry

Ri+Ro+ Rs+ Ra’

; 1/(aR
3.16 a) La formule du diviseur de courant donne %1 = L.

de sorte que Us = —F X

Par conséquent, o doit vérifier I’équation :

= % c’est-a-dire o = 2.

1/(aR)

1/R
“1/(aR) + 1/R

et ZQ:ZXW’

i1 =1

ce qui permet de déduire i/i1 = a. La solution est donc o = 3.

On peut aussi tout simplement écrire la loi des mailles : «Ri1 = Ris pour aboutir plus immédiatement au résultat.
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3
3.17 b) Simplifions le montage en remplagant ’association (R || 3R) par un conducteur de résistance Req = ZR.

7 E
U =Ex —2—— soit Up=——.

iR+ 3R 4

Remarque : on peut aussi obtenir Uz a I'aide de la loi des mailles : £+ Us — Uy = 0 avec Uy = ZE

3.18 a) Remplacons l'association (2R || R) par un conducteur de résistance Req = SR+ R %R. On obtient

le circuit & une maille suivant :

La loi des mailles donne alors £ — Ri — %Ri —Ri=0,doui= §E

S8R

3.18 b) La formule du diviseur donne :

. 1/R 2 E

= Xi==1= —.

1/R+ 1/(2R) 3T 1R
. © [§] us simple consiste a utiliser la loi des noeuds : 2 12 =11, C€e qul donne 12 = 1% — 1 = ——=.
3.18 Le pl 1 liser la loi d d d o

On peut aussi utiliser la formule du diviseur de courant en faisant attention a l'orientation des courants :

_1/(2R) 1. E
T1R+12R) ' T3 78R
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[Fiche n° 4. Etude des circuits électriques II|

Réponses
A1 )
di di
4.28) i =L—+L—
2) AT

4.2C) jje - % 2‘,
4.2d) . LL+L/L,
A8
Ada) .o ij; = (é+clu>z
4AD) . CCJFCIC/
4.4C) i z-(C—i—C”)%
44d) .
A5 (a)
4.6 L %
B (©
AT D) (@)
A8 M)
4.98) i (© et (D
4.9D) (a)et (¢)
4.9 C) i )
4.9d) ... @), (©) et (@
4.9€). (@), ® et (©)
400 0A) i [0]

410 D) i
4.10 ¢) E]
e U U ittt e ettt ottt st st s st e et E
410 d) i

E]
A00€) .o =
AT A) [0]
41 D) [0]
4.11 ¢) 28
L R O B T R R R R T T P ﬁ
1
411 d) o o
4.028) E
402D) R7C
di R E
A132) e d—z +Ti=T
duc 1 1
4.13b).... — —F
3 D) dt " rRC"“~ RC
di(t) 1
4.13C) . ;(t) + 2gilt) =0
413d) i= % + C%
du 2 E
4.13 e) ...................... E ﬁu = %
414a). ... uc(t) = E(l — e*t/T)
E
4.14D) o i(t) = Ee—t/f
4.14C) i uc(t) = -F
QB A) )
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A5 D) o ©
A5 C) e (a)
415 ).
415 €) ettt
AA5F) 1,3k
416 2) . [wo] = T~1
4.16Db) ... ’ @ est sans dimension‘
4.16 ¢) !
. L —
VvVLC
C
406 d) .. R\
Corrigés
4.1

d®>uv  Rdu 1 E
4.17&) ............. @"‘Za‘i‘ﬁu—ﬁ

d?u 1 du 1
417b) ............. @‘FEE‘FEU:O
418 a) ..o | B x (1 — cos(wot)) |
418 Db) —— sin(wot)

wo

A9 A) . i ()
4.09DbD) i ©
A19C) o ®)
419 d) . (a)
419 €) e 1,2 x 10°rad - 57" |

L’intensité est une succession de droites. Sa dérivée est donc constante par morceaux (et non définie

au niveau de la discontinuité). Si le dipdle se comportait comme une bobine, la tension devrait étre constante par
morceaux, ce qui n’est pas ce que 1’on observe. Il ne s’agit donc pas d’une bobine.

di di
4.2 a) En vertu de la loi d’additivité des tensions, on a u = Ld—z + L/d—z.
4.2 b) On peut donc écrire 4 = Leq— & condition de poser Leq = L + L’
4.2 ¢) En vertu de la loi des nceuds, on a 7 = ir, + ir/. Aprés dérivation, ceci donne — = % + %
. di | .
4.2 d) On peut écrire u = Leqa a condition de poser :
! *l+i soit L LL
Leq L ! 4T L+
. N . LxL
4.3 On commence par regrouper les deux bobines en parallele. On obtient alors L; = I+1L = —. Cette
L L

bobine se retrouve alors en série avec la premiere, d’ott Leq = 3 + 3= L.

on obtient d—u = (l + i)2
“\c )"

d

En vertu de la loi d’additivité des tensions, on a u = uc + uc/. Apres dérivation par rapport au temps,
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d
4.4 Db) On peut donc écrire i = Ceqdi: a condition de poser :

S + = soit C cc
Ceq C “T o+
. L . ,du
4.4 ¢) En vertu de la loi des nceuds, on a i =i¢ +icr = (C + C )E

4.5 Si le dip6le est un condensateur alors I'intensité est proportionnelle & la dérivé de la tension. La tension
est constituée d’une droite croissante, puis d’une droite décroissante de pente opposée et enfin d’une parabole de
type at® + bt + ¢ avec a > 0. Si I'on dérive la tension, on obtient alors une constante positive, puis une constante
opposée et enfin une droite croissante (at + b). C’est bien ce que ’on observe.

Notez que la tension est continue, ce qui est le propre d’un condensateur.

4.6 On commence par regrouper les deux condensateurs en paralléle. On obtient alors Ch1 = C/2+C/2 = C.
CxC
Ce condensateur se retrouve alors en série avec le premier, d’ott Ceq = crC - C/2.
- . . duc s R . o
4.7 a) En régime stationnaire, on a el 0, d’ou i = 0. Cela correspond a la relation constitutive de
I'interrupteur ouvert, qui ne laisse pas passer le courant.
L. . . di ) s . N . s
4.7 b) En régime stationnaire, on a FTi 0, d’ou ur, = 0, ce qui correspond a la relation constitutive de
Pinterrupteur fermé.
4.8 En régime permanent, la bobine se comporte comme un fil et le condensateur comme un interrupteur

ouvert. L’ampoule A; est court-circuitée et ne brille pas. Le courant dans la branche du condensateur est nul :
I'ampoule A3 est éteinte. Reste 'ampoule A2 dont la tension a ses bornes est E : elle brille donc.

4.9 a) La tension aux bornes du condensateur est toujours continue ; de plus, la tension d’un interrupteur fermé

est nulle, donc toujours continue.

Pour affirmer que la tension aux bornes d’un condensateur est continue, il faut se placer dans un cas ou il n’existe
pas de courants infinis pendant une durée infiniment bréve.

4.9 b) Du fait de la présence de la bobine, 'intensité 7 du courant électrique est une grandeur continue. Vu que

ur = Ri, c’est aussi le cas de la grandeur ug.
4.9 ¢) Du fait de la présence du condensateur, la tension uc est une grandeur continue. En revanche, i est
discontinue : sa valeur passe de i(07) = 0 2 i(0"7) = E/R. Par conséquent, ur = Ri est également discontinue.

4.9 d) Le courant ¢ circulant & travers une bobine est continu. On en déduit que ur = Ri est aussi continu. De

plus, la tension uc aux bornes du condensateur est aussi continue. Seule la tension aux bornes de la bobine peut
présenter une discontinuité.
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4.9 e) Les courants ¢ et 73 sont continus car ces courants traversent une bobine. Ainsi, d’apres la loi des noeuds,

le courant i; l'est également.

La tension u est celle aux bornes du condensateur donc continue (la présence de la bobine en paralléle n’y change
rien). Finalement, la tension uyz ne 'est pas car uz(07) = 0 (régime stationnaire) et ur(07) = E (loi des mailles).

4.10 a) A t =07, linterrupteur K est ouvert donc i(07) = 0. De plus, ce courant circulant dans une bobine, il
est continu, d’ott finalement #(07) = #(07) = 0.

4.10 b) La tension uy n’est pas nécessairement une grandeur continue, il convient alors d’appliquer la loi des
mailles & I'instant t = 07, d’ott E = Ri(0") + ur(07).

De plus, on a par continuité du courant (bobine dans la branche) i(07) = #(0"7) = 0 car K est initialement ouvert.
On en déduit finalement que ur,(0Y) = E —~ Rx 0= E.

4.10 ¢) Le courant ¢ n’est pas nécessairement une grandeur continue car il n’y a pas de bobine dans la branche.
On applique alors la loi des mailles & linstant t = 07, d’ott E = Ri(0") + uc(0™).

Or, on a uc(07) = uc(07) (continuité de la tension aux bornes du condensateur) puis uc(07) = 0 car ce dernier
est initialement déchargé. On en déduit finalement que i(0") = E/R.

4.10 d) La tension ur n’est pas nécessairement continue. On applique alors la loi des mailles (maille de gauche)
4 Vinstant ¢t = 07, d’ott E = ur(0") + u(0™).

Or, la tension u est a la fois celle du résistor mais aussi celle du condensateur car ces dipoles sont placés en parallele.
On en déduit que u(07) = u(07) (continuité de la tension aux bornes du condensateur) puis (0") = 0 car ce dernier
est initialement déchargé, d’ott finalement ur(0") = E.

De plus, on a io(07) = w(07)/R = 0 et i(0") = ur(0")/R = E/R d’aprés la question précédente. On en déduit
finalement que 4:(07) = E/R.

4.11 a) La tension u aux bornes du condensateur est continue. De plus, on a «(0~) = 0 car le condensateur est
initialement déchargé. On en déduit que u(07) = 0.

4.11 b) Pour le condensateur, on a, & I'instant ¢t = 0t, i (0%) = CE

de ce courant.
La loi des nceuds indique que i(0%) = i1(0%) 4 i2(0T). Or, on a i(07) = i(07) = 0 par continuité du courant
circulant dans la bobine, et du fait de 'ouverture de K pour t < 0. De plus, on a i2(0") = 2u(0%)/R = 0. On en

du o+ _
® o) =0

déduit que i1(0%) = 0 et donc que

4.11 ¢) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme

2F
un fil. La loi des mailles indique alors E = Ri(+00) + gi(—&—oo), d’oli au final i(4+00) = IR Ce résultat aurait aussi

pu étre obtenu a l'aide d’un schéma équivalent.
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4.11 d) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme

un fil. On observe alors un pont diviseur de tension formé par les deux résistors restants.

R/2 1
O déduit =——F=_-F.
n en déduit u(+o0) R+ R 3
e 1os . . di R. L. . .
4.12 a) On écrit ’équation sous sa forme canonique Er + fz =7 Ainsi, on identifie 7 = L/R.
duc 2 E R
4.12 b) De la mé iere, I’équati i fi i t — + —i=——,douT=—-1.
) e la méme maniére, I'équation mise sous forme canonique est — + Ro' = Roo douT 5
- N . oy . , . . . , di
4.13 a) Le circuit ne peut &tre simplifié davantage. Il convient alors d’appliquer la loi des mailles £ = Ri + La
. . . . de R. FE
puis de mettre cette équation sous la forme canonique pm + fz = I

4.13 b) Le circuit ne peut étre simplifié davantage. Il convient alors d’appliquer la loi des mailles F = Ri + uc.

. . o N . duc . . . .
L’équation constitutive du condensateur indique ¢ = C'——, d’ol1, en combinant avec la loi des mailles :

dt

_ duc
E = RC a + uc.

duc 1
sduit sa f . duc 1 1
On en déduit sa forme canonique T + ROUC = Re

4.13 ¢) La loi des mailles indique que E = Ri + uc. Cette fois-ci, il faut garder i et remplacer uc. Cependant,

la relation constitutive du condensateur fait apparaitre la dérivée temporelle de cette tension.

Il convient alors de dériver I’équation obtenue a l’aide de la loi des mailles et d’écrire R% + dg—tc = 0. Finalement,
ds 1
btient — + —i = 0.
on obtien dt+RCZ 0

4.13 d) Le circuit comporte deux mailles indépendantes mais ne peut pas étre simplifié. Il convient alors de faire
particulierement attention aux indices et variables utilisées pour les différents courants et tensions.
. . . du . . .
La loi des neeuds indique que ¢ = i1 + 2 avec i2 = u/R et i1 = CE' On obtient alors, en combinant ces résultats,
U du
I’équation i = — + C—.
4 Rt
4.13 ¢) La loi des neeuds ayant déja été appliquée, il convient d’appliquer la loi des mailles pour la petite maille

de gauche; on en déduit ¥ = Ri+ u. On combine alors ce résultat avec celui de la question précédente pour obtenir
du 2 E
@ " RC" T RC

queE:u—i—RC(jT?;—i—uet au final

4.14 a) Cherchons une solution particuliére constante. On trouve up, = E. La solution générale est donc de la
forme Ae” " + E. La condition initiale donne uc(0) =0= A+ E, soit A = —E. Finalement, uc(t) = E(l — eft/T),
4.14 b) Ici, I'équation différentielle est homogene (sans second membre). La solution est de la forme Ae™*/". La

condition initiale donne ¢(0) = E/R = A. Finalement, i(t) = %eftﬁ.
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1
4.14 ¢)  Cherchons une solution particuliére constante. On trouve u, = §E La solution générale est donc de la

forme Ae™ /" + %E La condition initiale donne u(0) = %E =A+ %E, soit A = 0. Finalement, uc(t) = %E

4.15 d) La courbe 2, associée a 'expression de u1, posséde une asymptote horizontale d’expression u1(+00) = Ei.

On en déduit Fy = 4V par lecture graphique.

1
4.15 e¢) La courbe 3, associée a l'expression de usz, posséde une valeur initiale us (O+) = §E2. On en déduit
E5> = 4V par lecture graphique. On peut vérifier que 'asymptote donne ua(+00) = E2 =4V.
a1 . ) T RS Ey
4.15 f) La courbe 1, associée a 'expression de i(t), a pour ordonnée a l'instant initial ¢(07) = 3mA = N donc

ona R=Ei/i(07) ~ 1,3kQ.

2
4.16 a) On a dans le membre de gauche de I’équation d’ordre 2 : [itf} = [wg] [z] donc [z]T~? = [wg} [z].
Finalement, on a [wo] = T *.
4.16 b) On a dans le membre de gauche de 1’équation d’ordre 2 : dQ—x = | [d—x} donc [T =T"" [2]
: & d Yl ae ol [QIT
Finalement, on a [Q] = 1; donc, Q est sans dimension.
Qi
4.17 a) La loi des mailles indique que F = Ri +u+Ld—z. De plus, la relation constitutive du condensateur donne
que i = C%. On en déduit que :
du d?u d®*uv  Rdu 1 E
E=RCSE LCSE ot SE 4 EEM L o= 2
a TTRE Y e T T et T Ic

di
4.17b) La loi des noeuds donne i = i1 + 2. Cependant, la relation constitutive de la bobine fait intervenir 2.

On dérive alors la loi des noeuds puis on la combine avec les relations constitutives des deux dipoles de droite pour
obtenir di = Cd2—u + v

dt dez2 L
La loi des mailles (petite maille de gauche) indique ensuite que E = Ri + u. On dérive cette relation pour faire

apparaitre la dérivée temporelle du courant puis on combine avec I’expression de cette derniére. D’ou :

d*u R du

d? 1 d 1
On en déduit finalement son expression canonique ?g + Ed—? + o= 0.

4.18 a) Cherchons une solution particuliére constante (comme le second membre). On trouve u, = E. La solution

générale est de la forme A cos(wot + ) + E. Les conditions initiales donnent :

uc(0) = Acos(p)+ E =0 ) ©=0
duc . soit
W(O) —Awp sin(p) =0 A=-E.

On en déduit que uc(t) = E(1 — cos(wot)).
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4.18 b) La solution est de la forme A cos(wot + ¢) = acos(wot) + bsin(wot). Appliquons les conditions initiales :

On en déduit que i(t) = Li sin(wot).
wo

4.19 a) Le facteur de qualité est inférieur & 1/2 pour la courbe 3. De plus, il est sensiblement égal au nombre
d’oscillations observables dans le cas du régime pseudo-périodique. On observe environ dix oscillations pour la
courbe 2 et six pour la courbe 1. La courbe 2 posséde donc le facteur de qualité le plus grand.

4.19 b) La fonction ui(t) ne contient pas de grandeurs circulaires (cos(wt) ou sin(wt)) et évolue de u1(0) = a—b

vers u1(4o00) = 0. Cela correspond & la courbe 3.

4.19 c) La tension uz(t) présente des oscillations amorties et tend vers zéro lorsque ¢ tend vers I'infini. Seule la

courbe 2 vérifie ces propriétés.

4.19d) Ona lim wus(t) = E. Seule la courbe 1 présente une asymptote horizontale d’ordonnée non nulle.
t——+o0

4.19 ¢) On détermine la pseudo-période T' en mesurant la durée correspondant a 10 oscillations : 107" ~ 52 ms

d’ou T ~ 52ms. On en déduit Q = 27/T ~ 1,2 x 10°rad -s™".
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Réponses

5.1 d) ® BT ) (a)
Bu2 ).t B:82) ©
5.2D) . (0] B8 b) e (@)
B2 C) it -Lw
) BB )ttt @
B2 d). e /2
- 58 ) o ()
B2 €) o %
89.9a). ...
5.2 6) ) I e —
1 5.9 b) 1/3
5 3 ........................ [ R R A ) A A R R
a) R+ iCw
5a9 C) e 1/3
RjLw
B3 D) e R+ jLw 59d). . 2,1 x 10% rad/s

5.3¢) RjLw BeL0 )ittt

R+ jLw — RLCw?

5.10b) ..o |u(2+jRCw) — u,
5.3 d) R(1 - LCw?) .
Bd) o 1 — LCw? + jRCw 5.10 C) ................. ' 5
1+ 3jRCw — (RCw)
Brd e @ 510 d) ...
BB &) et 100) 1
BB D) e RC
B0 ) . 1/3
BB ot (@
BolL &) e 9,5dB
1 ; ) [9:54B]
BT a) ot 3 cos(a +b) + 3 cos(a — b)
511 b) ..o 20log()
So cos(2m fpt) 0
mSo 2
5.7b)....... + B) (005(2”(fp + fo)t) 5.11¢C) i, 1010g<1 + (:Jd) )
1
+ cos(2m(fp — fo)t))
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o\ 2 BlB ) ot /4
5.11d) ... 10log| 9+ ( — o
wo BB D)t
2 Ba1BC) ottt z
5.11¢e).... 2010g<w> — 101og<1 + (w) > ) 2
wo w1
Bl A) ..t
2
5.111)..... 2010g<w> + 101log (1 + (w> ) 514 D) i 1/V2
wo 1
B C) oo 1/4
BuL2 ) .
0 515 8) e —28,0dB
512D oo /2
BB D)
w
5.12¢). i arctan(gﬂ) 515 C) oot —8,0dB
5.15d). ..o | +20dB/décade |
512d) i —arctan(w>
3wo 516 A) 15,0 kHz
B.I2€) i - = arctan(w) BAB D).
w
! 516 C) e 19,2 kHz
512€) ..o -+ arctan<w>
w1
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Corrigés

5.1 a) En multipliant les deux expressions de Z par leur conjugué complexe, on obtient :

Zx Z" = (a+jb)(a—jb) = Zj(cos(i) + jsin(p))(cos(ip) — jsin()).

a=Zpcos(p) et b= Zysin(yp).

. a . b . sin(yp) b Zo b
Ainsi, on a cos = — et sin = —-. Puis, tan = = — —. Donc, on a tan =—.
insi, (p) = 7 et sin(p) = . Puis, tan(p) cosle) ~ Zo a ; (0) =1
5.1 ¢) On utilise une représentation géométrique du nombre complexe Z. Les axes des abscisses et des ordonnées

du plan complexe correspondent respectivement a la partie réelle et a la partie imaginaire de Z. [’argument ¢ est
I’angle entre ’axe des abscisses et la droite passant par le centre du cercle et Z.

Im(Z) Im(Z)

b,‘

On constate que si a > 0 alors ¢ est compris entre —7/2 et /2.
De la méme manieére, on constate que si a > 0 et b < 0 alors ¢ est compris entre —7/2 exclu (a > 0) et 0 inclus.

5.2 a) OnaZy=+vR2+0=R.

(91}
[\V]
o
N
©)
=
o
+
o
=8
S
-
Il
3o
Il
e
O
o
=
o
A
Il
o
=
o}
=+
I
=
/‘-\
~—
Il
o

5.2 d) On a tan(yp) = — — +00. Donc, @zarctan(—) :g.
5.2 ¢) OnaZ LI Donc, Zy = O—i—(—i>2*i
€7 0w~ Tow TN T Cw) ~ Cu’
5.2 f) On a tan(p) = 7%% — —o0. Donc, ¢ = arctan(fié) = fg.
5.3 a) OnaZ R+L
AB T iCo’
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5.3 b) Les deux dipdles sont associés en parallele, nous devons sommer les admittances :

1 1  R+jlw
XAB:XRJ’_XL:E—FJLT:iRjLw .

RjL
Nous en déduisons alors I’expression de I'impédance complexe du dipdle AB : Z,, = R—ij—ioLJ
jLw
5.3 ¢) Les trois dipoles sont associés en paralléle, nous devons sommer leurs admittances :
1 1. R+ jLw — RLOW?
Y, s =Y Y Y ==+ —+jCw=
Lap = Lpt Lyt Lo =g+ 7o +icw RjLw
RjLw

Nous en déduisons alors ’expression de 'impédance complexe du dipdle AB : Z, =

R+ jLw — RLCw?’

5.3 d) On commence par considérer un circuit équivalent au circuit donné.
Z,
Le circuit donné est équivalent au schéma ci-contre, ot on a :
A B
1 1 — LOw?
Z, =jL _— =
4y = Jhw A+ jCw jCw
R
L’admittance du dipodle est donc :
1 1 R+Z 1 — LOw? 1 1 — LCw® 4+ jRC
XAB:7+7:771: R+ ' w __ w-l-JQw
R Z, RxZ, jCw R% R(1 — LCw?)
R(1 - LCw?)

Nous en déduisons alors ’expression de 'impédance complexe du dipdle AB : Z, 5 =

1- LCw? +jRCw’

5.4 On commence par considérer un circuit équivalent au circuit donné.
Z,
C’est le circuit ci-contre, avec Z; = R+ jLw. Ainsi, ’admittance équivalente est : A B
1 jCwxZ,+1 1-LCw?+jRCw
Y. =jC — = =1 = .
Fap ZJOWE 7 Z, R+jLw
C
R+ jLw

Nous en déduisons alors I’expression de I'impédance complexe du dipdle AB : Z, 5 = T LCw 7 iRCw
— LCw? + jRCw

5.5 a)
T
>
La période du signal est sur 5 carreaux. La base de temps indique 20 ps/division. 5 carreaux (\
T=5%x20x10"%s soit T=1x10""*ps. 5 carreaux | 24
1
La fréquence du signal observé est donc fy = T= 10kHz. 0V

base de temps : 20 ps/division
calibre vertical : 1V /division
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Nous avons 5 carreaux pour la double amplitude, soit 2Uy =5 x 1 =5V. Donc, on a Uy = 2,5V.

5.7 a) On calcule cos(a + b) + cos(a — b) = 2 cos(a) cos(b) et on en déduit la formule :
cos(a) cos(b) = = cos(a + b) + = cos(a — b).
5.7b)  On calcule :
s(t) = So cos(2m fpt) (1 + m cos(2m fot)) = So cos(27 fpt) + mSo cos(27 fpt) cos(27 fot)
S
= So cos(2m fpt) + o0 (cos (27r(fp + fo)t) + cos (27r(fp — fo)t)>.

5.7 c) La composante de fréquence f, de s(t) est Sy cos(2n fpt), son amplitude est donc de So.

, mSo . So
5.7d)  La composante de fréquence fp + fo de s(t) est 5 cos(27(fp + fo)t), son amplitude est donc de 5

, mSo . mSop
5.7 e) La composante de fréquence f, — fo de s(t) est 5 cos(2m(fp — fo)t), son amplitude est donc de 5
5.8 a) Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 1kHz, 3kHz et 5kHz. Les

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s1(t) est nulle. Le spectre @ est donc a associer & s1(t).

5.8 b)

Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 2 kHz, 4kHz et 6 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s2(t) est égale & 1 V. Le spectre @ est donc & associer & s2(t).

5.8 ¢)

Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 2kHz, 4kHz et 6 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s3(t) est nulle. Le spectre @ est donc a associer & s3(t).

5.8 d)

Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 1kHz, 3kHz et 5 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s4(t) est égale a 1 V. Le spectre @ est donc & associer & s4(t).

N Z
5.9 a) A laide d’un pont diviseur de tension, on constate que u, = geﬁ‘ Ainsi, on a :
4y T 4y
. U Zy R 1 R 1+ jRCw
Hiw) = = 757, ~ T+jRC I E_ = 1+jRC jR2Cw + 2
U, Z,+ 4, +] wR+jC'T+m +] w3R+jR w"_ﬁ
_ R _ 3
3R+j(R*Cw— =)  1+j3(RCw— z55)
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5.9 b) Par identification dans 'expression de H (jw) trouvée précédemment avec la forme canonique, nous en

1
déduisons que Hyp = 3

5.9 ¢) Par identification dans lexpression de H (jw) trouvée précédemment avec la forme canonique, nous en

1
déduisons que @ = 3

5.9 d) Par identification de lexpression de H(jw) trouvée précédemment avec la forme canonique, nous en

1
déduisons que x = RCw donc que wg = RO L’application numérique donne :

1 1
T RC T 1x10°Qx47x 107°F

=2,1 x 10*rad/s.

5.10 b) En multipliant la réponse précédente par la résistance R, on obtient Ri = Ri; + Ri,.

Ainsi, d’apres les trois égalités, on a :

5.10 ¢) En utilisant la réponse précédente et en exprimant u & partir de la relation donnée, il vient que :
u, = u,(1+jRCw)(2+ jRCw) — u, = u, (1 + 3jRCw — (RCw)?).

S

L . u 1
Ainsi, on a H(jw) = . 1+ 3jRCw — (RCw)?’

. H . 1
H(w)= —%— e  H(w) = —— 5
I+5—= 1+ 3jRCw — (RCw)
ontrouveH*16‘5%*&*Rdeoncw*ietQ*1
0~ Two °~ RC ~ 3

5.11 a) On a Gag, = 201log(||3]]) = 201log(3) = 9,5dB.

5.11b) Ona Gag, = 2010g(‘ji‘> = 2010g<i)«
wo wo

5.11 ¢) On calcule :

1
2 2\ 2
Gag, =2010g(‘1 +jiD :2010g< 1+ (i) > :2010g<(1+ (i) ) )
w1 w1 w1
2 2
=20 X 110g<1+ (i> > = 1010g<1+ (i) )
2 w1 w1

Réponses et corrigés 225



5.11d) Ona:

5.11 e) On calcule :

££3 ‘EB |

2
= 201og(wi) - 1010g<1 (wi) )
0 1

5.11 f)  On calcule :

H H
Gag; = 2010g<‘H2 ) =20 10%‘(2') = 20log(|H,|) — 20log(|H;|) = Gas, — Gas,
_|_

Gapg = 20log(|Hy x Hyl) = 20log(|Hy| % |Hyl) = 201og(|H,[) + 20log(|Hy|) = Gas, + Gasy

2
_ 201og(wi) +10log<1+ wi) )
0 1

5.12b) Ona gy =arg(H,) = arctan(Re(H2)) = arctan(%o) = yl}rfoo arctan(z) =

H
5.12¢e) Ona ps= arg(H2> = arg(H,) —arg(H;) = g — arctan(i).
3
5.12f) Ona g =arg(H, x H;) = arg(H,) +arg(H;) = g + arctan(wi).
1

5.13 a) Notons que z = Y so. Ainsi, on a :
wo

» = arg(H (jw)) = arg (1 fﬂ) = arg(jz) — arg(1 + jz) = arctan(%) - arctan(%) = g — arctan(z).

— 1 _ ct, —_
<p—z1m ar an(a:)—2
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5.13 ¢) On a vu plus haut que ¢ = g — arctan(z) ; ainsi, pour w < wo, c’est-a-dire pour z — 0, il vient que :

p= g — arctan(0) = g

1-— 1—j V141
5.14 a) Pour z =1, H(jz) = , donc G(z) = Sy - | J‘ = 1
1+j 1+j VI+1

: ] ] il 1 L
5.14b) Pourxz =1, H(jz) = — , donc G(z) = |— -| = — = = —.
) Hjw) = -7 (@) ‘ )| "o+ Vizl V2
5.14c) Pourxz=1etm=2, H(jz) = ! = donc G(z) = ) R ET R
= 1+4j+(G)> 4’ 4j| 4l
0,04

5.15a) Ona Gas = 2010g( ) — _28,0dB.

5.15b) Ona Gag = 2010g(0’114) = —-17,1dB.

5.15 d) En faisant application numérique, on trouve que la pente a de la droite vaut :

o Gas(C) —Gas(A)  —8,0dB+28,0dB 90 dB
log(f(C)) —1log(f(A))  log(2000) — log(200) '
Gas
Donc, le gain du filtre augmente de 20dB 0 —~ f
lorsque log(f) augmente d’une unité, soit e
lorsque la fréquence f est multipliée par 10, —10 B
soit lorsque f augmente d’une décade. _20 =1 +20dB/decade
La pente de la droite (AC) observée sur le 20 A?P
graphe est bien de +20dB/décade. B =
—40
1 10" 10® 10°

5.16 a) Nous observons un maximum pour z = 1. Nous en déduisons que f. = fo = 15,0kHz.

5.16 b) La courbe de gain est maximale pour z = 1. Nous pouvons relever G4 max = —2dB.

Aux fréquences de coupures, le gain doit vérifier Gas(zc) = GdB max — 3dB = —5dB.

La premieére valeur de z. collectée sur le graphique est x.1 = 0,78, elle correspond a une fréquence de coupure
fcl = 0,78 x fo = 1177 kHz.

5.16 ¢) La seconde valeur de z. collectée sur le graphique est xc2 = 1,28, elle correspond & une fréquence de
coupure feo = 1,28 X fo = 19,2kHz.
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[Fiche n° 6. Energie et puissance électriques|

Réponses

6.1D) 4,6 Wh E—e¢
6.10 8) ..o S
B.28) i tr
6.2b) .. ’ Hyundai Ioniq 6‘ B.10 D) . .eee e ef;iEr
T
6.2C) . i ’ Hyundai Ioniq 6 ‘ 7 o
6.10C) oo
6.3 ) . (a) ) R+r
E —e)?
6.3D) .. 6.10d) . ..o [l
) @ ) R+r
6.3 C) e E—
© 6.10€) .ot i ¢
T
6.4 o 3,75 W
e
650 o 6.10 F) ..o =
L @ T B R R Y U
B.10 ). et
6.5 b) Uplo
DR AREARRRRAAEA 2 6.11a) i @
6.5 C) .......................... % C (QO) 6.11 b) ..................................... @
1 612 8) .o
6.5d).. .. Ul (2 + 3 Sin(i/))) @
6.12Db) .. (a)
6.6 8) L. [0] .
6.6 D) . [0] 6.13a)........................ exp(—t/7)
6.6 c) 3cos I w CE?
T 12 6.13Db) ..o = exp(—2t/1)
6.6 ). ... 16 W >
- 6.13¢)........ CE (exp(ft/T) - eXp(th/T)>
T
6.7 Q) i o
6.13d) ..o CE?
R
2t 1
BTD) e (r+ R)? 6.13€) ... 5CE?
r—R 1
6.82a). i 2 LOE?
e 6.13 ) o 5CE
6.8 b ®) dug
Bb) 6.148) . . EC—~
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d($Cu(t B.15 2) 0ttt W12
6.14Db) ... (3 ;;C( ) 2) R
E
6.15b)...........
17,2
6.14C) it d(QJ—:ft (1) \/(Rc; + Ry)? + (Xo + Xu)°
6.4 d) oot CE®|  6.15¢).... | R.E? 2(Xe + Xu) _
T ((RG+Ru)2 + (XG+Xu)2)
6.14€) it 5CE?
2 p2 2
6.15d)...... p2_flo = Fu) + (X6 + Xu)
B.14F) o . [0] 2
((Rc + Ry)?+ (Xe + XU)Q)
6.14 8) it Lope
2 B.15€) .o (©
Corrigés

6.1 a) L’énergie contenue dans la batterie vaut £ = PAt ou P = 5W et At = 55min = 55 x 60s = 3300s.
L’énergie vaut donc £ =5 x 3300J = 16,5 kJ.

6.1 b) L’énergie contenue dans la batterie vaut £ = 16,5kJ. Par ailleurs, e = 1 Wh est I’énergie consommée a
une puissance de 1 W pendant 1h, soit e=1W x 3600s = 3,6 kJ.
16,5kJ

On a donc E =

Sk < L Wh=46Wh

6.2 a) L’énergie contenue dans la batterie vaut £ = 77,4 kWh.
La consommation moyenne valant C' = 15,1kWh/100 km, I’autonomie en kilometres vaut :

E 77,4kWh

C = T51RWh/100km ~ oLSkm-

6.2 b) En reprenant le calcul de la question précédente, e = 1 W /h = 3,6 kJ, donc I’énergie totale stockée dans

les batteries des voitures de série vaut, en joules, £ = 77,4 X 10°® x 3,6 X 10* J = 279 MJ. C’est donc la voiture de
série qui possede la batterie de plus grande capacité.

6.2 c) La puissance en cv du moteur de la voiture électrique de série vaut P = 239/0,735cv = 325cv.
................................................................................. LT
6.3 a) La puissance regue par la résistance s’écrit P = ik Ici, on a donc
9 .o 9
P = 1o Sin (wt) = 2 1- cos(2wt)).

9 9
La puissance a donc une valeur moyenne de 20’ une valeur maximale de 0 et une période T'=0,5s.

C’est la réponse @ qui est la bonne.
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6.3 b) Commencgons par linéariser 1’expression de la puissance. On a :

2
P(t) = % = %(1 + ZCos(wt))2 = %(1 + 4 cos® (wt) + 4cos(wt))
1
=10 (3 + 2 cos(2wt) + 4cos(wt)).

On constate que la puissance est maximale a ¢ = 0. De plus, la composante fondamentale de ce signal est de période

. . ™ . T :
égale & Tiondamental = — = 2s. Finalement, comme u(t) s’annule (par exemple en wt = g), la puissance s’annule
w

aussi.

Il n’y a qu’une courbe qui vérifie ces conditions : c’est la @ qui est la bonne.

2
9
6.3 ¢) La puissance a pour expression P = % =10 exp(——) On a donc
dP(t) 29 ( 2t> dP(t) 29 9 1
=——=— —— d —(t=0)=—=—=—-——"W.s"".
dt 710 P one T A T R T A
En exploitant la pente a l'origine, on trouve que c’est la réponse @ qui est la bonne.
6.4 On lit graphiquement une période de T" = 3ms et un décalage temporel At = 0,5ms entre les deux
At 1
signaux. Le déphasage est donc ¢ = 271'? = g rad. Donc, cos(p) = 5

Les amplitudes de la tension et de l'intensité sont respectivement Uy = 3V et Ip = 5 A. La puissance moyenne vaut
1 1
donc Puoy = 53\/ X 5A X 3 =3,75W.

6.5 b) On a P(t) = uoio cos® (wt + 1) = - (1 + cos(2wt + 21/})).

On integre :

1 . T
Prmoy = = X M/ 1+ cos(2wt + 2¢) dt
T 2 J,

_ 1 uOio 1 . T _ uOio

=7 X T[t+%sm(2wt+2w)}o =3
On peut retenir la propriété <cos2 (wt + @Z))> = <sin2 (wt + LZJ)> = %
6.5 c) On a P(t) = uoio cos(wt) cos(wt + ) = % cos(p) + cos(2wt + ¢)].
On vérifie ensuite que :

1 (T 1 T
(cos(2wt + p)) = T /0 cos(2wt + @) dt = T [sin(th + cp)} S 0.

Donc, on a Pmoy = uozlo cos(¢p).
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6.5 d) La puissance peut se décomposer en plusieurs termes :

P(t) = uoio(1 + cos(wt))(2 + sin(wt + 1))

= uo%0(2 + 2 cos(wt) + sin(wt + ¢) + cos(wt) sin(wt + 1))

= uolo (2 + 2 cos(wt) + sin(wt + 1) + cos(wt) cos (wt +¢Y— g) )

On peut alors séparer les calculs de valeurs moyennes :

Pmoy = uoto (2 + 2(cos(wt)) + (sin(wt + 9)) + <cos(wt) cos (wt +)— 1) >)

2
:uoio<2+ %cos(1pf g))

= uglo (2 + % sin(w)).

6.7 a) La loi des mailles permet d’écrire £ = u, +ur =71 + RI = (r + R)I. On a donc I = %
6.7 b) La puissance dissipée dans le conducteur ohmique de résistance R vaut P = url = RI? = E2( +RR)2
r

dp E21><(r—|—R)2—R><2(r+R)

+R)—-2R
=" — B2 r+R (7“77
dR (r+R)* ( ) (r+ R)*
soit finalement : 4P R R

= —E*(r+R)— -2

ar =R R T R
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Il faut annuler la dérivée pour trouver 'extremum de P(R). Comme P(R) est positive et vaut 0 en

6.8 b)
R =0et en R — 00, alors cet extremum est un maximum. On a alors, par annulation du numérateur Ryax = 7.
6.9 Sion a R = 2Ry, alors on a "/ = 2 et donc r/Ry = In(2). Finalement, on a r = In(2) R
. . . E—e
6.10 a) On applique la loi des mailles E — Ur —ur —e¢ =0. Onadonc E —e = (R+7)I, et donc I = Rer
r
6.10 b) La batterie est en convention récepteur; donc, on a :
EF—e eR+er+rE—re eR+Er
U = I = = =
et e+TR—|—7" R+r R+r
. . E—e
6.10 ¢) La puissance fournie par le chargeur vaut P = EI = ER et
r
6.10 d) La puissance est dissipée par effet Joule dans les deux conducteurs ohmiques, elle vaut donc :
E—e\? (E—-e)?
—RI*+rI*= (R ( ) .
Ps tr (R+) R+ R+
6.10 ) La puissance regue par la batterie vaut P =el = e —— car elle est en convention récepteur.
6.10 f)  En suivant la définition de I’énoncé, on trouve :
R e
- E—e 1
E R+7r E
6.10 g) Numériquement, on calcule n = 12/13 = 92 %.
6.11 a) On fait le schéma :
R
| |
| I |
UgT 3C
() wvl==c D 2R 15| == 2C
R

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts
2
U =F et U2=U3:§E.

Les énergies stockées dans les condensateurs sont alors
3 /4 2
§F?) = 3CF”

_1 2 _ 4 2 _7(
51—20E7 Eg_gCE et 53—209

On a alors & < & < &3. Clest la réponse @ qui est la bonne.
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6.11 b) On fait le schéma :

Uz

GVTCD Us| == 3C 12VT<> U|——=c

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :
Ui =12V, U;=-6V et Us=6V.

Les énergies stockées dans les condensateurs sont alors :

1 1 1
& = 5(1(12)2 =720, &= x 20(6)> =36C et & = 3 X 3C(6) = 54C.
On a alors & > &3 > &. Clest la réponse @ qui est la bonne.
6.12 a) Les énergies stockées dans les différentes bobines sont :
1 2 1 2 1 2 3

6.12 b) Les bobines se comportent comme des fils en régime permanent. Le montage se simplifie alors :
I R

ETC) R R 2R

I I3

En calculant les résistances équivalentes, on peut déterminer les valeurs des courants :

5 _8E A
' T 5R’ >~ 3\5RrR/)  BR *73\5R/) R
Ainsi, les énergies stockées dans les bobines sont :
1_(8E\? 32LE? 1 2E\? 4 LE? 1 EN? 3 LE?
SZfL(—) = — , E =< QL(—) =— t E3 == 3L<—> ==
1= 57\5R 2% R? 2= 3 X"\ 5R % R2 3= 3 "\ 3R 50 R

On a & < & < & : cest la réponse @ qui est la bonne.
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6.13 b) La puissance dissipée par effet Joule 'est dans la résistance et vaut donc :

R(CE)?
2
En simplifiant & laide de la relation 7 = RC, on trouve Ps(t) = exp(—2t/7)

2

Po(t) = uc(1)ift) = B~ exp(~t/r)) x 2 exp(~t/7) = 2 (exp(=t/7) = exp(-2t/7) ).

Remarquons que, par conservation de la puissance, cette derniere expression peut s’obtenir en faisant la différence
entre les deux précédentes, la puissance regue par le condensateur étant égale a la puissance fournie par la source
de tension dont on a retranché la puissance dissipée dans le conducteur ohmique. C’est un bon moyen de controler
le résultat.

6.13 d) Il faut intégrer la puissance Pg(t) fournie par la source sur toute la durée de la charge du condensateur,
c’est-a-dire de t =0 a t = +00. On a donc :

Ep = /tt:+°° Pe(t) dt = /t,+oo TE2 exp(—t/7)dt = (—7) C’f'2 {exp(—t/T)]:oo e

=0 t=0

. NI . 1., 2
Remarquons que cette expression est homogene a ’énergie contenue dans un condensateur iCuC.

6.13 e) Il faut intégrer la puissance Ps(t) sur tout le temps de la charge du condensateur, de t =0 & t = +o0 :

t=4o0

oo /t Patt) di = /tt:+oo 52 exp(—2t/7)dt = cr” (—%) [exp(—Qt/T)} e — %C’E%

Ji=0 Ji=0 T 0

6.13 f) Il faut intégrer la puissance Pc(t) sur tout le temps de la charge du condensateur, c’est-a-dire de t =0
at=+o00. On a donc :

t=4o0 t=4o00 CE2
Ec = / Pc(t) dt = / (exp(—t/T) —exp(—2t/7)) dt.
t=0 t=0 T
On reconnait les deux intégrales précédentes donc :

2 +o00
cr —%) {exp(—2t/7’)} = %CE?

0

Ec = (-7)

teo  COE? (

0 T

{exp(—t/r)}

Alternativement, on aurait pu effectuer le calcul suivant :

t=4oc0 t=4oc0 t=4oc0 t=4oc0
5c:i/ Pc@)dtzi/ ucidtzi/ uc~c§39<u::/“ d(lcué)
) ) &t ) 2

=0 t=0 =0 =0

pour trouver :
1

1
Ec = EC(U%(-‘FOO) - u%(O)) = iCEQ,
qui est le méme résultat.
Remarquons que, par conservation de ’énergie, cette derniére expression peut s’obtenir en faisant la différence entre
les deux précédentes, ’énergie regue par le condensateur étant égale a 1’énergie fournie par la source de tension dont
on a retranché I’énergie dissipée dans le conducteur ohmique. C’est un bon moyen de contréler le résultat.
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dt
6.14 b) La puissance instantanée regue par le condensateur s’écrit :
B o duc _ d(3Cug (1))
Pe(t) = uc(t)i(t) = uc(t) - @
. : . o di . d(3Li%(1))
6.14 c) La puissance instantanée recue par la bobine s’écrit Pr (t) = ur (¢)i(t) = L&z(t) = T

6.14 d) On intégre la puissance Pg(t) sur tout le temps de la charge du condensateur, de t =0 & t = 00 :

t=+o0 d'LLC t=+o0 2
& :/ BC—~dt=CE duc = CE(uc(t = +00) — uc(t =0)) = CE.
t=0 t=0

6.14 ¢) On integre la puissance Pc(¢) sur tout le temps de la charge du condensateur, de t =0 & t = 400 :

f=toe =ree 1, 1 2 2 2
Eo = Pc(t) dt = d(ECuC) = §C(UC (+OO) — uc (0)) = §CE .
t

t=0

6.14 f)  On intégre la puissance Pr(t) sur tout le temps de la charge du condensateur, de t =0 & ¢t = +o0 :

£ = /tt:+oo PL(t) dt = /t:m d(%LiQ) — %L(i2(+oo) —2(0) = 0.

t=0

6.14 g) Il faudrait intégrer la puissance dissipée par effet Joule Py (t) = Ri*(t) sur tout le temps de la charge

du condensateur, de t = 0 & ¢ = +00. Cependant, on n’a pas acces a ’expression de i(t). On peut alors malgré tout

se servir de la conservation de I’énergie :

SJ:£E—£C—€L:CEQ—%CEZ—O:%CE2.

6.15 b) La loi des mailles donne :

ec = (Za + Zu)i
donc EvV2¢** = [Rg + Ru + j(Xg + XU)]I\/iej(“t""p)
donc E = [Rg + Ry + j(Xa + Xu)| 1.

En prenant le module, on obtient :
E
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6.15 ¢) En reportant expression de I obtenue dans celle de Py, on retrouve l'expression donnée dans I’énoncé :

P R.E?
" (Re + Ru)? + (Xg + Xu)?

La fonction dont il faut calculer la dérivée est du type Pm(Xu) = 7 ()1( y La dérivée sera donc du type :

OPm F(Xw)

Xy (f(Xu))?
Finalement, on calcule :

me _ 7RuE2 Q(XG +Xu) .
- ((Re+ B2 + (X + X.02)

6.15 d) La fonction dont il faut calculer la dérivée est du type P (Ry) = gég“; , la dérivée sera donc du type

OPm f/(Ru)g(Ru) - f(Ru)gl(Ru)
OR. (9(Ru.))? ’

Ainsi, on calcule :

0 P’VV‘L 2
=F
OR,

(Ra + Ru)? + (Xa + Xu)? — 2Ru(Ra + Ruy)
((RG + R+ (Xo + Xu)Q)2
_ e B+ R+ 2Ro Ry + (Xo + Xu)° — 2R§ — 2R, Rq
((Re + R)? + (Xo + X.02)
(RE — RY) + (Xa + Xu)?
((RG + R+ (Xo + )@)2)2

— E?

6.15 ¢) On cherche pour quelles valeurs de R, et X, les deux dérivées partielles de P, sont nulles.

On a OPrm =0 pour X, + X¢ =0, soit X, = —Xg.
00X,
2 p2
On aura alors ?;m = E? (Fg = ) 5. Alors, on a ?;m =0 pour Rg = R,,.
“ ((RG+Ru)2+(Xc+Xu)2) “
Mathématiquement, on pourrait avoir comme solution Rg = R, ou Rg = —R.. Ainsi, la solution @ pourrait aussi

étre considérée comme correcte. Mais, en physique, on a nécessairement Rg > 0 et R, > 0.
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IF'iche n° 7. Amplificateurs linéaires intégreés|
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Corrigés

7.1 Les circuits pouvant fonctionner en régime linéaire sont les circuits @ et @ Avec une rétroaction sur

la seule entrée non inverseuse, les montages @ et @ fonctionnent en régime saturé.

7.2 a) L’impédance d’entrée d’un ALI réel est de ordre du mégaohm (c’est-a-dire de I'ordre de 10° Q). Dans
le cas de ’ALI idéal, 'impédance d’entrée est supposée infinie.

7.2 ¢) Le courant de sortie est variable et dépend de la charge du circuit & ALL
7.2 d) En régime linéaire, c’est la différence des potentiels entre les deux entrées qui est nulle : V; — V_ =0
7.3 a) La résistance Rs établit une rétroaction sur I'entrée inverseuse, I’ALI peut donc bien fonctionner en

régime linéaire.
7.3 b) Lorsqu’un ALI fonctionne en régime linéaire, onae =V -V~ =0. Onadonc V' =V .

7.3 ¢) L’entrée non inverseuse est reliée & la masse donc V™ = 0. D’aprés le schéma : Va4 = V™. Le régime
linéaire donne donc V4 = 0.

7.4 a) Le potentiel de ’entrée non inverseuse est nul et est égal au potentiel de ’entrée inverseuse en régime
linéaire.
7.4 c) Le potentiel de ’entrée non inverseuse est nul et est égal au potentiel de I’entrée inverseuse en régime
linéaire.
7.4 d) Le potentiel de I’entrée non inverseuse est v.. Grace au régime linéaire, on en déduit que le potentiel de

I’entrée inverseuse est également ve.
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7.6 a) La loi des noeuds appliquée a l'entrée inverseuse donne i1 = i~ + i2. L’ALI étant idéal, on a i~ = 0.

Finalement, on a donc i1 = is.

7.6 b) D’aprés le schéma, on a Uy = v, — V™. Comme PALI fonctionne en régime linéaire, ona V™ =V = 0.

D’ou le résultat.

7.6 c) D’apres le schéma, on a Uy = V™~ —v,. Comme I’ALI fonctionne en régime linéaire, on a V'~ = vt =o.

D’ou le résultat.

7.6 d) La résistance R; est représentée en convention récepteur. On a donc i; = R—l
1
- . . . , , Us
7.6 ¢) La résistance Ra est représentée en convention récepteur. On a donc i2 = R
2
7.6 f) D’aprés la premiére question, on a i; = 2. Donc, on a — fR—S. On en déduit le résultat.
1 2
T . . 1 ) . s .
7.7 Avec la formule donnée, amplification du montage vaut r c’est un réel négatif. Les tensions v,

et vs doivent donc étre en opposition de phase, ce qui n’est pas le cas des réponses @ et @ Sur la figure @,

1
Pamplification vaut —1 alors qu’on a bien _6(: 0,5/3) sur la figure @ : seule cette derniere convient.

7.9 a) En régime constant, un condensateur est équivalent a un circuit ouvert. Il n’y a alors plus de rétroaction

sur ’entrée inverseuse et I’ALI ne peut pas fonctionner en régime linéaire.

7.9 d) I’ALI est idéal donc i~ = 0. La loi des nceuds a ’entrée inverseuse donne ig = ic.

7.9 e) Le condensateur est représenté en convention générateur. Par conséquent, la loi d’Ohm donne :
. 1
Uc=—-Z Xic avec Z = —.
Yo wc iCw
v
7.9 f) En combinant la loi des neeuds et la loi d’Ohm, on a ir = Ee =ic = —jCwus

7.9 g) A partir de Pexpression de H, on obtient que jRCwvs = —ve.
dus(t)

Cette relation devient, en grandeurs réelles, RC
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7.10 b) Le déphasage demandé est égal a ’argument de la fonction de transfert. Cette derniére est un imaginaire

ur de partie imaginaire strictement positive, car H = — = .
L P & P ’ = jRCw  RCw

7.10 ¢) On utilise les réponses aux deux questions précédentes : 'amplitude de v. est multipliée par le gain et

le déphasage est intégré dans le cos £ cos( t + 7T) E sin(wt)
i T Uy = —— wt+ = | = ———— sin(wt).
phasag 8 *~ RCw 2 RCw
7.10 d) Avec un calibre de 250 ps/division, on mesure une période de 1 ms. La fréquence de fonctionnement est
donc de 1kHz.

1
7.10 e) Le module de la fonction de transfert est ——. Avec les valeurs numériques fournies, on trouve G = 3,1.

RCw

7.10 f) Le déphasage de v, par rapport a ve est de +g donc la tension de sortie doit étre en avance d’un quart

de période sur la tension d’entrée. Les réponses @ (tensions en phase) et @ (tension de sortie en retard) ne sont
pas compatibles. A la fréquence de fonctionnement, le gain est de 3, ce n’est pas le cas sur la réponse @

7.11 a) La fonction de transfert fournie se met sous la forme jRCwvs = —ve. Comme une multiplication par jw

en notation complexe correspond a une dérivation, on en déduit I’équation différentielle.

7.11 ¢) Une tension constante positive F s’intégre en fonction affine de pente négative —At + b. Ce n’est pas le

cas des réponses @ et @

Pour t € [O, 500 ps}, on lit £ = 3V. Avec les valeurs numériques de R et C, on trouve une pente théorique de
—8,0 x 10V - st Sur la courbe @, on mesure une pente de —6/500 X 1075 = —12 x 10V - s alors qu’on a une

pente de —4/500 x 10°> = —8,0 x 10° V- s™" sur la courbe @

1 R Ra
12 L
7.12 a) OnaG2 R o+
_ 1 1+ 1«

7.12 b) OnaG—Q—a = Donc,Gg_I2_1+a2

1 R1
7120) OnaG1—G2:1——.Donc,G1:G2<:>R——1<:>R1:R2

2 2

1 / 1 0(2—1 . /
7.12 d) Onposef(a)za—l—aAOncalculef(oe):l—?: o2 . Ainsi, on f'(a) =0 <= a =1. Comme

fla) —— 40 et f(a) — +oo,

a—0t a—r+oo

1
on en déduit que o + — est mininale quand a = 1.
e

7.13 a) L’ALI étant idéal, les courants d’entrée sont nuls. Ainsi, la loi des noeuds & ’entrée inverseuse assure
que 71 = 2.
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7.13 b) Les deux résistances étant parcourues par le méme courant, elles sont en série. Ainsi, on en déduit que

le circuit équivalent est :
Uz

Ul Rl Vs

La formule du diviseur de tension aux bornes de R; donne le résultat demandé.

7.13 ¢) L’ALI fonctionne en régime linéaire donc ona V7 =V .

. . - R . ,
7.13 d) D’apres les questions précédentes, on a ve = 71113, d’ou le résultat.
R+ Rs
7.14 Le gain de Pamplificateur non inverseur vaut ici 6 : c’est un réel positif. Par conséquent, la tension

de sortie doit étre en phase et de plus grande amplitude que la tension d’entrée. Les réponses @ (tensions en

opposition de phase) et @ (sortie de plus faible amplitude) sont donc exclues.

Sur la réponse @, le gain mesuré est de 16 (8/0,5) alors qu’il est de 6 sur la réponse @ : seule cette derniére
convient.

7.15 a) L’ALI fonctionne en régime linéaire donc V™ =V ~.

7.15 b) Les courants d’entrée de PALI idéal étant nuls quels que soient les potentiels des deux entrées, 'ALI se

comporte comme un circuit ouvert en entrée. L’impédance d’entrée tend donc vers +oo.

Ve 7 13 s 2 9. ,
7.15d) L’impédance d’entrée du montage est ici définie par Z. = =. L’intensité d’entrée étant nulle, 'impédance

~
@

d’entrée est infinie.

11

7.16 ¢)  Avec le condensateur, le module de I'impédance d’entrée est |Ze| = 0,16 - 10° Q ~ 16 k. II est

R

ol

donc légérement plus grand qu’avec la résistance.
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Réponses
81a) . iuenni., B Qdeg 84a).....cooiiii... B88C) it Non
55
84b) ... 25,5° 2(0,
81b).eeeinii... 8.94a). ... . L)
84C) ot ny
8.2a) ..., 35°39’
8.5a) . .oiiiii.. r—i 2
8.2b).. ... 1,715rad 89D) oo cos(0r) > -~
8.5D) . i
8.2C) i 60°20' .
1 8.6a)......... (a1 +ag) —m 8.9 ¢) sin(6;) < \/ni —n3
8.38) . i i
- 8.6D) ...t 8102a). . ..ccuiunn.. 564 THz
83Db) .o ——i
2 C ) Non| 8.10b)........ 3,74 x 107
83¢c)..... arcsin(n1 sin(i)> 8.7b) i 811 ............... @ et @
na
8.8a) . ... 1,25
NE - [L25] 8.124a).... |226x10°m 5|
8.3d).. |T_ arcsin(— sin(i)) 8.8D) . e, 1,18
2 ne [1.18] 8.12Db) ...
Corrigés
8.2a) Onaa=35+0,65x60 = 3539
8.2 b) L’angle 8 vaut 98° et 15 minutes d’angle, c’est-a-dire 8 = 98 4+ 15/60 = 98,25°.

En radians, on a § = 98,25° x

T
180°

= 1,715rad (on garde 4 chiffres significatifs, comme la donnée de départ).

Ona~y=1

,0563 x 180
T

= 60,33°. Or, 0,33° correspondent & 0,33 x 60 = 20". Donc v = 60°20’.

La loi de Snell-Descartes pour la réfraction donne : n; sin(i) = n2 sin(d). Donc § = arcsin(E sin(i)).

n2

La loi de Snell Descartes pour la réfraction donne : n; sin(i) = ng sin(r). On obtient pour r :

r= arcsin(

ny . ..
— sin(z
- sini)

. 1
) et donc r = arcsin
1,45

)

X sin(24,0)> = 16,3°.

Attention a bien régler la calculatrice en degrés ou a convertir I’angle en radians.
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8.4 b) Si la calculatrice est réglée en degrés, on a : r = arcsin <1Z5 sin(0,674 x 178rO)) = 25,5°.

8.4 ¢) Onai= arcsin(g sin(r)) donc i = arcsin(# sin 15,0) =22,0°.
ni

8.5 a) On a D; = r —i. Attention, 7 et r sont orientés dans le sens trigonométrique, alors que D; est orienté
dans le sens horaire.

27T:A+g+g+(27r—(a1+a2)).

Ainsi, on a A = (aq + a2) — 7.

8.6 b) On utilise le fait que la somme des angles d’un triangle est égale a m dans IAJ. Donc, on obtient
7r:A+(g —r)—|—(g —7'), et ainsi A =71+ 1.
8.7 a) Ona 2 sin(i) = = sin(44°) = 0,8 < 1. Il existe un rayon réfracté, il n’y a donc pas réflexion totale.
)
L. N . o . . . (N2 . (1,3 o
8.7 b) Comme n; est supérieur a ne, il existe un tel angle limite, qui est i, = arcsm(—) — arcsin 5 = 60°.
n1 B
8.8 a) D’apres la loi de Snell-Descartes, on a n1 sin(i) = nz sin(r). Donc
sin(%) sin(20,0°)
= =137 x ——£% =1,25.
n2=m sin(r) ’ sin(22,0°)

8.8 b) On observe une réflexion totale si —- x sin(z) > 1 donc si n2 < ny x sin(z) = 1,37 x sin(60,0°) = 1,18.
n2
8.8 ¢) L’angle limite au-dela duquel il y a réflexion totale est iy = arcsin(ﬂ). Un milieu ne peut pas avoir un
ni
indice plus petit que 1 (cela signifierait que la lumiére s’y propage plus rapidement que dans le vide, ce qui n’est

pas possible). Donc, pour n; = 1,37, le plus petit angle limite de réflexion totale est :

= 46,9° > 40,0°.
1’37) 6,9° > 40,0

10, min = arcsin(

Donc : non, il n’existe aucun milieu 2 qui permette d’observer une réflexion totale dans ces conditions.

2 0,
8.9a) Onacos(f)=+/1—sin?6,)=4/1— s g )
ny
: . .o o . misin(3 —0;)
8.9 b) Il s’agit d’un triangle rectangle, donc ¢ = 5~ 0,. Donc la relation équivaut & ———=—= > 1,
T2
5(6,.
c’est-a-dire a m cos(6r) > 1 et donc & cos(6r) > 2
n2 ni
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200 20
89¢c) Onay/l->0 (6:) > % donc 1 — 22 (6:) > (E
1

2 2
ny ni

2
) dont on déduit :
ni

2
sin2(9i) <ni (1 - (nQ) ) =n? —ni.
ni

108 m - 51
810a) Onaf— < —200XW0TmMs 500 101y — 564 TH.
Ao 532nm

8.11 Au passage d’'un dioptre, la fréquence et I’énergie d’un photon sont inchangées. En revanche, la vitesse
de propagation de la lumiere et la longueur d’onde dépendent de I’indice optique.

c 3,00 x 108m -s7!
.12 = =" - - -
8 a) Onav 133

812b) Onai= U= ¢ 2o _532mm
. -4

=226x10°m s
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Fidl 59 Lentilles

Réponses
9.1 a) arcta AB
da).o....... retan| 5
AB 180
9.1b) arctan(OA> X —
9.1¢C) i,

9.1€) i ()
9.1 f) it (a)

0A’ AR
9.2 a) .......... ﬁ = ﬁ

9.6a). ...
9.6b) ...
9.6¢C) ...
9.6d) ..o,

0.7 8). \veiiii

_ 2
9.11a) e, F/fA,
9.11b).............. FA - f
9.11¢) i

9.13a)...... ]ﬁ: 75,020m‘

9.13b)....... 10,8m X 7,2m
9.14a). . ..., (@)

9.14b) ... )
OA’ = —15cm

9.15b).............. virtuelle
)

03¢) oo oA OF | 915 ),
9.3d)...oiiii 20cm| 9-10a)...........
) [20cm] OA+OF |  915d)................
9.4 a) ABy OA % f/ D2 _ 2
da). i % —
1 9.10b)............ xS 9.16a)............. 1D
f—OA’
A1By
9.4b). ... . = 15D
OA x OA 9.16b)................. —
2 9.10¢)........... Ty 64
— 9.16C) v [0]
9.10d)................
Corrigés
. AB
9.1 a) Dans le triangle rectangle OAB, on a tan(a) = OA" Comme l'angle o est entre —mw/2 et 7/2, on a
= arctan(A—B> our un objet lointain
o= oA ) Powr u j .
. . . P " AB 180
9.1 b) On effectue une conversion radians-degrés du résultat précédent : a = arctan(ﬁ) X —
. _35-10°km _ 180 .
9.1 ¢) Dans le triangle rectangle OAB, on a OA > AB. Donc, on a : a = tan(a) = 384 100 Km X — = 0,52°.
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_ 1,4-10°km . 180
~ 150 600 - 103 km

o =~ tan(w)

9.1¢e) Méme si les valeurs ne sont pas strictement égales, elles sont proches d’un point de vue physique, ’écart
as —a
relatif entre elles valant —— = = 1,9%.
Qar,
Les diametres angulaires de la Lune et du Soleil pour un observateur situé sur Terre sont proches.

9.1 f) La Lune et le Soleil ont la méme taille apparente sur le ciel. Si la Lune, plus proche de la Terre, se place

entre la Terre et le Soleil, celle-ci va dissimuler complétement le Soleil : on parle d’éclipse solaire. Les diameétres
apparents n’ont rien a voir avec ’alternance des saisons, liée a I’inclinaison de I’axe de rotation de la Terre, ni avec
Ieffet de marée, lié a 'attraction gravitationnelle de la Lune et du Soleil sur les océans et la croiite terrestre.

OA"  A'B
9.2 a) Par application du théoréme de Thales, on a — = ——.
OA AB
9.2 b) Par lecture graphique, on constate que OA’ = 8 unités horizontales et OA = —4 unités horizontales.
A'B" OA’ 8
D’apres la relation déterminée dans la question précédente, on a v = — = — = Seareaux o
AB OA —4 carreaux
9.3 a) Le sens positif est le sens de propagation de la lumiére. Le point F est aprés O; donc O1F} = 40 cm.

o A1B1
T OFy
petit ; comme il est exprimé en radians, on peut effectuer 'approximation o & tan(a).

9.4 a) Dans le triangle rectangle O1A1B1, on a tan(«) Comme l'objet est tres éloigné, 'angle « est

AB
9.4 b) Dans le triangle rectangle O2A;B;, on a tan(a’) = Ol F’l . Comme P’objet est trés éloigné, ’angle o est
2L 2
petit ; comme il est exprimé en radians, on peut effectuer ’approximation o’ ~ tan(a).

G=—= X ==,
a f5 AiB1 fy

1

9.4 d) Graphiquement, on lit f; = 16 carreaux et fs = 4 carreaux. Donc, on a G = F = 4. Un objet lointain

2
observé a travers cette lunette apparaitra sous un diametre 4 fois plus important qu’a I’ceil nu.
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9.5 Pour se placer dans les conditions de Gauss (stigmatisme approché et aplanétisme), les rayons lumineux
issus d’un objet doivent passer prés du centre optique et étre peu inclinés par rapport a ’axe optique principal.

9.6 a) Ce schéma est correct car un rayon paralléle au rayon incident passant par le centre optique de la lentille
sans étre dévié couperait le rayon émergent dans le plan focal image de la lentille convergente.

9.6 b) Ce schéma est incorrect car le foyer image F’ d’une lentille convergente est situé au-dela de la lentille

et non en avant (par rapport au sens de propagation de la lumiére). Ce schéma serait correct si la lentille était
divergente.

9.6 ¢) Ce schéma est incorrect car un rayon lumineux qui ressort d’une lentille paralléle a ’axe optique principal,

a une direction incidente passant par le foyer objet F. Ceci n’est pas le cas ici puisque le rayon incident passe par
le foyer image F’.

9.6 d) Ce schéma est correct car un rayon incident dont la direction passe par le foyer objet F ressort paralléle
a 'axe optique de la lentille.

9.7 a) On ajoute un rayon incident issu de B paralléle & I’axe optique principal et émergeant en B'.

On trouve la position du foyer image principal F’ & I'intersection entre I’axe optique principal et le rayon tracé.

En mesurant la distance OF’ sur le schéma et en tenant compte de I’échelle du document (8 carreaux sur le document
correspondent & 10 cm en réalité), on trouve : OF’ = 5,0 cm.

1
9.7 b) En utilisant la définition de la vergence, on a V = 7 = 005m = +20 6
9.8 Pour comparer les lentilles, il faut comparer soit leurs distances focales images f’, soit leurs distances
1
focales objets f = —f’, soit leurs vergences V = ?
Remarquons que le lentille @ est exclue d’office, car f; = —8,0cm < 0 donc il s’agit d’une lentille divergente

(f' < 0) et non convergente (f' > 0).

Calculons les vergences des trois lentilles qui sont encore & considérer. On a :
e pour la lentille @ :Va=48,06;

1 1
la lentill Vo= =—""—=41254;
e pour la lenti e@ Ve 17 0.080m +12,5 6 ;
e et pour la lentille @ Ve = % = f% = fﬁ = +10,0 6.
—0,100 m

On a V, > V. >V, ; donc, c’est la lentille @ qui est la plus convergente.

6,0m-1
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9.9 b) La situation @ est exclue d’office car 1’équation n’est pas homogene (n et nair sont sans dimension
tandis que R est une longueur).

La situation @ permet de déduire que f = 5 c’est-a-dire une distance finie a laquelle convergent les rayons.

La situation @ conduit & f' — 400 : les rayons convergent & I'infini donc ils ne sont pas déviés.

Une autre approche consiste a voir que si les indices de part et d’autre du dioptre sont identiques, il n’y a pas de
déviation (loi de Snell-Descartes). Réponse : @

YUYl
9.10 a) On déduit de la relation ! _ ; = L que OA’ = w
oA’ OA  OF OA + OF’
YA RYVAYY
9.10 b) On déduit de la relation ! ; = L que OA = M Ainsi, OA = M
oA’ OA  OF OF’ — OA’ fr—0A’
. AN vON
9.10 ¢) On déduit de la relation ! i = L que f' = OF = %XiOA
oA’ OA  OF OA — 0A/
- / - -
9.10 d) On a montré que OA’ = % Or, on a OA = —15cm et OF’ = 4,0cm.
+
, . - —~—7 —15cm x40cm
L’application numérique donne OA’ = “Them 1 40cm 5,5 cm.

Comme OA’ > 0, I'image A’B’ se situe aprés la lentille.

9.11 ¢) On a montré d’une part que FA —_ et d’autre part que OA = OF + FA.

Les applications numériques donnent :

—(12,0cm)®>  —(0,120m)? —

FA = 50mm 5.0.105m = —288m et OA=-0,12m + (—2,88m) = —3,00 m.

L’objet se trouve & 3m en avant de la lentille, il s’agit donc d’un objet réel.

9.12 b) L’image est renversée car v < 0.

9.13a) OnaOA’=15met f/ =5,00-10">m. D’aprés la relation de conjugaison de Descartes, on a :

1 1 1

OA OA OF

On en déduit que OA =

OA’ x OF’ ——  150m x 5,00-1072m
—————— . Donc, on a OA =
OF — OA’ 5,02-1072m — 15m

=-5,02-10?m = —5,02cm.
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9.13 b) Le grandissement ~y vaut :

A'B" OA’ 15m
T === = —299.
AB OA —0,050 2m

Ainsi, la largeur de I'image sur ’écran vaut 299 x 36 - 107%m = 10,8 m. De plus, la hauteur de 'image sur I’écran
vaut 299 x 241073 m = 7,18 m.

Finalement, les dimensions de I'image sur 1’écran sont : 10,8 m x 7,2 m.

9.14 b) On sait que i — ; = L Ici, on souhaite que OA’ — 400 ; donc on souhaite que ; — 0"
o OA' OA oF '
et donc que OA — —OF’ = OF.

—— —6,0cm x 10cm
OA'=—"—"""" = —15¢cm.
—6,0cm + 10 cm o

9.15 b) L’image se situe en avant de la lentille. On I'observera directement & travers la lentille, en regardant
dans la direction de ’objet.

o/ /
9.15 ¢) Sa taille se calcule & l'aide de la formule du grandissement : v = Aj = % Ici, on a
AB OA
/ —
AB =28 AB = TP 5 hem = 5.0cm.
O —6,0cm

1 1
9.16 a) On transforme l'expression — = 5= — —(p_qy ©n mettant les fractions sous dénominateur commun
2 2
et en isolant f'. On a :
11 1 2 n 2 donc 1 _2(D-d)+2(D+d) 4D
froo bk ZD=d " D+d  D-d ff (D+d(D-d  D2—d?
D* —d*
Finalement, on t =
inalement, on trouve f D
9.16 b) En remplacant d par on arrive & ' = i ?62 15D
plag p ) = 1D = &
/ D s 4D . 22 pa
9.16 ¢) En remplacant f' par T on arrive a 1D et donc & D° = D” —d”. Ainsi, on a d = 0.
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IF'iche n° 10. Cinématique|

Réponses
10.18) e 1h 6min 408 10.9 ) (aw)2 e
101 D) oot
10.28) .o 10.9¢)..onnnnns —aw?(cos(w)ez + sin(wt)ey)
2 10.9d) e aw?
10.2B) e o X T )
2 10.102) .o ’ cos e, + sin fe,,
™
10.2c¢) .o ag X T x<—+7') de, .
) A SR 10.10b)..ooo.... .. det — (— sin 0, + cos 0e;)
10.3 o = =
@ 1010 ¢) . evevniniiinn. ’e‘; = cos fe, — sin fey ‘
104 i ®)| 1010d)................. &, = sin 0] + cos 67 |
10.5a) ccoeeiiiieen. ’a(cos(@)e_g;> + sin(f)e,) ‘ 10.10 o) de; je:
: A0 e) .o i 0
10.5b)......... a(cos(e)e‘; + (sin(e) + )eT,) I
a 1001 8) .o =
T
10.5¢)...... a<2 cos(f)e, + (2 sin(6) + )e") 1
v 1001 D) oot 5
105 d) v 1011 €)oo aer
10.6a) oooveiniinnn r(cos(0)e +5n(0)&) | 1011 d) oo
10.6 b) ..................................... 7‘6_,: 10.11 e) ..........................
10.6 C).oveeennnnn ’r(cos(@)e_; +sin(f)e,) + ze 1
10.12a) ..o roe /T <e_’ + we—g)
10.6 d). .o T
107 8) e |7 sin(0)] 10.12 b) roe=t/T (( 12 - w2> = (2w)e_§>
T T
10.7b) ........... ’ rsin(6)(cos(p)es + sin(p)ey) ‘
10.12C) vt
10.7 ¢). .. [rsin(0)(cos(p)es + sin(p)e, (0)ez
- [rsin@)costp)E +sin(@)e) £reos@] oo
10.7d) e er
) i 1012 €) oo
10.7€) e ’cos(@) e, — sin(0) e_g"
1013 8) .ot
10.8a) .oviiiii 494km-h™M | 1018 b).
-2
10.8Db) . i 8,0m-s 10.13 €)oo ——at? + vyt
109a)...... ’ aw(— sin(wt)e, + cos(wt)e,) + be. :
1013 d). iatQ + L
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foad P 1015 8) .0
A4 D). —— V02
99t T 1015 D)«
Corrigés

10.1 a) La voiture avance & vitesse constante. Pour parcourir 100 km, il lui faudra le temps :

100 km
T = ————
90km -h~!

=1,11h = 1h 6 min 40s.

10.1 b) Pour parcourir 100km & 80km - h™*, il lui faudrait le temps 7' =
trajet serait donc allongé de At =7" — 7 =0,14h = 8min 20s.

10.2 a) L’accélération est constante durant le temps 71 et la vitesse initiale est nulle. La vitesse & un instant ¢

vaut donc v(t) = ag x t, d’ott v1 = v(11) = ap X 1.

10.2 b) Pour ¢ € [0,71], la vitesse est décrite par I’équation : v(t) = ao X t. La distance parcourue a la date ¢

1 X 112
s’écrit donc d(t) = 540 X t*. Ainsi, on a di = d(my) = woxn

10.2 ¢) La distance totale parcourue est diot = d1 +d2, avec dy évaluée a la question précédente et ds la distance
parcourue par le véhicule dans la seconde phase du mouvement ou il progresse a vitesse constante.
T
Or, on a d2 = v1 X T2. Ainsi, on a diot = ap X 71 X (51 +7'2>.
10.3 A t =0, Pavion a une vitesse nulle. Sa vitesse au temps ¢ s’écrit alors v(t) = a x t et la distance qu’il
1
parcourt vaut d(t) = 50 X 2.

. . . v
D’abord le temps t4 ou ’avion atteint la vitesse vg vaut tg = iy
a

. C . - . . . -1
Pour faire 'application numérique, il nous faut exprimer la vitesse v en m-s~ . On a :

1 50m - s~ ?
= . t d tg = —— = = 20s.
36005 50m -s et donc tq4 55m. = 0s

180 x 10° m
Vg = —————

La longueur de la piste correspond a la distance parcourue pendant cette durée, donc :
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10.4 La vitesse de la voiture & un instant ¢ s’écrit v(t) = v; — a X t avec :

v; =110km -h™* = % =30,6m-s " .
Ainsi, le véhicule s’arrétera a la date t, telle que v; —a Xt =0m - s 1. Ona te = Yi_ M = 3,06s.

a 10m-s

La distance parcourue pendant le freinage vaut d(t) = v; X t — %a x 2.
La distance d’arrét d, correspond a la distance parcourue pendant la durée t, : c’est d, = gi = 46,7 m.
105 a) e On a ﬁ»:a(cos(a)e_; + Sm(e)ey) ...........................................................................................
105 b) e On a @ :O_A> + ﬁ : a((:os(e)ex + (sm(g) + ) e_y)) ...............................................................
105 C) ..... On a O_A>+ O_P: : a (2(:05(9)61 + (2 Sm(@) + ) _J) ....................................................................
105 d) e On a OA_ OB : BA : _be_; .................................................................................................
106a)ona O_M7 :T(Cos(e)a_FSln(e)ey) ..........................................................................................
106b)onaO_M7 :ra ..................................................................................................................
106 C) ..... On a m : T(COS(Q)E;—’_ Sm(e)ey) + Ze_; ...................................................................................
106 d) e On a w : re_; + Ze_; ...........................................................................................................
107&)011& ||O_M7H:|Tsm()| .......................................................................................................
107b)onaO_M7 :TSIH(G)(COS(@)Q}JFSm(gp)ey) .................................................................................
107 . C) ..... On a m . : W + m : Tsm(a)(cos (So)e_; + Sm( 80 )6y) + T COS(Q)GZ .............................................
107 d) e On a OM : re_; ...................................................................................................................
10.7¢)  Caleulons les projections de 2 sur les trofs vecteurs do In base sphérique. Ona:

Par conséquent, on a :
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10.8 a) La vitesse de la balle a I'instant ¢; s’écrit T (M, t1) = v (t1)eas + vy(t1)ey, avec :

- :L'(tl + At) — $(t1)

va(ty) ~ ) 7 Lyt + At) —y(h)

vy (t1) ~ Ar et At =0,05s.

Nous obtenons le tableau suivant :

t (en s) 0 | 005|010 | 0,15
vy (enm-s ') 7 7 7 7
vy (enm-s™') | 11,8 | 11,4 | 11,0 | 10,6

A T'instant initial, nous pouvons écrire : v ~ \/(7m . s_1)2 + (11,8111 . s_1)2 =13,72m-s " =49 4km-h~'.

10.8 b) L’accélération de la balle a I'instant ¢; s’écrit @ (M, t1) = ax(t1)€z + ay(t1)eéy, avec :

'Uz(tl —+ At) — Vg (tl)
At '

vy(ts + At) — vy (t1)
At

az(t1) ~ ay(t1) ~ et At =0,05s.

Ceci donne :

Tm-s 1 —7m-s7! _ 11,4m-s~*—11,8m-s7! _
az(0) ~ 505s =0m-s 2 et ay(0)~ 005 = 2

L’accélération initiale vaut donc ag ~ \/(Om . 572)2 + (—8m . 872)2 =8,0m- s 2,

0
10.11 b) Onab= 2 Ainsi, b est homogene & un angle sur un temps au carré. Comme un angle est une grandeur

sans dimension, on a bien le résultat donné.
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4 2 1
10.12 ¢) On a w = 4,78 tour - min~' = %:rad =0,5rad-s " et = —w? = (— —w2) =052
T

Ainsi, on a @(M,t) = —9T0% o ~t/7&r Lraccélération est donc orthoradiale.
T
N o 141 § ey
10.12 d) Ona @(M,t)- T(M,t) = ro°e "/ <— (— — w2> — 2w> =roe %/ (— . ) < 0. Le mouve-
T T
ment est donc décéléré.
_ 0 _ _
10.12 e) On ar =roe HT et t = 2. Donc, on a r = rge 0/(wx7) _ e car wr = 1.
w

10.13 a) Ona a(4) = . En projetant sur ’axe (0, €,/), on obtient —a = &4 Puis, en calculant

dt
v (1) t
/ dva :/ —adt,
v 0

10.13b) Ona @(B) = d”ng)

dv
. En projetant sur I'axe (0, €,/), on obtient a = =5 Puis, en calculant

dt
vp(t) t
/ dvp :/ adt,
0 0

dx% x’,y (t) , t t
10.13 ¢) Sur Paxe (0,e,/), on a va(t) = et Donc, on a / dz’y = / vadt = / (—at + vo) dt.
0 0 0

on obtient vg(t) = at.

1
Donc, on a x4 (t) = —§at2 + wot.

/ zp(t) t t
10.13 d) Sur l'axe (0,e,/), on a vg(t) = dg—tB. Donc, on a / dz’p = / vpdt = / atdt.
L 0 0

1 1
10.13 e) Nous observerons une collision & la date ¢; si x%(tl) =15 (t1) donc si —iat? 4+ vot1 = fatf + L.
Donc, t1 doit étre une solution réelle positive de I’équation suivante :

L

Vo
t— =2t += =0,
a a
Vo 2 L Ug
ce qui impose une valeur positive pour son discriminant A = (—) —4— > 0. Donc, on doit avoir L < —.
a a a
Apres application numérique, on trouve que la distance L doit vérifier L < 67 cm
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dv
a G- En projetant, nous obtenons :

10.14a) Ona @

dvg

dt

dv,
a7

=0

Dongc, on a vz = C*® = v, En intégrant une deuxiéme fois, vu que M est initialement en O, on obtient : z(t) = vout.

10.14b) Ona @ = % = ¢. En projetant, nous obtenons
dvg
=0
dt
dv, _
a7

v, (1) t

Donc, en intégrant, on a / dv, = / —g - dt donc v, = —gt 4+ vo,. En intégrant une deuxiéme fois, vu que M
V02 0

est initialement en O, on obtient :

1
z(t) = —§gt2 + vot.

10.14 ¢) A partir de Pexpression de z(t), on peut écrire ¢ = x/voz. On remplace ¢ par cette expression dans z :

1
2= —59(x/v0=)” + vo:1/vos.

2, Yo
ngr “x

Finalement, on trouve I’équation z = — =
23, Voz

10.15 a) On suppose que le lion et la gazelle se déplacent en ligne droite sur 'axe (Ox). On prend l'origine des
temps au moment ou la gazelle apergoit le lion et lorigine de I'axe (Oz) & la position du lion quand la gazelle
P'apercoit.

On integre deux fois pour avoir la position du lion zy, puis celle de la gazelle z¢ en fonction de temps :

1
:EL(t) = vot + ECLLtQ

1
za(t) =do + §agt2,

avec vo = 5,0m - sfl, ar =3,0m - 572, ag =2,0m - s % et dp = 10m.

Puis, on égalise ces deux positions pour déterminer le temps ¢1 ou le lion attrape la gazelle. On obtient une équation

du second degré sur t; :

wt% + vot1 — dp = 0. (*)

On résout cette équation du second degré qui admet deux racines réelles dont 'une est négative. Le temps cherché

*Uo+\/g

est la racine positive : c’est ¢, = ott A = v + 2do(ar, — ac) est le discriminant de I’équation ().
On trouve finalement ¢; = 1,7s.

1 _
10.15 b) La gazelle aura parcouru la distance d = §agtf, avec ag =2,0m-s et t; = 1,7s le temps mis par le

lion pour rattraper la gazelle. Finalement, on trouve d = 2,9 m.
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IF'iche n°11. Principe fondamental de la dynamique|

Réponses
11 P+ mave
mi + mo
11.2a). ..o \/(me2 —T)% + (mg)?
11.2b) . arctan (W)
11.3a) o ap(t — to)
11.3 D) [0]
11.3 ) % [1 e_k(t_t‘))]
1 I R ’cos(a)e_ﬂ: + sin(a)e,
11.4Db) oo ’ —sin(a)e, + cos(a)e_y"
114 c¢) e, ’cos(a)e_g + sin(a)e_y"
11.4d) ..o ’ —sin(a)e, + cos(a)e_y"
11.5a) e, ’ —Psin(a)e, — P cos(a)e, ‘
115 D)
11.6a) . .oveeenniann.. ’Pcos(@)e_; - Psin(@)e_é‘
11.6 ) oo
11.6¢)........... ’ (Pcos(0) —T)e, — Psin(@)e_g)‘
L7 8) o
11.7b) ] —T cos(0)es — Tsin(ﬁ)e_y"
11.7¢) . ] (P — T cos(6))e; — Tsin(G)e_y"
11.8a)......... (;aotQ + ;co)e—; — votey + zo€.

11.9¢)...ooenn.... (vot + zo)ex + yoey + %the_Z’
11.10a) oo ’605(9)6‘; + sin(@)e‘y"
11.10b) .o ’ —sin(f)e, + COS(@)G_;‘
11.10¢) oo —0sin(f)e, + 0 cos(0)e,
11.10d) ... —0cos(f)e, — Osin(h)e,

R T I

11.12b)............ (i —r0%)e; + (276 + rb) ey

S )
11.13b) o 0,46 rad

(T" —T)cos

11.17Dh) oo fm% + Psina
T1A8 A) oot 2%
T1A8 D)oo = %
1118 €)oo g
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Corrigés

11.2 a) Pour obtenir F, il faut pouvoir éliminer a.. L’astuce consiste & utiliser I'identité suivante :
sin® o 4 cos® a = 1.

Fsina = mRw” — T
On a { SHor = it , soit F*(sin’ a + cos’a) = F* = (me2 — T)2 + (mg)®. Finalement, Pintensité

Fcosa =mg

d’une force étant positive, on trouve F' = \/(me2 —T)° + (mg)2.

Lo . Fsina = mRw® — T . . .
11.2 b) Quand on écrit le systéme sous la forme , on s’apercoit qu’il suffit de faire le
Fcosa =mg
rapport des deux équations pour éliminer F'. On obtient :

mRw? =T

Rw? - T
tanao = —— , d’ou « = arctan <mw>

11.3 a) La solution générale s’écrit v(t) = aot + C1, ot C1 est une constante d’intégration que ’on détermine &

laide de la condition v(to) = 0. Cette condition donne C1 = —aoto, d’olt la solution v(t) = ao(t — to).

kt

11.3 b) La solution générale s’écrit v(t) = Ae ™. La condition initiale v(to) = 0 implique A = 0 puisque e ** > 0
pour tout ¢. Ainsi la solution est v(t) = 0.

11.3 ¢) La solution de 'équation homogene est v(t) = Ae **. Une solution particuliére (constante) est v = %.
Les solutions sont v(t) = Ae™ " + %. La condition initiale v(¢o) = 0 donne A = f%ekto. Il en découle la solution

générale : v(t) = % [1 _ efk(t—to):lA

La composante suivant e, correspond au produit scalaire :

@ -e; =1 x cos(a).

De méme, la composante suivant e, est le produit scalaire

@ - e, =1xcos(r/2 — a) = asin(a). On peut retrouver ces ré-

sultats géométriquement (cf. ci-contre).

Sur le schéma proposé, —m/2 < a < 0. On peut introduire 3 tel
que 3 — a = /2. La composante suivant e, vaut :

7> .
by = b - ez = cos(B) = cos(m/2 + o) = —sin(«).
De méme, la composante suivant e, vaut :

by, = b e, = sin(B) = cos(a).

On peut vérifier le résultat pour quelques situations : « = 0, ou
e — . NI —
b =éy;oubien a=—7/2, 0t b =e;.
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11.4 ¢)

—
€
. R . . . y

Il s’agit de la méme situation que pour le vecteur @ mais avec

un angle « orienté comme sur le schéma proposé et donc tel que

—7m/2<a<0.0na:

cosa e,
- —> —-—> :
¢z = C-e; =cos(a) et c,=T7- ¢ =sin(a). 2 s &
o
R NI . . sin a ey |
On retrouve ces projections a ’aide de la construction ci-contre. .
****** c
11.4 d)
On trouve :
=7 - .
dy = d - ez = cos(n/2 4+ a) = —sin(a)

et
—>
€x

dy = ge_y’ = cos().

La construction ci-contre confirme ces projections.

11.5 a) La composante suivant e, du poids est P, = P &= Pcos(a + w/2) = —Psin(a). De méme, sa

composante suivant e, s’écrit Py = D €y = Pcos(a + 7) = —Pcos(a). Ainsi, le poids s’écrit :
P=-pP sin(a)e; — P cos(a)ey,.

11.6 a) La composante suivant e, du poids est P. = ]_5 -ep = Pcos(f). De méme, sa composante suivant €o
Sécrit Py = P - &) = Pcos(a+ m/2) = —Psin(0). Ainsi, le poids s’écrit :
D= Pcos()e; — Psin(6)eg.

— —
11.6 b) Le vecteur T est colinéaire au vecteur unitaire €, et de sens opposé; on a donc T' = —Te€,.

= _,

11.7 b) La composante suivant e, de la tension du fil TestTo=T 2= T cos(m — ) = —T cos(0).
De méme, sa composante suivant e, vaut Ty = T. e, = Tcos(m/2 + 0) = —T'sin(0). Finalement, on trouve :
—

T = —T cos(0)e, — T'sin(0)e,.

&l
+
N-
o
I
5

U =des +y
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11.8 ¢) Dans le systéme de coordonnées cartésiennes, le vecteur accélération s’exprime en fonction des dérivées

secondes des coordonnées : @ = i€, + {je, + 2€. = apéa.

11.9 b) L’accélération s’écrit @ = Vi€, + Vyéy + Vz€,. On en déduit :

Vg 0 Ve = Ch
vy = 0 donc vy = Co
'l.)z = g Vz = gt + CJ

Les conditions initiales imposent C1 = v, C2 = 0 et C3 = 0. Finalement, on trouve ¥ = wvoe, + gte,.
11.9 ¢) Le vecteur vitesse s’écrit U = Ze, + yey + 2¢..
Par identification avec I’expression obtenue précédemment, on a :

r = vot + Cy

T = Vo
y = 0 donc y = 1 Cs
Z = gt z = = gt2 + Cs.

2

Les conditions initiales imposent Cy = xo, C5 = yo et Cs = 0. Finalement, on trouve :

Y —> —> 1 —
OM = (vot + xo)ez + yoey + Egtzez.

11.10 ¢) I suffit de dériver le vecteur €, = cos(f)es +sin(0)e,, en utilisant le fait que e, et €, sont des constantes
. de;  dcos(f)_, dsin(6)
lles). der _ >
(vectorielles). On a donc o TR + T
dcos(d) _ do o d cos(0)
dt  dt dg

&, Ici, 6 dépend du temps, par conséquent on a :

= —fsin(6).

dsin(6)

TR 6 cos(#). Finalement, on trouve :

De méme, on a

de,
dt

= —fsin(h)e, + 0 cos(0)e,.

11.10 d) En partant de eg = —sin(f)e, + cos(6)e,, on trouve :

des  dsin(f) _,  dcos(d)_,
a - a Tt Ta @
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11.12 a) 1l suffit de dériver le vecteur position en utilisant les résultats des exercices précédents. On trouve :

*—LO—M)—QE’ rde_;—fe_’-i-rée_’
T At oa T Tar T o

11.12 b) Dérivons le vecteur vitesse :

L A7 dr, . der  d(rf) L o\ N
== dter Tdt + T eq + 10 i 7(7”—7“«9 )e,«+(27‘9+r0)69.

11.13 a) Calculons le carré scalaire :

T?=(-F-P)>=F>+P*+2F . P =5,
car F - P = 0. Par conséquent, T'= V5N2 ~ 2 2N.

tana = F/P soit « = 0,46rad.

On peut aussi utiliser les produits scalaires. Par exemple :

T F=Tx Fcos(m/2+ a) = —TFsina.
De plus, compte tenu de ’équilibre des forces, on a :
TR (CF—P) FerP.Fop"
11 en découle sina = F/T, soit o = 0,46 rad (c’est-a-dire a = 26°).

— — 7 - . —
11.14a) Ona R=T + T + F. La composante horizontale de R vaut :

Ro=R-e2=T e +T &2+ F e, = (T —T)cosb.
S~~~ N
—Tcos® T’ cosb 0

— — — -
Ry=R-e,=T e+T -+ F & = (T +T)sing - F.
T 0 2 F
sin T’ sin -

11.14 ¢) Résoudre I’équation vectorielle R = 6, c’est résoudre le systeme d’équations suivant :

/
(T" —T)cos 6 0 it r = TF
(T'+T)sin0—F = o T =

Sachant que F' = 800N et § = 20°, on obtient T' = 1,17 kN.
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11.15 Le principe fondamental de la dynamique impose mg + F =m@. En projetant la relation précédente
suivant la verticale descendante, on obtient mg — F' = ma, ce qui donne F = m(g —a) = 1,6 N.

11.16 L’homme subit son poids P = m7g et la force de contact due & 1’ascenseur o (principe des actions
réciproques). Le principe fondamental de la dynamique donne mg — F = m@. En projetant sur la verticale
ascendante, on obtient ma = —mg + F, soit F = m(a + g) = 80kg x 10,8m -s~ > = 864 N.

3 — — d — >
11.17 a) Le principe fondamental de la dynamique donne P + JT,: + ]7: =mua, avec a = v et (eg est le vecteur

unitaire orienté suivant le vecteur vitesse; c’est le vecteur tangent au vecteur vitesse dans la base de Frenet). Si
l’on projette la relation suivant la normale &, au support, on aboutit & :

dv
P& +fa+fi-a=mr & e,
—— e~ dt ~~~
P cos(m—a) fn 0 0

ce qui donne f, = —P cos(m — a) = Pcosa.
11.17 b) En projetant la relation fondamentale de la dynamique suivant la direction tangentielle au support, on
obtient :
Ba +ha+foa=ma.g
t n t t t — dt t t,
Pcos(mw/2—a) 0 —ft 1

dv
c’est-a-dire fy = —m— + Psina.

dt

11.18 a) Le principe fondamental appliqué au bloc By donne 2m7g + ﬁ—i— 1_“1> = 2may. En projetant cette relation
suivant le sens du mouvement, on obtient :

T
ng'a‘f'ﬁ'a-i‘ﬁ-a’:Qmﬂ'a soit a3 = —-.
N s = —— —— 2m

11.18 b) Le principe fondamental appliqué au bloc B2 donne m§’+7_g = masz. En projetant cette relation suivant
le sens du mouvement, on obtient :

R T
mgqg e, +1T> e, =maz-e, soit ax=g— —.
—— —— —— m
9 -T2 a2
11.18 ¢) On a les relations :

Tl T2

ay = — et a2 =g— —.

2m m

Multiplions la premiére relation par 2m, et la deuxiéme par m, puis additionnons-les. On trouve :
2mai + mag = T1 + mg — Ts.

Comme a1 = az et T1 = T», on obtient 3mai = mg, soit a1 = az = g/3.
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IF'iche n°12. Approche énergétique en mécanique]

Réponses
12,1 oo (© 12.98) 0o 5+gé+ﬁzzg+%
m m m
12.28) 0o mg(f —y) p—
12.9b) ..o +—C(+—(=0
12.2Db) ..o ’mg(x sin(a) — H) ‘ ) ¢ m< mC
12.2C) e “mgRcos(f)]  12.100a). ... )
12.2d) .o mgr(cos(i) — 1) + By 1210 b) .o (@
12.3 oo ()| 12.10¢C) i ()
2 12,10 d) e
12.42) v —k(y — £o)* — kho” ) ©
2
1211 8) ittt [0]
2 2
1 T 1 L
b 1211 h) oo
12.4b) .. |5 (cos(ﬁ) °> 2k<sin(ﬁ) EO) ) [0]
12.11€) i [0]
124 C) v ’Eo+k($—f0)2‘ 12.11d) o [a]
12.5a) .0 12.0208) 00 (a)
125 b) .o —hR
) 12.12 D) e (a)
12,5 C) i —(2a + 2b)h
1212 C) oot
125 d) oo —(a+b+c)h ®
12.12d) .
12.5€) o () ) ®
1206 .o © 1212 €) v ®
oo 12,12 6) o ()
12.7 a) ................................ 1-— ﬁ
g 12.138) 0o (@), (©) et ()
12.7D) oo 0,65rad = 37°
12,13 B) i ()
12,8 8) v 58m-s!
12.13C) o , t
12.8b) ° ®©*@
128 C) oo 1213 d) e (@) et ()
12,14 ..o 33,6 m/s
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Corrigés

12.2 a) L’axe est ici orienté vers le bas, on a donc Epp(y) = —mgy + Ki. On veut Eyp(£) = 0, d'ott Ki = mgt.
Finalement, on a Epp(y) = mg(f — y).
12.2 b) On peut raisonner de deux maniéres :
e La coordonnée verticale (axe de ) z est liée & = par 2 = zsin(a). On a donc Epp, = mgzx sin(a) + Ko.
L’énergie potentielle étant nulle en z = H, on a E,p(z) = mg(xsin(a) — H).
e Dans le repere (O, e,,¢,), on a § = —gsin(a)es — g cos ae,.

On en déduit le travail élémentaire pour un déplacement selon x :

OW = —mgsin(a) dz = —d(mgzsin(a) + K2) = — dEpp.

On en déduit que Fpp(z) = mgzsin(a) + Ko.

L’énergie potentielle devant étre nulle en S, qui correspond & x =

12.2 ¢c) Dans la base polaire, 'accélération de la pesanteur s’écrit § = gcos(f)e, — gsin(f)eg. Donc, le travail

élémentaire pour un déplacement sur le cercle (selon ég) est :

SW =mg -dOM = —myg sin(f)RdO = — d(—mgR cos(0) + K3) = — dEpp.

On a donc Epp(0) = —mgRcos(f) + K3 et, comme on veut Ep,(7/2) =0, on a K3 = 0. Ainsi, on a :

E,,(6) = —mgR cos(0).

12.2 d) Fixons un axe (Oz) vertical ascendant avec O au centre du cercle. L’énergie potentielle de pesanteur
s’écrit alors Fpp, = mgz + Ky. Or, on a z = rcos(y), d’olt Epp = mgr cos(y) + K.

La convention choisie (Epp(1) = 0) = Fp) entraine que :
mgr COS(O) + K4 = FEp, dou Ky = Ey— mgr.

Finalement, on trouve :
Eyp = mgr(cos(d;) — 1) + Eo.

12.4 a) L’axe est orienté vers le bas, la longueur du ressort s’identifie donc directement a la coordonnée y.

La force de rappel s’écrit F= —k(y—~£o)e,. On en déduit donc (en calculant le travail élémentaire ou par intégration
directe) que :

1 o
Epe(y) = 5k(y — o) +C**.

Or, on veut Epe(y = 0) = 0, d’oit C*° = f%kﬁoz. Ainsi, on a :
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12.4 b) On calcule d’abord la longueur ¢ du ressort en fonction de la coordonnée x. Un peu de trigonométrie

%, d’ot £ = ﬁ(m. Par rapport a la coordonnée ¢ (mesurée le long de 'axe (OA)), Iénergie

potentielle vaut donc :

donne cos(8) =

Eﬁ@:?ﬂ—&f+@?
On a donc : ,
1 X te
Epe(z) = §k 75) -4l | +C*.

cos(

On détermine alors la constante afin d’avoir Epe(A) = 0. Lorsque le point M est en A, la longueur du ressort vaut

L(A) = L On résout donc :
i) 1 (L ’ 1[I :
Epe(((A)) = Qk(sin(ﬂ) — €o> +C*=0 cequidonne C* = _Zk(sin(,é’) — €0> .

Finalement, on trouve :

1 . S L 2
Epe(l‘):2k<cos(ﬂ) —éo) _Zk:(sin(,@)_go> .

e La longueur du ressort de gauche vaut x. La force exercée par celui-ci sur la masse s’exprime donc comme

1

5]6(1' — ZO)Q.

° Eg longueur du ressort de droite vaut 2¢p — x. La force exercée par celui-ci sur la masse s’exprime donc comme
Fy = k(2o —x — fo)es = k(fo — z)ex (attention au signe devant k qui doit étre cohérent), d’otl une énergie

%k(ﬂo — )

F, = —k(z — £o)es, d’olt une énergie potentielle (& une constante pres) Ep g =

potentielle (& une constante prés) Ep, 4 =

En additionnant les deux contributions, et en demandant que Epe(£o) = Eo, on obtient alors Epe(z) = Eo+k(z—£o)>.

12.5 a) Déterminons le travail élémentaire. On a :

Or, par construction, les vecteurs vitesse et déplacement élémentaire sont colinéaires, d’ou :
OW = —h dOM.

Par intégration, on a donc :

W = —hdOM = —h dOM = —ht.
AB AB

Les autres cas se calculent semblablement.

12.5 e) Si la force était conservative, son travail ne dépendrait que des points de départ et d’arrivée, et serait
donc nul sur un chemin fermé (points de départ et d’arrivée confondus). Ce n’est pas le cas pour les chemins c) et
d), la force n’est donc pas conservative.

12.6 On applique le théoréeme de I’énergie cinétique entre le point de départ et le point d’arrét. L’entrainement
précédent permet d’affirmer que le travail de la force de frottement vaut —hd. On a donc :

1 2
AFE. =0— §mv02 = —hd donc d= m;}f
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12.7 a) La masse n’est soumise qu’au poids, force conservative, et & la tension du fil qui ne travaille pas car

elle reste orthogonale au mouvement. [.’énergie mécanique se conserve donc entre le point de départ et le point de
rebroussement.

1
e Au départ, B, = E. = —muvg> (on pose z = 0 pour la position initiale de la masse, et on prend E,(0) = 0).

2
e Au moment du rebroussement, E,, = E, = mgz(6o) = mgl(1 — cos(6o)), car on a alors z(0) = £ — £ cos(h).
Ainsi, on a :
1mv ® = mgl(1 — cos(o)) donc cos(6p) =1— ﬁ
PR 0 =T a0

12.8 a) En appliquant le théoréme de 1’énergie mécanique entre le début et la fin de la chute libre, on a :

1
Em (tﬁn chute) - E, (tdébut chute) = 577’1,’(}02 - mg(H - ZO)

Les forces étant conservatives, I’énergie mécanique est conservée et on a donc :

vo = /29(H — £o) = /2 x 9,81m -5~2 x (2,0m — 0,30m) = 5,8m -5 .

12.8 b) La masse n’est soumise qu’a des forces conservatives : son poids, ainsi que la force de rappel du ressort.

On peut donc appliquer la conservation de ’énergie mécanique entre la position d’arrivée sur le ressort (z =€) et
la position d’altitude minimale (z = z,,), pour laquelle la vitesse s’annule. On a donc :

%m’l)02 + mgly = mgzm + %k(zm - ZO)Q.

1 1 1
Ainsi, apreés calcul, on trouve iszn + (mg — klo)zm + 51@602 — §mv02 —mglo = 0.
On ne demande qu’une réponse numérique, on peut donc passer aux valeurs numériques pour simplifier la résolution :
50027, — 290,22, + 25,4 = 0.

Cette équation posséde deux solutions, z; &~ 0,47m et z2 ~ 0,11 m. La premiére solution correspond a une position
supérieure en altitude a la position initiale, et n’est donc pas celle qui nous intéresse. On retient donc z,, = 0,11 m.

12.8 ¢) La masse n’étant soumise qu’a des forces conservatives, elle revient en x = fy avec la méme vitesse

qu’elle avait en arrivant, a savoir vg. Elle atteint donc une altitude maximale quand sa vitesse s’annule en z = H.

12.9 a) On choisit un axe vertical descendant de maniére & pouvoir identifier z & la distance OM, qui est la
longueur du ressort.
Afin de déterminer 1’équation différentielle, on souhaite appliquer le théoréme de la puissance cinétique. Or :
e la puissance du poids vaut mg - ¥ = mg2 (axe descendant) ;
e la puissance de la force de rappel vaut —k(z — fo)ez - U = —k(z — £o)%;
-

e la puissance de la force de frottements fluides vaut —a@ - T = —as”.

Le théoreme de la puissance cinétique donne alors :

B, d (1 N .

1 —dt<2m2)—mzz—mgz k(z — o)z — az”.
D’oﬁﬁnalement:2+gz+£z:g+%.
m m m
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12.9 b) On détermine la position d’équilibre en projetant la premiere loi de Newton sur I’axe vertical descendant :
mg — k(zeq —lo) =0 donc  zeq = lo + %
On obtient zeq > fo, ce qui est physiquement cohérent.

On pose donc ( = z — zeq. En réinjectant dans ’équation différentielle obtenue précédemment, on obtient :

i .k ket - .k
c+3<+—(<+eo+@)=g+—° dome (+2é+Ec=o.
m m k m m m

On peut également obtenir cette équation en écrivant la force de rappel par rapport a la variable ¢ et en en déduisant
l’énergie potentielle associée.

12.10 a) Au voisinage de z = 0%, 1a fonction énergie potentielle est équivalente a B/:cQ. Ici, la fonction représentée

par le graphe tend vers —oo en 0, on a donc nécessairement 3 < 0.

Pour z — +00, la fonction énergie potentielle est équivalente a «/x. Ici, la fonction représentée par le graphe tend
vers 07 en 400, on a donc nécessairement o > 0.

Ce potentiel est physiquement impossible car Ep(z — 0+) — —00 : l’énergie potentielle n’est pas bornée inférieu-
rement, on pourrait donc théoriquement utiliser ce potentiel pour extraire une quantité infinie d’énergie.

12.11 a) La position d’équilibre stable correspond & I’état qui minimise 1’énergie potentielle.

e Déterminons le minimum de I'énergie potentielle E,(0) = mgl(1 — cos(6)) en cherchant la valeur .4 telle que :

dE,
a0

d’E,

(Heq) =0 et W

(feq) > 0.

La premiere égalité donne dE, (0eq) = mglsin(beq) = 0 et donc Oeq = 0 [].

de
nal d’E, _
Finalement, en tenant compte de W(Geq) > 0, on trouve feq = 0 [27].

e On aurait pu remarquer que les minima de mgl(1 — cos(6)) correspondent aux maxima de cos(), qui sont bien
les Ooq = 0 [27].

12.11 b) On dérive I’énergie potentielle, en écrivant :

dEp = Kkz + 22>
dz

dE / /
L’équation 1 P — 0 a alors trois solutions : z1 = 0, z2 = 7; et z3 = — 7;'
z

Il s’agit des positions d’équilibre de ce potentiel.

2

On dérive une seconde fois afin d’étudier la stabilité. On a ddzE2p =k + 3122
Finalement, on obtient : dng (=)= k>0
dz?
d;ZE;, (z=2z)=kK+ 3)\(77> =-2k<0
d;ip( =2z3) = /<;+3)\(—X) =-2k<0
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12.11 ¢) On calcule la dérivée de I’énergie potentielle :

dE,
dx

= 2U06xe[312 B

qui montre que d—p s’annule pour x = 0, qui est donc une position d’équilibre.
x
Pour étudier sa stabilité, on dérive une seconde fois :

d’E,

= 2U0B(1+262%)e™,

qui, en z = 0, vaut 2Uy3 > 0. Cette position d’équilibre est donc bien stable.

12.11 d) On calcule la dérivée de ’énergie potentielle :

dF,
d(; = 2Fysin(¢ — a) cos(¢ — a).
. . dE, | 7r . . s )
Ainsi, a5 s’annule pour ¢ =a et ¢ =a + 5 qui sont les positions d’équilibre dans 'intervalle [0, 7[.
Afin d’étudier leur stabilité, on dérive une seconde fois :
ECE, g
i o(cos™(¢ — a) —sin”(¢ — a)).
’E
e On calcule ensuite q ¢2p (¢ = a) = 2Fy. Ce dernier terme étant positif, la position d’équilibre ¢ = a est donc
stable.
’E
e Pour l'autre position d’équilibre, on a d¢2p (¢ = a+ 7m/2) = —2Ey. Cette dérivée seconde étant négative, la

position d’équilibre ¢ = a + /2 est instable.

12.13 d) Le mouvement entre x2 et x3 correspond & un état lié : ¢’est un mouvement dans un puits de potentiel.
Comme le mouvement est a un degré de liberté, il est également périodique. Cependant, les positions extrémes
étant éloignées de la position moyenne (d’équilibre x3), ce mouvement n’est pas harmonique.

12.14 On a vu précédemment que les trajectoires correspondant & 1’énergie mécanique Fs sont des états de
diffusion, le point matériel peut donc bien s’échapper a l'infini.

Le mouvement du point étant conservatif, on applique la conservation de 1’énergie mécanique entre le départ et
« Parrivée » a l'infini. On a :

1 2F 2 x1300kg-m? s 2 _
FE5 = fmvio donc Voo = o8 x 1300kg - m” - s =336m-s L
m 2,3 kg
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IF'iche n° 13. Moment cinétique]

Réponses
13.108) o —||P| cos® -6
13.4€) e —33
13.1b) e IN|| cos(y + B) 2
= -6
1.00) o [BIsn0 )| gy <_33>
— 24
13.1d) e —[|T|| cos(v)
— 13.5 -la Terre
13.1€) i IV cos(B) —
13.6 ..o mrousin(a) e,
131 ) oo |N|| sin(B) :
— — 13,7 oo - M L?
13.28) . 0o P=—||P|e 3
= 1
13.2b). ..o | P||(~ sin(d) & — cos(0) &) 13.8 ot 5 M L?
13.2.0) i “ITles | g %MRQ
13.2d)....... T =|T|(- & +sin(v) &

) ITIC cosO e+ | 3500y
13.2¢) ... | B (cos(8+ ) &2 +sin(0+a) &) | 1310 b) ... 0]
13.26) ... || (cos(a) & +sin(@) &) | 13101 8) ... mgL cos a8
13.2 ¢).... | [ N[|(~sin(B +7) &z + cos(8 + ) &)

13.11b) . fmg<£ - = cosa) e,
13.2h) ... [ N[ (cos(B) & + sin(B) eg)
e 1 13.110) e - (z - ) >
13.38) e I1B|| | B cos(8 + a) & ¢) o coma)e
— a _, —>
13.3D) o —||T|| sin(y) &2 13.12a) 3 X taey
13.3¢) i INl[cos(y +B)EZ] 1842 b) oo %e—x’ + %e__y’
-7
184 8) . oo (14) 13.12¢). o | P(—sina ey — cosaéy)|
-7
13.12d) ... ’F(—cosae_x'—i—sinae—y’)‘
7 .
13.4b). o (14) 13.12€) ..o aF(SHQla + cos a) &
7
1304€) oot 13.126) aP(*Cosa + Sh;,a) &
13.4d) .o 3P _6F
13.12 g) .............................. m
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Corrigés

13.1a) On calcule B - & = | B| x ||&3]| x cos(m + 0) = —|| || cosf.

[y
w
w

&
@)
B
Q
=3
Q
g
@
e
>
=
I

L

=

)
>

e

=
2

S
+

L
Sl
_|_
@,
=

S

_|_
£

&
Il

i

ol

=

ry
2

=
+

L

)
>

S)
_|_
=

1 6 2x4-3x%x5 -7
13.4a) Oncalcule [2|A[5]=(3x6—-1x4|=]|14|.
3 4 1x5-2x6 -7

6 1 1 7 1 TXx3—7Tx2
5]+ 12 A2 =|T7TIA[2]=[7Tx1-Tx3
4 3 3 7 3 Tx2—-7x1

. ) . — — — . 2 —
On aurait aussi pu voir que, comme on a A A A = 0, cela revient 4 BA A = —

13.4 b) On calcule

;4\/
Il
o
N,Lxl
=~
v

13.4 ¢) On a déja calculé ANAEB et il suffit de prendre la premiere coordonnée pour avoir le produit scalaire sur
€2, qui vaut alors —7.

N 6 1 5x0—-4x0 0
13.4d) On calcule d’abord BAe; =[5 | A 0] =[4x1-6x0] = 4 |,dou:
4 0 6x0—-5x1 -5

1 0
A (Bre) = (2)-(4) =1x04+2x44+3x(-5)=8—15=—T.
3/ \-5

N
On retrouve le méme résultat que précédemment, ce qui correspond é_1>a propriéﬁé du produit mixte : si_f)f, bet?
sont trois vecteurs de R?, alors on a les permutations circulaires @ - (b AC)=b - (CAT)=7C- (T A b).

(6 0 5x(—1)—4x1 -9
13.4€e) On calcule d’abord BAC=|5]|A[ 1 |=[4x0-6x(=1)] = 6 ].On calcule ensuite :
4 -1 6x1—-5x0 6

1 -9 2x6-3x%6 -6
ANBAC) = <2>A<6> = <3><(—9)—1><6> = (—33).
3 6 1x6—2x(=9) 24
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1 0
13.4 f)  On calcule séparément A.C= (2) . < 1 > =1x0+2x143x(-1)=—1et:
-1

1 6
A B=[2] [5)|=1x6+2x5+3x4=28.
3 4
A-ONVB-(A-B)C=(-1)x[5]-28x|1]=/[-33]).
4 -1 24

On retrouve le méme résultat que précédemment, ce qui correspond a la propriété du double produit vectoriel : si
- 7 — . 3 — -2 2>\ _ (> > e - 7\ >
@, b et € sont trois vecteurs de R”, alorsona ¢ A(bAC)=(a-C)b—(ad-b)7C.

On a alors :

13.5 Commencgons par tout remettre dans les bonnes unités pour pouvoir calculer le produit m X r X v, qui
correspond au moment cinétique puisque le rayon vecteur est bien perpendiculaire a la vitesse pour une orbite
circulaire.

Masse en kg Distance en m  Vitesse en m - s™'  Moment cinétique en kg - m?.s7!
Mercure | 3 x 10 6 x 10" 5 x 10* 3x6x5x10°" =9 x 10%
Vénus 5 x 10%* 1,1 x 10 3,5 x 10* 5x 1,1 x 10%° x g ~ 2 x 10%
Terre 6 x 10** 1,5 x 10" 3 x 10* 6x S x3x10% = 2,7 x 10°
Mars 6 x 10?3 2,3 x 10" 2,4 x 10* < 6 x 10%° x g X g ~ 3,7 x 10%°

C’est bien la Terre qui gagne finalement le concours du plus grand moment cinétique.

13.6 Le vecteur vitesse s’écrit dans la base (e, es) comme ¥ = v(cosae, +sinaeg). Le produit vectoriel

— ., .
avec OM s’écrit alors :

—
OMAMT =re; Amv(cosae, +sinaeg) =mrusinae, Aéeg.

13.7 On calcule :

L e h
IA:p/ z? dz x dy x dz
0 0 0
M L
= The | z®dr xexh
:% 2? dz
L Jo
L
M 3 1 5
=|——=| =sML
[L 3} 3
0
L/2 M 3 L/2 M 13 1
13.8 OncalculeIA:/ —x dx_[x} = X /8:7ML2
L2 L L 3 12 L 3 12

270 Réponses et corrigés



o R 5
R
13.9 On calcule les trois intégrales indépendamment. On a bien sir / dep =27 et / r* dr = —. Reste

Jo 0
Pintégrale sur 6 qui peut se résoudre avec un changement de variable en u = cos € (qui donne du = —sin 6 df) :

T ™ -1 371
/ sin39d0:/ sin 6 (1 — cos” 6) d@z/ —(1—v?) du= u— L :é.
0 0 1 3], 3

Finalement, on obtient In =
N
13.10 a) D’une part, on commence par déterminer I'expression du vecteur F' dans la base (e, e,). On a ici, en
—
notant F la norme du vecteur : F' = F(cosae, —sinaey,).

D’autre part, en notant M le point d’action de f, on a OM = {sinae,. On peut alors calculer :
Mo(F)=OMAF = lsinaé, A F(cosaes —sinae,) = LFsinacosa (—&2).

L
13.11 a) Dans cette configuration, le bras de levier vaut 3 cosa et le point fait tourner dans le sens trigonomé-
— mgL
2

trique autour de A, de sorte que MA(}_s) = cosae,.

13.11 b) Cette fois-ci, le poids fait tourner dans le sens horaire autour de O avec un bras de levier complémentaire

L
du précédent de ¢ — 3 s, d’ou le résultat.

13.12 g) Pour qu’il y ait équilibre, la somme des deux moments doit s’annuler. Les deux étant suivant €2, on doit

aF(Slga +cosa) —|—aP<—

En divisant par a cos a, il vient :

cosa  sina
=0.
>+

On obtient donc :
- F 3P —-6F
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IF'iche n° 14. Champ électrique|

Réponses
14.18) i Va2 +y?
a
14.1 b) .............................. \/W—yQ
Y
14.1 C) ............................. \/W—Z/Q
[ P
14.1 d) ................. \/ﬁ( ae, + yey)
14.2 (©

(z+a)? +y2

V12 4+ 2azx + a?

\/12 + 2ar cos(0) + a2

1 q
dmeg /12 + 2ar cos() + a2

1
i
dmeo \/r2 — 2ar cos(0) + a?

—)
\/7'2 + 2ar cos(0) + a?

= 1 2
143 B) oo 14.6 ) oo 1 <1 - a)
dmeg T T
14.3C) o
1 gacos(6)
P 14.6b) ..o -_—
143 d). oo & ) PP
144 8) o () 1 qa 1,
14.6¢c).........cooiiiL. —(1-—=6
c) dmeq r? ( 2
14.4 b) .................................... qVO
1 qa
146 d) .o L
2 2
144 €)oo 4V dmeo v
m
1 2
T 146€) ; a 1n<1 + 2)
144 d) oo ‘;—0 o T a
m
1 ¢ > >
14.7a)........ — (sin(20)e, — 2 cos(20)eq
14.4€) oo @ : Ao i )
L4 | 3 N
14T D) oo —4—%@9
145 a) i (x —a)® + 42 Teo @
1 1470 2,7-10° V™' |
145 D)oo x°+y
1 qa s . >
14.5C) i r2 — 2ax + a? 14.8a).......... dreg 773(2 cos(@)er + sin(0)es)
14.5d) .o 0 1
) reos®)] 148 B e — 4
4meq a?
14.5€) . cooiiii... /72 — 2ar cos() + a2
14.8C) oo 3,4-10' V! |
14.5 f) ! d
dmeg /r? — 2ar cos(f) + a 14.98) oo %Eod
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14.9b) oo ~FEod 1410 D) %R%O
2 1
14.9C) oo 3 Fod 1410 C) o €6R3p
Uus
14.9d). 1400 8)
4
14.10a) . o %'/TRSPO 1411 b) ..o gwRQh
8 2
1400 C) o F R
Corrigés

14.1 a) Dans le triangle rectangle OAB, on a BA = y/a? + y2.

14.1 b) Dans le triangle rectangle OAB, on a cos(a) = a4 a4
BA a + 12
14.1 ¢) Dans le triangle rectangle OAB, on a sin(a) = - Y

14.1 d) La composante suivant e, correspond au produit scalaire :

!

F,=F. ¢, = ||F>Hcos(a+7r) = —||F>Hcos(a).

De méme, la composante suivant &, correspond 4 :

F, = Fwa_y’: HFHCOS(—% +a) = ||f||sinoe.

Ainsi, on a :
Fo=—|Fl——— et F,=|F|——.
/a2+y2 /a2+y2

Finalement, on a :

14.2 Une force attractive a une valeur négative, la charge qui attire le plus est donc la charge avec la force

négative la plus importante en valeur absolue, soit la réponse @ En effet, on a :

2,00C 5y =2 -3,0-107°C -
FIC=—2—~ — =125-10°Cm =200 Y 75.10'Cm 2
@ (4,00 102 m)® © rye (200 - 10-6 m)* o 107G
—_— . 3
(b) F/C = LNQC =-31-10"Cm~? (d) F/C = LQ =25-10°Cm >
..................... QA s 12021072 )

14.3 a) On a qog1 = q2 et gog2 = q2 donc Fl/o = —Fye, + Fye, et Fz/o = F,e; + Fye,. Ainsi, la somme des
deux forces est F = 2F,&,.
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14.3b) On a qoq1 = ¢ et gogz = —¢° donc fl/o = —Fye, + Fyey et Fg/o = —F,e, — Fye,. Ainsi, la somme
des deux forces est F = —2F,e..

14.3¢) Ona qq = —q2 et qog2 = q2 donc fl/o = Fye; — Fye, et ﬁg/o = Fye, + Fye,. Ainsi, la somme des
deux forces est F = 2F,e..

14.3d) On a gq = —2¢° et goga = —2¢° donc 1051/0 = Fe, — Fye, et fg/o = —F,e, — Fye,. Ainsi, la somme
des deux forces est F' = —2F,¢,.

14.4 a) Comme Vj est homogene & un potentiel électrique, ’argument entre parenthéses doit étre sans dimension,
ce qui est le cas dans ’expression :

Vo = %mvz(a) +qV(a) = %va(a) +qV (1 - (2)2) = Smv’(a).

Donc on a v(a) = 4/ @.
m

Donc, on a :

2 2 4 2 2m’
144e) Ona
v(g) _ a0 _ [2¢Vo _ 1 [2¢Vo _ v(a)
2) " Vem  V am 2V m 2

14.5 b) Dans le triangle xtOM, on a r* =z 4+ yz.

14.5 ¢) En utilisant 'expression de r? en fonction de z, y,on a:

BM:\/(x—a)Q-i-y?:\/m2+y2—2ax+a2:\/r2—2ax+a2.
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14.5 ¢)

En utilisant I’expression de x en fonction de r, 0, on peut écrire :

BM = /72 — 2az + a2 = /7% = 2ar cos() + a2.

En utilisant les expressions de V1 (M) et de BM en fonction de r,a,6, on a :

1 @ 1 q
i(M) = = = :
1(M) dmeo BM - dmeo | /2 — 2ar cos(6) + a2

a1 . 2 .
En utilisant ’expression de r~ en fonction de z,y, on a :

CM:\/(a:—&—a)z—l—yQ:\/x2+y2+2ax—|—a2=\/7"2—|—2am+a2.

En utilisant ’expression de z en fonction de r,6, on a CM = \/7"2 + 2ax + a? = \/7’2 + 2ar cos(0) + a?.

En utilisant les expressions de V2(M) et CM en fonction de r,a,6, on a :

1 g 1 q
VQ(M = ~r .
4dreg CM 4meg \/7"2 + 2ar cos(6) + a2

En utilisant les expressions de V1 (M) et V2(M), on trouve :

1 1 1
V(M) = Vi (M) + Va(M) = q - .
() 1D 2(M) dmeg <\/r2—2arcos(0)+a2 \/r2+2arcos(9)+a2>

r

A Tordre 1, on a (14 z)* =~ 1 + az. Ainsi, on a :

ay 1 ¢ a (,_a 1 qacos(f)
V(r) ~ 4meo T (1 + 2r cos(6) (1 2r COS(@)) Cdmeg 72

N 1 1
A Yordre 1, on a In(1 + z) ~ z. Ainsi, on a V(9> ~ a3 _ 9.
r dregrr  Ameg 12

r2

2 2
a 1 ¢ 1+ 2% +1 1 g, [(2+2% 1 ¢ r?
V-]~ =1 - = =1 = = =Inll14+— ).
(r) dmeg n<1+%2_ 4meg T n 242 4reg T n +a2
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14.7 a) On calcule :

B = 8<1q<29>)» 18( 1 q<20>>a

or \ 4reg r r 00 \ 4reg r
_ 1 . 0 (1\— , 1 0sin(20)_,
= ~Ires q(s1n(29) p (T)er + 2 90 eg)
_ 1 q, . — —
= Tneo 12 (sin(20)e, — 2 cos(20)eq).

- 8 q 8 630 ) 10711 C 5 -1
Zanl— 84 _ =2,7-10°V.m .
[ £ (M)l dmega?  Amx885-10-12CN-Lm ' (40-103m)® "

14.8 a) On calcule :

= _ 90 1 gacos(@)\_, 10 ( 1 gqacos(9))_,
EM) = or (47r50 r2 er r 00\ 4reg r2 co

_ 02 (Lo s LO0os0)
4 qa(wb(a)ar(ﬁ)&—i_ﬁ 00 ee>
_ Ly e 1 sin6)e
y— (2cos()er + sin(f)eq)

14.8¢c) Ona
1 ¢ 1 6,0- 107 C 4 1
EM)| = <= =34-10"V.m 1.
IEQD] 4dmeg a? 4w x 8,85-10-12C.V-1.m—1 (470.1073m)2 3, 0" V.m
d 2 d
14.9 a) OnaV(O)f/ Eo(lfg)dxon J(uf) = ~Eod
o d 2 d) |, 2

d d
T 2d 3mx 2
149C) OnaV(O)— . Eosln(73)d E0|:—377rc (?3)}0 3771_E0d
.................................... dd
14.9 d) OnaV(O):/ Eo(1fe*z/d)dx—Eo{x} fEO{fde*I/d} = Eode™!
0 0 0
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14.10 a) On calcule :

3 3 3

27 ™ R
Q= / / / 2p07 sin(0) dr df de
Jo Jo Jo

2m ™ R 27 T T‘3 R
= 2po/ dgo/ sin () d@/ rdr = 2po [go} X [fcos(ﬁ)} X [—}

0 0 0 0 0 3 0

3 3

= 2po(2m — 0)(— cos + cos 0) (R - 0> =2po X 2T X 2 X ' gng’po.

14.10 b) On calcule :

27 T R P 2 ) RT4
Q:2'/0 d<,0/0 sin(9)d9/0 (E) por dr:2p0><271-><2></0 ﬁdr

5 1R
B 121" (1R 10 8
8’“[5RZL =57 (532 5R2> 5T po-

14.10 ¢) On calcule :

27 2m 1
Q:2/ sm( ) odnp/ sin( dG/ — r2dr:2po X |:—QCOS %} X 2 X 3R3
0 0

4 1
= gR3(—2 cos T + 2cos0)po = gRf‘(z +2)po = €6R3p0.

14.11 a) On calcule :

Q= // /3rdrd9dz—3/ dz/ d0/ rdr—3 x[@}zﬂx{é}:

=3(h— o)(%-o)(f-o) 3rR2h.

14.11 b) On calcule :

R 4
*2/ dz/ d0/ — rdr:2><h><27r/ —dr
i3
0

1R 10 4
= 4rh =dArh| = — 2 == | = -7R’h.
" [535}0 T (5R5 533) 5"

h 2 31k 2m
_ z B 1 _,(1z 0
Q—Z/O (h) dz/ sm d@/ rdr—2><5R {3}12]0[ 20052}0
1
3

)(2cos7r+2c050) = %Rz X %h x4 = %RQh.
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IF'iche n° 15. Particule dans un champ électromagnétique]

Réponses

15.1a)......... 6,3 x 10'% eV
15.1b) ..o 1,55eV

15.1¢).nnn... 50x 107197
15.1d) oo

15.60)

15.6b)......... quB cos(a)e,
—quB(cos(a)e,

15.6 ¢) ()

15.7b) e qEv
2

15.7¢) e, %qEv
BT _abo
15.82) .0ueennnnn.. V320

qF
15.8b) ... \/5%
15.8C) v g

15.9b)............ ®) et (<)

15.9¢) i (@)
159d) ... nqU
15.9€) i
1510 8).c.ennn.. ... %U/\ B
15.10b) ...............

—
(9}
-
=)
o

S~—
s}
=
oy}
%.
<

15.10 d).......
15.10 ). eeeennnn. .. %
15.10 ). .oooveenn. .. 271'%
15.11a)....... a(E — vwB)e;
1511 D). o vo = g

OnaleV=16x10""Jdonc1J=1/1,6x10" eV =63 x10"*eV.

15.4b) e e

154¢)......... —Bln(r)+C

15.4d).

15.5a) i, qEe,

15.5D) oiiiinin.

qE(cos(B)ey

15.5 c) a8
Corrigés

15.1 a)

15.1 b)

15.1 c)

15.1 d)

15.2

Onalerg=1g-cm®-s72=10"%x

Avec ¢ = 3,00 x 10%m - s, la masse de kaon peut s’écrire, en kg :

Mkaon =

7,90 x 10°MJ
(3,00 x 10°m-s7")

(107%)’kg - m? s 2 =1x 107" J.

5 = 8,78 x 107 *® kg.
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Comme 16V =1,6 x 107 J, on a :

1777 x 10% x 1,6 x 10719J

Mian = — = 3,16 x 10~ *" kg.

(3,00 x 10°m-s7")

C’est donc la particule tau la plus massique.

15.3 a) Le champ est d’autant plus intense en norme que les équipotentielles sont proches :

déplacement (TZ, la variation du potentiel électrique est plus importante.

pour un méme

15.3 b) Le champ électrique est orienté dans le sens des potentiels décroissants et orthogonal aux équipotentielles.

Le champ est donc orienté vers le haut a droite.

—

15.7 a) La puissance est P = F-T =qE-T = qEv, avec vy la composante de la vitesse suivant &2 (Ve

On a donc Pa = 0.
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15.8 c) A linstant ¢ = to = t1, la vitesse peut s’écrire :

2 2

T = voés + V308, = 2uo (le—;Jr ﬁe@’) = 209 (cos(g)e_;Jr sin(g)e_;).

1 2 2 2
15.9e¢) Déja, on a: nqU > §m<—) <~ n = . Comme {mc = 5, on en déduit qu'il faut au
moins 5 condensateurs.

15.10 a) Les forces s’appliquant & la particule sont le poids et la force de Lorentz, mais on néglige le poids. Par
ailleurs, il n’y a pas de champ électrique, donc m@ = ¢ A B d’ott @ = 93 AB.
m

15.10 e) On résout la question et on représente la situation.

En utilisant le principe fondamental de la dynamique et en projetant sur

les axes e, et eg : e Er
{—R€2 — L Rph
. m
RO =0. oB
2
En utilisant le fait que R§* = %} et RO = vo, on obtient, d’apres la premiére
2
ligne, —% = gBvo. Ainsi, on trouve R = —m—g). Comme ¢ < 0, on a
m q
lgl = —q et on a donc R = mbo . To
lg|B
2TR muvg 1 m

15.10 f) Le périmetre du cercle parcouru vaut L = 27 R et donc T' = =21 ——— =21T——.
vo lq| B vo lq|B

15.11 a) L’expression générale de la force de Lorentz est P = q(E +TA §), soit ici :

FL= q(Ee, + voex A Bey) = q(E —voB)e,.

15.11 b) Pour que le mouvement soit rectiligne uniforme, il faut que le vecteur accélération soit nul. D’apres le

principe fondamental de la dynamique, il faut donc que la force exercée soit nulle, soit q(E —voB)e, = 0 =v=—.
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I[F'iche n° 16. Champ magnétique]

Réponses
16.1 a) ..................................... oul 16.10 b) .............................. @
16.1 D) e oui
16.10 C) vt M)
16.2 oot @
16.108) e (©)
16,3 8) e __ ol
2md tan(a) 0 5 (©
16.3 D). 20,8 1T
T T
16,4 o © Rz
RS
i 2 16.12b) ... —_—
16.5 ..o §BOR ) (m)g
wola . (D +a/2 pol
16.6a) .....ooveiie. 1 16.12C) oo
2) 21 (D ~a/2 ) 2R
2 5/3 _
166 D) oo 8 pla 16.12d) ..o R\25/3 —1
2w D )
16.13 a). ..o
166 C) oo ®
16.72a)......... ’Bo(l + cos(oz))e_;—i— By sin(a)e_y" 16.13 D). @
16.7D) .o Bo+/2(1 + cos(a)) wonl z+ £
16.7 ¢) 34,6 mT P \YR (4 h)
L ,01m 16.14 .
a ! i)
16.8 a). ..o
2) cos(0) R? + (2 — g)g
16.8b)....coiiiiii ’ —sin(f)e, + cos(Q)e_y" 1604 D)oo f};;ﬂép
16.8C) i ’ —sin(f)e, — cos(@)e_y" +
1VA4R2 + 02
16.8d). ... —2Bgsin(f)ey | 16.14¢) ... 1v4rR"+ &
2 VRZ+ 12
Y
16.8€)......oooii e 1614 d). ..o
16.8 ) o cosh(f)
1615 8) e By——9¢
16.92) oot @ cosh(5>
16.9D) B
6.9 ) ® i ) IS éo)zl
0
16.10 2) .ot (©)
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16.15 C) e ) © g% 10-5 Bo +e 2Qt(“°s(*0 402 —1-1)
By 16.16 ¢) .. wi
, WO ) +usm(2—\/m~t))
1616 a) ..o Sy @ =0

16.16 f) ..

1616 C) .o 1617 o (1,-1,1)

Bai N ol
lors t =——,dou By = -———.
alors tan(a) By’ ou BH 2nd tan(o)

16.3 b) On calcule :

4rx107"T m-A"'x12A 100"T-m-A"' x12A

By = — = — - =v3x12x107°T =208 x 107 °T.
27 x 2 x 107“m X tan(30°) 1x107" m x —Z
16.4 Au lieu d’exprimer le flux de B 4 travers la demi- sphere, il est plus simple de le calculer sur le disque

qui s’appuie, comme la demi-sphere, sur la meme circonférence de rayon R (on utilise ici le falt que B est un champ
vectoriel & flux conservatif). Sur le disque, on a ds = dSe,. Ainsi ¢ = B X Sdisque = BrR%.

16.5 On calcule
R
4
6= / /B g2dr x rdf = By x { R? —2’TR ] ngQBo.
r=0 6=0
16.6 a) On calcule :
a D+a/2
ol _, ol [ dr  pola D+a/2
9= // oy 0 " 45€ zw/dzx T 2 "\ D—a/2
cadre 0 D—a/2
16.6 b) On réécrit ¢ = ,u;[a (ln(l + %) -1 (1 — %)) Un développement limité de In(1 £ ¢) & Pordre 1
Ta2
en € avec |e| < 1 donne alors : In(1+¢) = +e. Dot ¢ = gﬂi)'

16.7 a) Le champ résultant en O s'écrit : B(O) = By + Ba, soit B(O) = Bo(1 + cos(a))éx + Bo sin(a)e;.
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16.8 b) L’angle orienté 6, entre I’horizontale (Ozx) et la demi-droite [O1D) se retrouve entre la verticale (Oy) et

la perpendiculaire & [O1D), c’est-a-dire la direction du vecteur e7. On a donc €7 = —sin(6)e, + cos(f)e, .

16.8 ¢) Si on note 8 l’angle que fait €3 avec la verticale descendante (—Oy), on a 8 + g —-0= g7 donc B =
On a donc 3 = —sin(f)e, — cos(f)e,.
16.8 d) Le champ résultant en D s’écrit Biot = Bo(Ef + e}'). En utilisant les résultats précédents, on trouve

Btot = —2B0 Sln(@)e‘;

(22 2 2
16.8 f) On calcule f'(y) = (a (—I—2y+) t)yQ X2y _ (y2 T a2)2. La fonction f’ s’annule pour |y| — oo, qui renvoie
a Yy a Yy

‘ l‘im f(y) =0 et, pour |y| = a, qui donne !f(:l:a)| =5 c’est le maximum recherché.
y|—oo a

16.9 a) Le plan (M, e/, e2) est un plan de symétrie qui laisse M invariant ainsi que la distribution des courants

car, si N > 1, chaque fil aura son symétrique, le courant circulant dans le méme sens dans les deux fils symétriques.

16.9 b) Le vecteur §7 vecteur axial, est perpendiculaire & tout plan de symétrie de ses sources, donc §(M) est
dirigé selon ej.

16.10 a) Dans une symétrie par rapport au plan (zOy), les fils restent inchangés mais les courants sont inversés :
c’est donc un plan d’antisymétrie.

Dans une symétrie par rapport au plan (yOz), on permute les fils de gauche et de droite, les courants circulant
dans le sens inverse de la situation initiale : il s’agit, ici encore, d’un plan d’antisymétrie.

Seul, le plan (zOz) laisse les fils inchangés ainsi que les sens des courants : ¢’est donc bien un plan de symétrie pour
la distribution des courants.

16.10 b) Pour le point A sur 'axe (Oz), le plan (zOy) est un plan de symétrie pour la distribution des courants
et 1ais_s>e A invariant. Le vecteur champ magnétique, vecteur axial, est perpendiculaire a tout plan de symétrie, donc
on a B(A) L (zOz). Donc, B(A) est parallele & (Oy).

16.10 c) Pour le point D sur ’axe (Oy), les plans (zOy) et (yOz) sont des plans d’antisymétrie pour la distribution
des courants et laissent D invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan
d’antisymétrie, donc Biot € (xOy) N (yOz), soit Biot est parallele a (Oy).
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16.11 a) Tout plan qui contient le point M et 'axe (Oz) est plan d’antisymétrie pour la distribution des courants

-
et laisse M invariant. Le vecteur B(M), vecteur axial, est contenu dans tous ces plans d’antisymétrie. Par conséquent,
B(M) est colinéaire a (Oz).

16.11 b) Le plan (M, é,,e,) est un plan d’antisymétrie pour la distribution des courants et laisse le point N

invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan d’antisymétrie, donc on a
B — —
B(N) € (M, e,,¢z2).

16.12 ¢) Remplagons z par R dans expression de Baxe. On trouve By = tol (R) tol s pol
. plag P P axe- 1_2R 2R (W)B 4\/§R
1
16.12 d) On cherche z tel que Baxe(z) = 531, c’est-a-dire tel que :
I 3 1 pol 3 1

HoZ R 3= Ho donc, apres simplifications, tel que Riw = —.

2R (VRE+22)"  24V2R (B2 +22)"2  4v2
Elevons 4 la puissance 2 /3 chaque terme de I’égalité. On obtient :

2
. o_ vt _ 1 dot (2)°°R*=R*+ 22

B +2 0 aya) @ @

Finalement, on trouve z = Ry/25/3 — 1.

16.13 a) Tout plan qui contient 'axe (Oz) est plan d’antisymétrie pour la distribution des courants & condition
de considérer que le symétrique de chaque spire par rapport & un plan qui contient (Oz) se superpose a la spire de
départ, ce qui n’est possible qu’en négligeant I’hélicité de ’enroulement.

16.13 b) En négligeant I’hélicité de enroulement des spires, tout plan qui contient (Oz) est un plan d’antisymétrie
pour la distribution des courants et laisse le goint M invariant. Le vecteur champ magnétique, vecteur axial, est
contenu dans tout plan d’antisymétrie, donc B(M) est dirigé selon e;.

16.14 b) Au point O, on & Amax = T — Amin. Or cos(T — Qmin) = — c0S(Amin), ce qui donne en O :

02

VR + 024

cos(min) =
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16.14 c) Remarquons déja que la fonction B(z) est une fonction paire de z. On aura donc B (fg) = B(+7>.

2
B :I:Z B T 73
Enz=_-,onaa z donc cos(amax) = 0 et cos(a )—L Ainsi, on a ( §> _ VAR e
max 27 max min \/W 5 B(O) 2 \/W .
I 4R?
16.14 d) On a B(O) = ¢ = M g £ — +o0, alors i; — 0 et B(O) — ponl.
\/4R2+€2 \/1+4R2 R ¢
16.15 a) La solution de ’équation différentielle s’écrit B(z) = Cexp(%) + Dexp(—%). La fonction B(z) étant

paire, on a C' = D. D’ou B(z) = 2Ccosh(§).

La condition aux limites en z = e permet d’exprimer la constante C' par continuité de B (forcément continu car

B cosh(%)
défini en volume) : on trouve C = 706. Ainsi, on a B(z) = Bo——<--
QCOSh(f) cosh(f)
0 0
16.15 b) Pour e =§/10, on a B(0) = ! 1

B(0) :ngx 107°.

16.16 e) Les racines de ’équation caractéristique sont ——Q +i —Q\/4Q2 -1

Donc, la solution générale de I’équation sans second membre associée & (x) est :

e 30! ()\COS(QQ\/W t) +MS]H(2QV4Q2 —1~t)).

Donc, la solution générale de I'équation () est Bo + e 2@ ()\ cos (2Q 4Q2 — ) + psin ( 4Q2% — 1 t))
s e g ips s sgs ’ 7BO
16.16 f) La condition initiale B(0) = 0 donne A = —By. La condition initiale B'(0) = 0 donne p = >
407% -1

16.17 Ona [ug] = [ea -m? - hw] =Q“ M. [n".

La constante de Planck h est homogene au produit d’une énergie par un temps (la fréquence est homogene a l'inverse
d’un temps). De plus une énergie est homogéne au produit d’'une masse par une vitesse au carré. Nous obtenons

. B+, 127
donc : [h] = MTL . Ainsi, on a [up] = %

Q-L?
T

Le magnéton de Bohr s’exprime en A - m?. Il est donc homogene a [up] = [I]-[S] =

Finalement, en comparant les équations obtenues, on obtient a =1, = —1 et v = 1.
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Ficl s 17 Tnduction

Réponses

17.18) o
17.1b) i
17.0C) o
17.0d) .
17.28) 0o @ et @
17.2D) i Oui
17.2C) i Non
173 ) ettt [0]
17.3 D)t [0]
1723 0C) cnet it [0]
17.3d) oo
17.3€) i Bac
17.428) 0o —Ba?
TTeA D) [0]
2

1704 €)oo —Bj
B 2

17.4d) oo T“
2

1704 €)oot BT“
2

17.40) —Bj
17.58) e
17.5 D)o [0]
175 C) ettt [0]
17.5 )i [0]
17,5 €) i Ba?
1758 Ba(b— a)
17.6 oo ®)

17.78) oot
17.7D) i
17.7C) oot
17.7d) i
17.7°€) oot
177 6) e
17.8a) oo ’ Le flux diminue‘
17.8b) oo ’Le flux ne varie pas‘
17.8C) i ’ Le flux diminue‘
178 d) i
17.8 €)oo i=0
178 6) ot
17.9a) oo ’ By Sow sin(wt + ) ‘
17.9D) BOSO%e_t/T
17.9¢). it ’ —8BSow cos(wt) sin®(wt) ‘
17.9d)......... ’ —BySow|2 cos(4wt) 4 cos(2wt)] ‘
17.00 ). oo
1710 D) oo _IBd,
mu}
17.00C) v QIBOd
17.0008) . e
17ALD) e, IaB(ége_{ + ;a)
17016) e, I B(_fa+;e§)
1700 d) .
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17.02€) i 17.013¢C) i —gmgsiHG
17.12€) —Ia*Be; :
2ibB
5 1713 d) e arctan| ——
1712 ) o la“e, mg
Corrigés

17.1 a) Le flux du champ magnétique a travers une spire est p1 = BS = 7R?B. Le flux total & travers la bobine

est donc :

/LoﬂRQN 2 ;

— b

On retrouve l'expression de I'inductance L de la bobine en fonction de ses caractéristiques géométriques :

Prot = N1 =

porTRZN?

(ptot:L’i<:>L: e

Si on double le courant, on double donc le flux.

17.1 b) En doublant la longueur du solénoide, en gardant les spires jointives et le fil de méme épaisseur, on
double alors la longueur £ et le nombre de spires N : on double alors le flux.

17.1 c) Le fil est deux fois plus épais mais de méme longueur : on a toujours N spires mais réparties sur une

longueur 2¢ au lieu de ¢. Le flux propre est donc divisé par deux.
17.1d) Si on double le rayon des spires en gardant la longueur de fil identique, le nombre de spires dans la

bobine diminue. En effet, en notant £g la longueur du fil, on trouve : g = 2r1NR = 27N'(2R) <= N’ = N/2 en
notant N’ le nouveau nombre de spires. La longueur de la bobine est également divisée par 2.

Le flux total devient alors : ) )
,_ por 2R/
Ptot (/2)

Le flux total est donc multiplié par deux.

2 2
=T NT .

17.2 a) D’apres la régle de la main droite, le pouce étant dans le sens du courant, en enroulant la main on trouve

que le champ magnétique sort de la feuille au niveau des circuits. De plus, en enroulant la main droite dans le sens
de l'orientation de chaque circuit, on peut déterminer le sens du vecteur surface par le sens du pouce, ainsi les spires
A et B ont un vecteur surface vers la feuille et les spires C et D ont un vecteur surface qui sort de la feuille. Comme

le flux est donné par qb(ﬁ) = // B- (TS:, celui-ci sera négatif si le vecteur surface et le vecteur champ magnétique
s

présentent des sens opposés.
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17.2 b) On rappelle que le flux du champ magnétique & travers une surface orientée S vaut ¢(§) = // B-dS.
s

Sans tenir compte de I'orientation des surfaces, le flux sera d’autant plus important dans le circuit que celui-ci est
proche du fil car le champ magnétique produit par un fil infini est une fonction décroissante de la distance au fil.
On a donc |¢a| > |¢B|.

17.3 a) On oriente toutes les surfaces vers extérieur du volume. Ainsi, pour la surface AA'B'B, le vecteur normal
s’écrit §AA/B/B = —abe,. On rappelle que le flux du champ magnétique & travers une surface est : ¢ = // B-ds.
s

Le flux a travers la surface ABC est nul car la surface est orthogonale au champ magnétique.
17.3 b) Le flux & travers la surface A'C'B’ est nul car la surface est orthogonale au champ magnétique.

17.3 ¢) Le flux & travers la surface AA’B'B est nul car la surface est orthogonale au champ magnétique.

17.3d) Le flux au travers de ACC’'A’ vaut —Bac.

17.3 e) Le flux au travers de BB'C'C vaut Bac car le champ magnétique est & flux conservatif : la somme des
flux sortant d’une surface fermée est nulle.

17.4 a) Le flux sortant de la surface ABCD vaut —Ba® car le champ est uniforme sur cette surface.

17.4 ¢) Comme le champ magnétique est & flux conservatif, le flux total sortant est nul. De plus, par symétrie,

2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent BTG.

17.4 f) Comme le champ magnétique est a flux conservatif, le flux total sortant est nul. De plus, par symétrie,

B 2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent a

288 Réponses et corrigés



17.5b) Le flux du champ magnétique est nul sur la surface BAA'B’ car B est inclus dans ce plan.

17.5 f) En exploitant la conservation du flux magnétique, on en déduit donc que le flux sortant de la surface
CBB'C’ vaut Bab — Ba® = Ba(b — a).

17.6 Avec un courant positif, le champ magnétique produit par la boucle externe est sortant de la feuille.
Comme le courant augmente, le flux également. Le champ magnétique induit par les effets inductifs est opposé aux
causes qui lui ont donné naissance : il sera rentrant dans la feuille. Le courant est donc dans le sens horaire.

17.7 a) Rappelons que, pour un aimant droit, le champ sort par le Nord : les lignes de champ sont orientées du
Nord vers le Sud.

La premiere étape consiste a déterminer le sens de variation du champ magnétique _vu par la spire au cours du
déplacement. Qn déduit alors de la loi de Lenz le sens du champ magnétique induit Binq4, qui tend & atténuer les
variations de B. On détermine ensuite par la régle de la main droite le sens réel du courant dans la spire. Enfin,
par comparaison entre le sens réel du courant et le sens ¢ > 0 indiqué sur la figure, on en déduit le signe de 1.

Le champ magnétique créé par 'aimant droit est orienté vers la gauche au niveau de la spire. Il augmente dans la
spire avec le déplacement de l'aimant. Le champ induit va s’opposer a cette augmentation : il sera orienté vers la
droite. On a donc 7, > 0.

17.7 b) La physique est identique & la situation précédente, seule change la convention sur le sens positif du

courant : on en déduit immédiatement i, < 0.

17.7 ¢c) Le champ magnétique est orienté vers la droite au niveau de la spire. Il diminue avec le déplacement de

Paimant. Le champ induit va s’opposer a cette variation : il sera orienté vers la droite également. Ainsi, on a 7. > 0.

17.7 d) Les variations de champ vues par la spire sont les mémes qu’a la question a), le sens réel du courant

induit est donc le méme. Comme le sens choisi positif du courant est opposé, alors iq < 0.

17.7 e¢) Les variations de champ vues par la spire sont les mémes qu’a la question c), le sens réel du courant

induit est donc le méme. Comme le sens choisi positif du courant est opposé, alors i. < 0.

17.7 f) Le déplacement de la spire renforce U'effet du déplacement de I'aimant. Cette fois, le champ vu par la

spire diminue au cours du mouvement, le champ induit a donc tendance a le renforcer. On a donc iy < 0.

17.8 a) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal. Dans la configuration finale, le flux du champ magnétique dans la spire est
nul. Le flux diminue donc.
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17.8 b) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens opposé
au champ magnétique : le flux est minimal.

La configuration finale est identique & la configuration initiale : le flux est le méme.

17.8 ¢) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des
lignes de champ : le flux est maximal.

La configuration finale est similaire a la configuration initiale mais le flux est moins grand car le nombre de lignes
de champ interceptées est inférieur. Le flux diminue donc.

17.8 d) Le courant circulant dans la spire va produire un champ magnétique tel qu’il s’oppose a la diminution
du flux : le courant sera donc positif. On a i(4) > 0.

17.8 ¢) Iln’y a pas de variation de flux, donc pas d’induction : on a i(gy = 0.

17.8 f) Le courant circulant dans la spire va produire un champ magnétique afin de compenser la diminution
du flux : le courant sera donc positif. On a iy > 0.

ByS
17.9d) De méme, on commence par linéariser Uexpression. On a &4 = %[sin(élwt) + sin(2wt)]. Puis, on

dérive et on trouve : e4 = —BoSow(2 cos(4wt) + cos(2wt)].

17.10 b) La force de Laplace est constante. Par application du principe fondamental de la dynamique en projection

SUr €5, ON a :
do(t)
de

m = —IBd.

I1Bd
En intégrant (avec la condition initiale), on trouve v(t) = ———1t + vg.
m

1 rx=D o x=D

AE,=0— Emvg = / F.dl= / —IBde; - dze; = —IBdD.
mv%

2IBd’

On en déduit : D =

17.11 a) 1l s’agit de calculer le produit vectoriel sur chaque segment, le vecteur dl étant le long du segment.

Chaque force de Laplace s’exerce au milieu de chaque segment et la régle de la main droite indique qu’elle est
orthogonale au segment dirigé vers 'extérieur du triangle. Le triangle est équilatéral et comporte donc trois angles
de 60°, ce qui ameéne aux projections sur e, et €,. D’ou les résultats.

290 Réponses et corrigés



17.11 d) Le champ magnétique étant uniforme, la résultante des forces de Laplace sur le circuit fermé est nulle :

17.12 h) Dans ce cas, les forces de Laplace sont nulles sur les segments BC et DA ((TZ et B sont colinéaires). Les

seules forces sont alors :

17.13 a) Dans la base cylindrique telle que €, = ex, le moment magnétique est porté par €5 et sa norme est
m = 1S = iab.

17.13 b) Par définition, le couple magnétique se calcule par T =M A B. Le caleul du produit vectoriel améne a
T = iabB cos fe,. Comme €, = ex, la projection sur I'axe A donne donc I'a = iabB cos 6.

17.13 ¢) Dans la base cylindrique, le poids s’exprime P= mg(cos 0, — sinfeg). On considére qu’il s’applique au

barycentre des masses du cadre, soit en son plein centre que I’on notera G. Son moment par rapport a 'axe A se
3 A A D) — . P 5N B > A D a i
calcule par M (P) = (OG A P) -ex avec O un point sur Paxe A. D’ott, Ma(P) = (a/2er A P) en = —5mgsin 6.

17.13 d) A Déquilibre, la somme des moments des forces par rapport a Paxe A est nulle. Ainsi, on a :

Ta+ Ma(P) =0.

24 2ibB
D’ot iabB cos 0cq — %mg sin feq = 0, ce qui amene a isoler tan Ooq = Z—, soit finalement 6.4 = arctan <Z)
mg mg
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IF'iche n° 18. (Gaz parfaits|

Réponses

' 18.6b). ... @ S 5
4P, 1
18.1¢)........... 6,8 x 10> L 18.11 b)... 7T 0T3;-T 6yr
0

- 18.78) cieeieeinann... el
18.28) ...
8.2 a) P88 - mo RT | 18124)....... 18,2g - mol~!
2 18.7b) e non
18.2b) ..o 1,8 x 107 bar 18.12b)ceeeeeeinnn.., 1,79%

18.8 b) 18.13a)....... 30,6 ¢ - mol ~*
v P, 18.13b).............. 65,6 %

Mn
185b) ..o, 1,24 bar 1810 ...l Mo
Corrigés
moo .. m  RT .
18.1a) Omna PV =nRT avec n = a Ainsi, on a V = Vi X R Notez que l'on peut laisser les masses en g

. . . —1
si ’on exprime la masse molaire en g - mol™ ".

100g 8,314J - K1 -mol~! x 298,15 K
X =

Ainsi, on a V = 62 x 10°m® = 62L.

40g - mol* 1 x 10° Pa
. 71 . 71 - -
18.1b) OnaV = 826 B3ATK mol x28I0K _ o) 8w 100 m® = 251
2 x 16g - mol 1 x 10° Pa
12 14J-K™' - mol™! x 298,15K
18.1¢) OnaV = s « 33147 mol  x 298, 15K _ ) 676m? = 6.8 x 10°L.

(12 +2 x 16)g - mol ! 1 x 10° Pa

18.2 b) Si tout le butane était a 1’état gazeux dans la bouteille et en admettant qu’il se comporte comme un

gaz parfait, la pression qui y régnerait serait de :

p_nRT _m RT _ 13x 10°g  8,314J-K ' -mol ' x 293,15K

= X =179 x 10° Pa = 1,8 x 10° bar,
V MV " 58g-mol! 30,6 x 10~ % m® & ar

et la bouteille exploserait... Heureusement qu’une grande partie est a ’état liquide !
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18.2 ¢) En considérant le butane comme gaz parfait, on a :

nRT mRT  13x10%g  8314J-K~!.mol™! x 293,15K 3
V=—""=_""" = = X = =5,0m".
P M P 58 g - mol 1 x 10° Pa
. , , V. RT
18.3 a) Le volume molaire est le volume occupé par une mole de gaz : c’est Vin = — = 5
n

En exprimant la pression en pascals et la température en kelvins, on obtient :

~8,314J-K ' -mol ! x 298,15K
N 1,00 x 10° Pa

=248 x10°m® - mol™ = 24,8L - mol .

_8314J-K ™' -mol™" x (273,15 + 50)K
N 2,00 x 10° Pa

Via =134 x10°m® -mol™* =13,4L - mol™*.

Remarquez que le volume molaire ne dépend pas de la nature du gaz mais seulement des conditions de pression et
de température.

18.4 D’apres la loi des gaz parfaits : P,V = nRT1 et PV = nRT5, ce qui donne a volume constant :

2,3 bar
2,0 bar

Ty = Ty = = (273,15 + 20)K x = 337K = 64°C.

P,
PV =PVa avec Vo=12V;, dou P = 1—12 = 1,0 bar.

18.5 b) A volume constant, le quotient P/T reste constant, d’ot :
P P T 303,15
h dott P — P22 —-129 ' — 1,24 bar.
T, T SO RN T X g3 s T R

18.6 a) La loi des gaz parfaits permet d’exprimer P en fonction de T : P = %T = C* x T, car nR/V est

constant. On prévoit donc une relation linéaire dont la courbe représentative est une droite passant par l'origine.

T te
18.6 b) En vertu de la loi des gaz parfaits, on a P = nikT = CV , car nRT est fixé. On prévoit donc une relation
inverse dont la courbe représentative est une hyperbole.
18.7 a) Par définition, la masse volumique vaut :
- m __ nM MP
P=V = =BT = RT
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18.7 b) Assimilons la vapeur d’eau & un gaz parfait. On a alors :

—3 7. -1 5
_ 18 x 107" kg _13101 i<11,013 x 10° Pa — 0,588 kg _—
8,314J - K™" -mol™" x 373,15 K

Ce résultat est en désaccord avec la mesure.
Au voisinage d’un changement d’état (comme ici, ot ’'eau est a I’état de vapeur saturante), le modeéle du gaz parfait

n’est pas valide.

P
La masse volumique d’un gaz parfait s’écrit p = AT On a donc ici :

_MP . MPy
PL= Ry P2 = Ry

T, P:
18.8 b) Le méme raisonnement meéne a ps = p1 T1P2 =3,7p1.
2P

On fera attention au fait que, dans un rapport de températures, celles-ci sont a exprimer en kelvins

P
18.9 a) D’apres la loi des gaz parfaits, on a n; = RIT et ng = R2 , d’otu la relation Pl
18.9 b) Appliquons la loi des gaz parfaits dans chaque compartiment. On a :

P'Vi =niRT et P'Vo =noRT,

dont on déduit V2/Vi = na/ni.
Par ailleurs, la conservation du volume total donne :

2V:V1+V2:V1(1+@).
n1

Ainsi, il découle :
2V 2V 2P
Vi = - - V.
Y"1t ne/m 1+ PP P+ P

m _ PM

nRT  mRT donc _m
P=V = R

V=" =P

Ainsi, sous la méme pression et la méme température, on a :

4
18.11 b) La pression de l'air intérieure vaut P = Py + 27 La loi des gaz parfaits donne alors :
r

3 2
PV = (Pt ) x Sart = nRTy dou = LI
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18.12 a) La masse molaire du mélange est la moyenne pondérée des masses molaires : M = Z z; M;.

(3

Ceci donne ici :

M = (0,813 x 16 4 0,029 x 30 + 0,004 x 44 + 0,002 x 58 + 0,143 x 28) gmol ™' =18,2g-mol .
18.12 b) Faisons un bilan avec une mole de mélange :

e le mélange a une masse totale m = 18,2¢g;
e ce mélange contient 0,029 mol d’éthane, soit mc,ns = 0,029 x 30 = 0,87 g.

On en déduit que le titre massique vaut :

WCyHg = mCQHG/m = 4,79 %

18.13 a) Le mélange étant considéré parfait, on peut appliquer la loi des gaz parfaits :

PV =nRT dou p= % - %.

On en déduit la masse molaire :

pRT  1kg-m ®x8314J-K ' mol™! x 373,15K
P 1,013 x 10° Pa

=30,6 x 10" kg - mol™".

18.13 b) La masse molaire du mélange est la moyenne pondérée des masses molaires. Si 'on note z la fraction

molaire en dioxygene et y celle en diazote, on a M = Mo, + yMn,, avec x +y = 1. On en déduit :

M — My,  30,626g-mol ' —28g - mol "
"~ Mo, — My,  32g-mol ™' —28g-mol™*

= 65,6 %.

18.14 Calculons la pression partielle en vapeur d’eau : elle vaut Pa,0 = 60 %psar = 1,90 X 10° Pa.

Dans un volume de 400 m3, cela correspond & une quantité de matiere :

Pu,oV 1,90 x 10% Pa x 400 m®

_ — 307 mol.
RT  8314J-K ' -mol ' x 208,15K e

NHy0 =

Ceci représente une masse m = nm,o0 X Mpa,0 = 18 X 1073 kg - mol ™! x 307 mol = 5,5kg.

18.15 b) La pression partielle d’une espéce dépend de sa quantité de matiere, de sa température et du volume

total. En effet :
( > ni) x RT
. nZRT

P:%:ZR— avec P; = T

i

Puisque ces quantités n’ont pas changé pour I'espece B, sa pression partielle est restée la méme.
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IFiche n°19. Premier principe|

Réponses
19.18) oo 3000] o0 ey D pa_ g
19.1b) .o 4
19.10 ..o —268kJ
19.1) oo 1507
2 1 1
19.28) oot 1911 oo T, + Téa (V _ V)
14 f )
19.2D) oo —100J
19.3 Lot 19.128). oo T; + %
194a) . ..., ’ —Po(Viinal — Vinitial) ‘ 1902 D) oo T, o4
— (P Py) (V4 nal — ‘/ini iz
19.4b)............. (P2 & 1) (Venat tal) 30\ /3
2 19.12¢) v (Tﬁ’ + )
B
V
19.58) oo —nRT, 1n(vf) %
: 19.13a) oo nRT; 1n(Vf>
PyVy — BY; :
19.5b) oo f;gfl —
19.13b). oo — (T; - Ty)
19.6a). ..o ’ 76J-K~'-mol ! ‘
1913 €)oo
19.6b) ..o, 118 x 103 keal - K~ ! - mol | o
19.148) oo W, — Q
19.78) o me(Ty —T5)
19.14 D) oo Q1 — Qs
197 D) coe e 42KkJ
1914 C) oot Wi — Qo
nR
19.8 a) .................................. 7_1 1915 oo 42JK_1
19.8b) oot 6,2 x 10%J 19.168) ..ot E
nRy e
19.8C) it po— 19.16b) ..o ‘Ta + (Ty —T,)e™ €
19.8d) oo 8,7 x 10%J 10,07 @
19.9a) oot Cv(Ty —T;) 1918 8) oo mi Ty + moTh
mi + mo
19.9b)............. —(Ty* - T*)+ B(Ty - To) T T
19.18 b)......... mbtmely  Q
my + mo (m1 4+ ma)c
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Corrigés

19.1a) Ona W =—(15x10"Pa)(3x 10 °m® =5 x 10~*m®) = 300J.

19.1b) Ona Py =50mbar =50 x 10~ bar = (50 x 10%) x 10° Pa = 50 x 10* Pa.
OnaV;=2cL=2x10"°L=(2x10") x 107°m® =2 x 10" m"’.
OnaVy=120mL =120 x 107 °L = (120 x 10%) x 10 ° m® = 12 x 10"° m®.

Ona W =—(50x 10°Pa) x (12x 10°m® =2 x 10 °m?) = —0,5J.

19.1¢) OnaV;=20cm®=20x10"°m® et V; = 10cm® = 10 x 10" ° m®.

Ona W = —(150 x 10°Pa) x (10 x 10"°m® — 20 x 10 m®) = 150J.

19.2 a) Le volume ne variant pas, on a dV = 0. Le travail des forces de pression s’écrit W = f/ Poyy dV.
Vi

initial

Il est donc nul.

19.2 b) Le travail des forces de pression s’écrit :

Vénal Véinal
W = 7/ cht dV = 7cht / dV = 7cht (Vﬁnal - ‘/initial)-

Vinitial Vinitial

Nous pouvons donc faire Papplication numérique : W = —1 x 10° Pa x (2 x 107°m® — 1 x 107 m?®) = —100J.
19.3 Le systéme A a regu du milieu extérieur un travail W, = 50 W x 30s = 1500 J.

Le systeme B a re¢u du milieu extérieur un travail W;, = 400 W x 5s = 2000 J.

Le systéeme B a donc regu la plus grande quantité d’énergie.

19.4 a) Le travail correspond a l'opposé de l'aire sous la courbe, et donc a opposé de l'aire du rectangle :

W = _PO(Vﬁnal - ‘/initial)-

19.4 b) On décompose laire sous la courbe en un rectangle et en un triangle :

(PQ - Pl)(vﬁnal - Mnitial)) _ _(PQ + Pl)(vﬁnal - ‘/initial)

W =— (Pl (Vﬁnal - ‘/initial) +

19.5 a) Le systéme est un gaz parfait, nous avons donc PV = nRT. De plus, la température reste constante et

: . Vil

vaut Tp. Le travail s’écrit alors : W = —nRT), / v
Vi

v,
dV = —nRTp 1n(7f_).

3

19.5 b) La transformation étant polytropique, on a alors PViF = P‘fo]C = PV”*. Le travail s’exprime alors :

Vi PV;F PVik 1 1 PyVy — PV
W:—/ Vi gy = B __ L Y BV =RV
vV 1k , k=1
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19.6 a) Par définition, on a ¢ = % = n% Et donc Cp, = Mu,o X c =767 - K!

1
-mol™ .

19.7 a) La masse m d’eau liquide de capacité thermique massique ¢ = 4,2kJ - K™ -kg71 aura une capacité
thermique C' = me. Ainsi, on a AU = me(Ty — T5).

19.7 b) Notons que la température doit étre exprimée en kelvins. Ici, on a T; = 293K et Ty = 303 K. Nous
obtenons donc AT = 10K. Ainsi, on a AU =100 x 10 % kg x 4,2kJ - K™' - kg™" x 10K = 4,2kJ.

19.8 a) On commence par exprimer la capacité thermique a volume constant Cy du gaz parfait, & partir de la

C R
relation de Mayer Cp — Cv = nR et du rapport des capacités thermiques v = C—P. On obtient Cy = n T
\% Y=

19.8 b) La grandeur Cy étant constante, la variation d’énergie interne d’un gaz parfait peut étre écrite :

nR

AU = CyAT = Cy(Ty — T)) =

7 (Tr = To).

1mol x 8,314J- K~ - mol™! x 30K
1,4—-1

=6,2 x 10% J.

On passe alors a 'application numérique : on a AU =

19.8 ¢) On commence par exprimer la capacité thermique & volume constant Cp du gaz parfait, & partir de la

C R
relation de Mayer Cp — Cv = nR et du rapport des capacités thermiques v = C—P. On obtient Cp = nayy
\% Y-

1

AH = CpAT = Cp(Ty — T)) = ;”j”l (Ty —T).

1 mol 14J-K ' mol™ ! x 1,4
mol x 8,314 MoL X L% L 30K = 8,7 x 102 J.

On passe alors a 'application numérique : on a AH =

14-1
19.9 a) OnaAU:CvAT:CV(Tf —Ti).
19.9b) Ona AU = =(T;* - T:i°) + B(Ty — T;)
D, . 4 4
19.9¢) OnaAU= Z(Tf —T;%).
19.10 Pour cette transformation, nous avons une masse m; = 800 g d’eau qui est transformée de 1’état liquide

a l’état solide, et qui subit donc une solidification (transformation inverse d’une fusion).

La variation d’enthalpie s’exprime : AH = —my; X Lgys = 0,800kg x —335kJ - kg;_1 = —268kJ.

Cv
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19.12 a) On a alors C(Ty —T;) = Q, et donc Ty = T; + @

ok
Ty Q

19.12 b) On a alors Aln(?> =Q, et donc Ty = Tie?.
3 3 1/3

19.12 ¢) On a alors B(éc — 1;2) ) =Q, et donc Tj = (T,3+%>

19.13 a) Le systéme est un gaz parfait, et nous avons donc PV = nRT, avec T la température qui est constante

et qui vaut donc T;. L’expression du travail est donc :

Vi
W= —nRTi/ v R 1n(ﬁ).
WV v,

D’apres la premiere loi de Joule, pour un gaz parfait, la variation d’énergie interne s’écrit AU = C, AT = 0.
V.
On obtient finalement : Q = —W = nRT; ln(vf)

i

Vi
19.13 b) Pour une transformation isochore, le travail est nul : W = — / P4V =0.
Vi

On obtient alors : Q = AU = n

-(Ty —To).

19.16 a) Le temps caractéristique pour I’équation différentielle obtenue est 7 =

=

h
19.16 b) On obtient T' = T, + (To — Tdefﬁt en sommant solutions particuliere et homogene, et en appliquant la
condition initiale T'(0) = Tp.
19.17 La température initiale est Ty, donc la courbe doit commencer en T,. Les courbes @ et @ sont donc

exclues. La courbe @ correspond & une exponentielle croissante et ne convient donc pas. La réponse est @

T T:
19.18 a) On trouve Teq = mily +maly
mi + me
T T:
19.18 b) On trouve Toq = mily +maly Q .
mi + me (m1 4+ ma2)c
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IF'iche n° 20. Second principe et machines thermiques|
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Corrigés

20.1 Le premier principe donne AU = W + @ donc @ = AU — W. De plus, la premiere loi de Joule donne :
AU = Cyv AT =Cv(Ty — Ty).

Finalement, on a Q = Oy (T — Ti) — W =1,04J - K" x (298 K — 293K) — 100J = —94,8 J.

20.2 On effectue un bilan d’énergie & l'aide du premier principe. La variation élémentaire d’énergie interne

du liquide est :
T
dU = me x dT  soit, en puissance, P = % = mc((li—t7

N . . . - me AT
ou P est la puissance de chauffe apportée. En supposant cette puissance constante, il vient At = 2

On a donc :
Ateaw  Cean  4180J-K'-kg™!

Athuile Chuile - 2000J - K_l . kg_l
Ainsi, ’huile chauffe plus de deux fois plus vite que 'eau.

=209 > 1.

20.3 a) Par définition, on a H = U + PV. Ainsi, on a dH = dU + PdV + V dP. On en déduit :
dH =TdS - PdV + PdV +VdP =TdS + VdP.

20.3 b) Le gaz parfait suit la premiére loi de Joule : son énergie interne ne dépend que de la température. Ainsi,
pour une transformation isotherme, on a dU = 0.

20.3¢) On adU = 0. Ainsi, la premiére identité thermodynamique devient :

0=TdS — PdV.
On en déduit T'dS = PdV. Ainsi, grace a I’équation d’état PV = nRT, on en déduit :

P dv

20.6 a) Utilisons la relation AS = 0 qui fait intervenir les volumes et les températures. On a :

o ) o) e () s
ASf()ffy_lln(Ti>+ann<Vi donc 7_1ln T +(y—1)In v =0.

En utilisant les propriétés de la fonction logarithme, on obtient :

R RN
AS_fy—lln{(Ti)(Vi '

v—1
) =1, cest-a-dire Ty V"~ = T,V;7 1.

Ty
déduit —
On en dédui Ti(
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20.6 b) On proceéde de la méme manieére & partir de 'expression qui fait intervenir les températures et les

pressions. On a :

- 2 (3) () 0= 2 () - ()
AS_’y—lln(Ti nRIn P, —0—7_1'yln T (vy—1)In )l

En utilisant les propriétés de la fonction logarithme, on obtient :

nR Tf v lgf)li’Y
1 — — =0.
v—1 n|:(Ti) (Pi 0

On aboutit a :

20.6 ¢) Utilisons I'expression qui fait intervenir les pressions et les volumes. On a :

nR Py nRy (Vf) nR [ (Pf) (Vf)}
§=0=273 n(Pi)JWﬂn vi) =51\ B ) Ty,

Sl e

P Vi\? s 3k
(Fi)(?ﬁ) =1 clest-a-dire P;Vy" = BV;".

En simplifiant, on trouve :

Finalement, on aboutit a :

20.7a) OnaPV" = C*. Avec Déquation d’état du gaz parfait, on obtient :

nRT v __ te 'yfl_Cite_ te
—VV—C et donc TV —nR—C.

V Cte T j—’l _ Tf

nR_~ P P P
On en déduit : T (130°C + 273)
°C +
Pp=2tp =2 T
=T (120°C + 273)

20.8b) OnadH =T7dS+ VdP. Ainsi, on a :

En intégrant cette relation, on obtient :
. Ty . Py _ § Ty ) . (Pf )
AS—Cpln(—Ti) ann(—PZ_) = 2ann<—T nRIn{ = ).

Tf Pf 3 Tf )
Comme PV =nRT, on a T P, et donc AS 2nR n( T

L’application numérique donne AS = 0,31J-K™*.
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~ 1,00mol x 8,314J - K~' - mol " 1n<550K
- 1,4—1 500 K

20.9b) L i inci Yécrit : AU = W .
) e premier principe s’écri = +Q

): 1,98J - K%

Le gaz étant supposé parfait, la premiere loi de Joule s’applique : on a AU = C, AT.

De plus, sa capacité thermique satisfait la relation de Mayer : on a C, — C, = nR donc C, = Ll par définition
-

C
du coefficient adiabatique v = C—p.
Par conséquent, ’entropie échangée s’exprime :
nR
g - AU _ 755 (T — )
T, Ty '

L’application numérique donne :

. 71 . 71
1,00m01><8,13114_JlK mol (550K — 500K)

Se = =1,89J- K%

20.9 ¢) Le second principe s’écrit AS = S. + S.. L’entropie créée au cours de la transformation étudiée vaut
Se=AS—S.=198J]-K '-18J- K '=0,00J-K* . Puisque S. > 0, on peut conclure que la transformation
n’est pas réversible.

20.10 La détente étant isoénergétique, on a AU = 0 = W + Q. Comme il s’agit d’'une détente dans le vide, on
a W =0 et ainsi Q = 0 : cette détente brutale et rapide est adiabatique. Le second principe s’écrit :

Q
AS = = +S..
To +
~—
=0
De plus, la détente du gaz parfait étant isoénergétique, on a T; = T (en utilisant la premiére loi de Joule). Ainsi,

on peut écrire AS =nR ln(%). Finalement, on a S. = nR1In(2).
K3

20.11 a) L’expression comporte trois termes : la variation d’enthalpie liée au changement de température de
I'eau a I’état liquide, la variation d’enthalpie liée a la vaporisation de ’eau et enfin la variation d’enthalpie liée au
changement de température de 'eau a I'état gazeux. Le premier terme décrit la variation de température de ’eau
a I’état liquide, qui est chauffée de T a T (car la différence T1 — T5 correspond au bilan entre I’état final et I’état
initial), autrement dit de 7> = T; (température initiale) & T3 = Ty (changement d’état). Le résultat est cohérent
car To —T; > 0 : la variation d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.

20.11 ¢) Le troisiéme terme décrit la variation de température de I'eau & 1’état gazeux, qui est chauffée de T,

a T3 (car la différence T3 — T4 correspond au bilan entre 1’état final et 1’état initial), autrement dit de Ty = To
(changement d’état) a T3 = Ty (température finale). Le résultat est cohérent car Ty — To > 0 et donc la variation
d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
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20.11 e¢) De maniére analogue a I’expression de la variation d’enthalpie fournie par ’énoncé, la variation d’entropie

s’exprime en trois termes. Aprés intégration entre I’état initial et 1’état final, on obtient :

o TO Avap-[—-[O Tf )
AS = Mmceau In ( T, ) +m T + MCP,vapeur ln(TO .
L’application numérique donne :
_ -1 -1 373K) 2257kJkg ™!
AS =1,00kg x 4180J - K kg™ x ln<7353K + 1,00 kg x —3mK
1 1 393 K)
+1,00kg x 2010J - K kg Xln(373K

=6390J-K 1.

20.12 ¢) Les phases condensées sont de volume constant donc W = 0, et le systéme est supposé isolé donc @ = 0.

L’application du premier principe au systéme donne AU = 0. L’additivité de I’énergie interne permet d’écrire :
AU = AU, + AU, = 0.

On a donc :
micy (Tf — Tl) + m2C2(Tf — Tg) =0.

On isole Ty pour obtenir :
~ maiciTi + macaTp

e
|

mici + maca

T
20.12 e) Pour une phase condensée, on a Cv = Cp = C,y, et dU = dH = medT. Ainsi, on a dS = chd .

Par additivité de I’entropie, puis par intégration, on peut écrire que la variation d’entropie du systéme est :

AS = AS1 + ASs =micy ln(%) + moca ln(%).

1 2

L’application numérique donne AS = 7,547 - K™ *.

20.12 f) Appliquons le second principe sur le systéme formé par I’ensemble des deux solides. On a :

0
AS = Tgt +S. =S,
- s Q . g .
ou l'entropie d’échange Texd = 0 car le systéeme est isolé; il n’échange donc pas de transfert thermique avec

I'extérieur.

Par conséquent, 'entropie créée vaut S. = AS = 7,49J - K~ ' > 0. Cette valeur est strictement positive : ainsi, la
transformation est irréversible.
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20.13 a) L’efficacité d’une machine frigorifique (ou COP) est : COP = Q—Mf Ainsi, on a Qr = W x COP.

20.13 b) L’application numérique donne Qr = 20,4 MJ.

Attention : pour une machine frigorifique, on a Qr > 0, Qc < 0 et W > 0.

20.13 ¢) Sur un cycle, on a AU =W + Q¢ + Qr = 0. Donc, Qe = —W — QF.
L’application numérique donne Q¢ =—37,4 MJ.

20.14 a) Le premier principe sur le cycle donne AU = W + Q¢ + Qr = 0. Ainsi, on a Qr = —W — Qc.
Attention : il faut bien identifier que, pour un moteur, W = —500J et Q¢ = 1500 J.
L’application numérique donne Qr = —1000J.

20.14 b) L’efficacité du moteur est n = EQ—W, avec ici W = —500J et Qc = 1500J. On arrive a n = 33 %.
c

Il est important d’identifier le signe des transferts ici.

20.15 a) L’efficacité d’une pompe a chaleur (ou COP) est : COP = Qe Ainsi, W = —Qc
w COP
20.15 b) L’application numérique donne W = ag; _(_??: GJ) =1GJ.

20.15 d) La pompe utilise une énergie W = 1 GJ par semaine, soit 1 x 109/(376 X 106) kWh. En multipliant par

le coflit de 17 centimes d’euro du kilowatt-heure et en considérant la moitié des 52 semaines annuelles, on obtient
un colit annuel de :

9
% x 0,17 euro X 52 = 1228euros = 1,2 x 10 euros

(en prenant le bon nombre de chiffres significatifs).

T
20.16 a) Le rendement de Carnot d’un moteur cyclique ditherme est donné par n = 1— T—F Apres avoir converti

les températures en kelvins en ajoutant 273,15, on trouve n = 33 %.

20.16 b) Pour un moteur, on a n = _Q—W Or, sur un cycle, on a AU =W 4+ Q¢ + Qr = 0. Ainsi, on a :
c
-W nQr
= — t d W = .
= or et donc -7

20.16 c¢) Il faut identifier que, pour un moteur, on a Qr < 0, soit ici @r = —600 J.

0,33 x (—600J)
1-0,33

Si on considére que n = 1/3, on trouve W = —300J.

L’application numérique donne : W = = —295J.
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20.16 d) Le moteur fournit 295 J par cycle & un régime de 2 000 cycles par minute. La puissance P est donc :

. in— !
p_ 295 J x 2 000 cycles - min — 0 833W.

60s - min—!

En utilisant que 1cv = 736 W, on obtient P = 13,4 cv.

Si on considére que W = —300J, on trouve P = 13,5cv.

20.17 a) Pour un gaz parfait, on a ’équation d’état PV = nRT, ainsi V =

On dérive par rapport & P a T constant. On obtient :

(8—‘/) — ZnBiT et donc = —l(a—v) _ it
oP)r P2 Xt="y\opr)r ~ VP2

1
En utilisant de nouveau I’équation d’état PV = nRT, il vient alors xr =

20.17 b) Pour un gaz parfait, on a ’équation d’état PV = nRT, ainsi V =

On dérive par rapport & T' & P constant. On obtient :

(8—‘/) —@ et donc a_l(@l) _nk
oT/)p P T v\oT/p ’

1
En utilisant de nouveau I’équation d’état PV = nRT, il vient alors oo =

20.17 ¢) On utilise équation d’état PV = nRT pour isoler la variable & dériver. Aprés calcul, on obtient :

L N (e .
oT/)p P’ OP/)v  nR ov)r V2

On arrive alors a Y = —1.
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IF'iche n° 21. Statique des fluides|
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Corrigés

21.1 a) Par définition, ona 1Pa=1N- m 2. Ainsi, on a :

750 kPa = 750 x 10° Pa = 750 x 10° N -m™ 2 = 750 x 10> x N x (100cm) *> = 75N - cm 2.

21.1b) En effet, par définition, on a 1bar = 1 x 10° Pa.

21.2 a) La force de pression s’écrit F= //pﬁ’ds, ol 7 est le vecteur unitaire normal & I’élément de surface
et dirigé vers I'intérieur du solide. Ici 7 est vertical car la surface est un disque horizontal. Enfin, la pression étant

uniforme sur la base du cylindre, on a :

F=pS®, soit F=pr(d/2)?=6x10"xmx (0,01)>=19x 10°N.
21.2 b) Le volume de gaz ne variant pas, la pression reste la méme.
21.3 La formule @ n’est pas homogene car po est une pression et z une longueur. La formule @ n’est pas
homogeéne car po (1 —e Zrnzax) est une pression et z une longueur. La formule @ n’est pas homogeéne car (entre
autres) 'expression 1 — z — 2% nest pas homogene, puisque z est une longueur et 2> une aire.

21.4 Dans un liquide incompressible en équilibre dans le champ de pesanteur uniforme ¢, la pression suit la
loi p(M) = po + pg X hum, ol ha est la profondeur du point M depuis la surface libre soumise & une pression po.

Ici, le point M se situe & une profondeur hv = ho — z. Donc, on a p(M) = po + pg(ho — 2).

21.5 a) L’équation fondamentale de la statique des fluides est gradp = pg. On projette cette égalité suivant
laxe (O121) :

dZ1
A Vinterface air/eau, on a p(z; = 0) = po = C1. Ainsi, on a p(z1) = po + pgz1.

= pg d’ou apres intégration p(z1) = pgz1 + Ci.
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21.5 b) Suivant 'axe (O222), on a (;17]0 = —pg. D’ow, p(z2) = —pgzz2 + Co. A l'interface air/eau, on a :
2

p(z2 = H —h) =po = —pg(H — h) + C>.

Donc, on a C2 = po + pg(H — h). Finalement, on trouve p(z2) = po + pg(H — h — z2).

21.5 ¢) Suivant 'axe (O3z23), on a :

dp

L. = P9 sina  ce qui donne p(z3) = —pgsinazz + Cs.
z3

Au fond de l'eau, on a p(z3 = 0) = po + pgH = Cs. Par conséquent, on a p(z3) = pg(H — z3 sin &) + po.

On pouwvait aussi plus simplement reprendre la formule de la question b) et noter que z3 = (22 + h)/sin(a), ce qui
donne le méme résultat.

21.6 a) La force pressante est toujours normale & la surface de 'objet et orientée vers celui-ci.

1 — —>
ﬁ(ez —€y).

On trouve ainsi : ua =

21.6 b) La force pressante est toujours normale a la surface de 'objet et orientée vers celui-ci.
On trouve ainsi : ug = —é,.

21.6 ¢) La force pressante est toujours normale a la surface de 'objet et orientée vers celui-ci.

On trouve ainsi : u¢ = —cos(%)ez — sm(%)ey = —5(\/5’;605 + ey).

21.7 a) Le point A est sous une hauteur h d’huile de masse volumique pn par rapport a la surface. La pression

en A vaut donc : pA = Patm + pngh. Le volume V4, d’huile occupe la hauteur h dans le tube de section s telle que :
Vi = sh. On obtient ainsi pA = Patm + phg—h.
s

21.7 b) Le point B est sous une hauteur di; d’eau de masse volumique p. par rapport & A, la pression en B vaut
donc : pg = pa + pegdi.

21.7 ¢) Le point C est sous une hauteur d2 d’eau par rapport & la surface. La pression en C vaut donc :

PC = Patm + pegd2~

De plus, les points B et C sont a la méme altitude dans le méme fluide donc pg = pc.

W
Patm + phg?h + pegdl = Patm + pegd2-

_ Ph Vi
pes

Il en découle : do — d1

21.8 a) La pression qui régne dans un liquide incompressible s’écrit p(M) = po + pgha, ou hu est la profondeur
du point M depuis la surface libre soumise a une pression po. Ainsi, au fond du récipient, on a p = pg + pgH.
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21.8 b) En plongeant le solide dans le liquide, on modifie la hauteur de liquide. Notons H' cette nouvelle hauteur.
On obtient H' en traduisant ’additivité des volumes :
SH+sh=SH' soit H'=H+ Sh.

Finalement, la pression au fond du récipient vaut :

S
p:po+ng':po+pg(H+§h).

21.9b) Ona Hﬁ” = Msavon X § = Psavon X Vimmergé X ¢, aveC Vimmergs x —ma’. Finalement, on trouve :
= 2 3 2 -3 3 3 2
HHH:§psa\,on><7rag:§><2,5><10 kg-em™® x 7w x (10cm)® x 9,8m -s72 = 51N.

= 8 8 _ _ _
HHH = gpeau X 7Ta3g =3 x 1,0 x 10 3kg~cm 3% x (100m)3 x9,8m-s2 =82N.
21.10 En notant P le poids du solide et i la poussée d’Archimede qui s’exerce sur lui, la condition d’équilibre

assure 77’)—1— 0 =0.Par projection sur ’axe vertical, on obtient msg —mprg = 0, avec my, la masse de fluide déplacé
par le glacon. En faisant apparaitre les masses volumiques, 1’équation ms = my, devient psVs = pr,Vimm :

21.11 a) La pression ne dépend que de z, par conséquent les forces de pression qui s’exercent sur les faces latérales
verticales se compensent. Aussi a-t-on R; = 0.

21.11 ¢) Rappelons que la pression vérifie la loi p(z) = po + pgz avec po la pression qui régne & la surface

li_tgre. Faisons un bilan des forces qui agissent sur les faces horizontales du cube._I:a face du dessus ressent la force
Fi = (po + pgzl)a2 e, alors que la face du dessous subit une force pressante F» = —(po + pgzz)a2 €,. Ainsi, la
résultante verticale des forces pressantes vaut :

R.=(F +F) & = —pga’(z2 — 1) = —pga’.

21.11 d) On trouve donc R = fpga3 €-. L’immersion du solide déplace un volume a® de liquide, qui a pour masse

3 . =g 3 > 3 — .. =1 = , . . s o s
m = pa° et poids Pq = pa” ¢ = pa”ge. Ainsi on trouve R = — Py conformément au principe d’Archimede.

3

21.12 a) Avant immersion, on a T + P= 6, ot P est le poids du solide. Aprés,ona T’ + P + 11 = 6), ot I est
la poussée d’Archimede. On en déduit :

O=7T-7 soit ||I|=|T-7=10N-8N=2N.
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21.12 b) On a vu que le poids vaut P = 10N et la poussée d’Archimede IT = 2N. Or, on a :

P=pVg et T=pVg avec ps masse volum?que du solide
pe masse volumique de l'eau.

21.13 a) Le poids du bloc solide vaut P = psShg. La poussée d’Archimede est 'opposée du poids de liquide
déplacé, a savoir o= —peS(h — x) g. Ainsi, la résultante des forces vaut R= [psh — pe(h — x)] Sgq.

21.13 ¢) La résultante des forces vaut maintenant R = P+ 10+ F. En faisant z = 0 dans I’expression obtenue a

la question a), on trouve : . .
R = (psh — pech)S G + F.
i

La condition d’équilibre K =0 donne alors F = (peh — psh)S g, d’ot Hl_7>|| = |(peh — psh)S|g = (pe — ps)Shg.

21.14 a) La proposition @ est homogene car ps/pe est sans dimension et h est homogeéne & une longueur.
La formule @ n’est pas homogene a cause de la racine cubique.
La formule @ n’est pas homogeéne non plus car on ajoute une longueur (h) & une masse volumique (ps).

Enfin, la proposition @ n’est pas homogene car le produit d’une masse volumique par une longueur ne peut pas
donner une longueur.

1
21.14 b) Le volume immergé s’écrit Vimm = gS/(h — ), ott " est laire de la base du volume conique immergé.

Si I’on note r’ le rayon de cette base, on a :

S’ "\ h—x\2

Eh (r) - ( h ) ’
oti la derniére égalité utilise les relations de Thalés (r est le rayon de la base de Iiceberg et r’ celui du c6ne immergé).
On en déduit :

- 1
21.14 ¢) Le poids du cone vaut P = m7g, avec m = §Shps et S l’aire de la base du coéne.

Quant a la poussée d’Archimede, on a o= —maq, ol mq désigne la masse de liquide déplacé par I'immersion
du céne. O = _ L1802 o T = 1800 o condition diéquilibre T + B = ©
u cone. On a ma = peVimm = gTPC, ou ll = *ngCg. a condition d’équilibre II + P = 0
donne : ,
1 1 (h — ZE) — — , . Ps
gShps_gsTpe =0 dou m:h(l— 3 E .
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21.15 a) La masse mp peut se décomposer en notant miq la masse de la partie liquide et mgiacon celle des glagons :

mB = Miiq + Mglagon = Pe (‘/tot - ‘/un) + Mglagon
en notant p. la masse volumique de 'eau, Vot le volume total du verre (égal & celui du verre A) et Vim le volume
immergé des glacons.
Par ailleurs, ’équilibre mécanique des glagons donne d’apres le PED : mgiagcon = peVim. Ainsi, mp = peViot = ma.

21.15 b) Le polystyréne étant moins dense que la glace, il est aussi moins dense que I’eau. Par conséquent, les

boules flottent. Ayant la méme masse que les glagons, les boules de polystyréne présenteront un volume immergé
identique a la situation précédente. La hauteur sera donc identique.

21.15 ¢) Le fer est plus dense que I'eau, donc les boules coulent. On note Vb1 et Vipa respectivement les volumes

submergés avec les glacons et avec les boules de fer. On a les relations :
Vb1 = Viig + Vim et Vb2 = Viig + Vre.

De plus, comme les boules de fer sont de méme masse que les glagons : Mglacon = PeVim = Mre = pPre Ve, €n notant
pe

pre la masse volumique du fer et Ve leur volume. Ainsi : Ve = Vim. Ainsi, on a :
PFe
pe
‘/st = ‘/liq + < >‘/1m7
PFe
avec L& < 1. Ainsi, Vipa < Vip1 : le niveau diminue.
PFe

21.16 b) On a:

9(Bzy? + Ce*?)
ox

d(Bay® + Ce*?)
dy

d(Bay® 4 Ce*?)

-9 2z.
5% Ce

= By2, = 2Bxy et

2z —

Par conséquent, grad(p) = By’é, + 2Bxye, + 2Ce**€2.

21.17 a) La masse molaire d’un mélange s’obtient en effectuant la moyenne pondérée des masses molaires :

M = 0,96M (CO2) + 0,02M (Ar) + 0,02M (N2)
=0,96 x 44g - mol™* + 0,02 x 40g - mol ™" + 0,02 x 28 g - mol ™! = 43,6 g - mol .

21.17 b) En partant de I’équation d’état des gaz parfaits, on a :

—wRT =™ pM _m _
pV =nRT = MRT donc Ty =P
2 -39 . -1
L’application numérique donne : p = 6 107 Pa x 43,6 x 107" kg - mol =148¢g m™?

8,314J - K~ ! -mol™! x 213,15 K
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21.17 ¢) On remplace p par son expression trouvée précédemment et on obtient alors une équation différentielle

du premier ordre :
dp _ _ My
dz~ M7 TRr
Ainsi, on a :

8,314J - K~ -mol™! x 213,15 K

21.17 d) On calcule H =520 =5 — — — = 55km
43,6 x 1077 kg -mol™" x 3,72m - s
21.18 a) En effet, on a dp = w, ce qui donne I’équation différentielle dp =— 2p
dz dz dz Zmax

21.18 b) Il s’agit d’une équation différentielle linéaire du type y' + ay = 0.

La solution s’écrit p(z) = A esz/Z""‘“‘, avec A une constante d’intégration que ’on détermine & ’aide de la contrainte

p(z = 0) = po. On trouve p(z) = pg e 2/ max
I e . p _ 9p
21.19 a) La projection de I’équation de la statique sur les axes (Oz) et (Oy) donne = e 0. Le champ de
€ Y
pression ne dépend donc que de z. La projection selon (Oz) donne alors :
dp _ __ag
P P9 = Do p-

Par conséquent, on aboutit a I’équation différentielle :

d
Ly %p:O.
dz  po

C’est une équation différentielle linéaire du premier ordre dont les solutions s’écrivent p(z) = Che™9%/Po,
On détermine la constante d’intégration C; a l'aide des conditions aux limites :

—agz/po

p(z=0)=po=C1 dou p(z)=poe

21.19 b) Pour les mémes raisons que précédemment, le champ de pression ne dépend que de z. La projection de

Péquation de la statique suivant (Oz) donne :

dp

d + bgp = —ag + bgpo.
z

C’est une équation différentielle linéaire du premiere ordre avec un second membre constant. Les solutions de
4 . N —b . . . . 5N
l’équation homogene se mettent sous la forme pn(2) = C2e™ 7%, et il est facile de trouver une solution particuliére
a

b

constante : ppart = po — —. La solution générale s’écrit donc :

_ a
p(2) = pn(2) + Ppart = Cae bo +po — b
Il ne nous reste plus qu’a déterminer C2 a ’aide de la condition aux limites :

p(z =0) =po = C2+po —% d’'ou p(2) :po+%(efbgz -1).
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21.19 ¢) A nouveau, le champ de pression ne dépend que de z. La projection de I’équation de la statique suivant

(Oz) donne :
dp = —ag + bge™

dz

On obtient p(z) en cherchant la primitive de —ag + bge™

La condition p(0) = po impose beg + Cs = po, soit Cs = po — beg. Finalement, on trouve :

z/c.

/¢ 4 savoir : p(z) = —agz — bege” */© + Cs.

p(z) = po — agz + bcg(l _ e—z/C).

21.20 a) Projetons I’équation de la statique sur les trois axes cartésiens. On trouve :

9 _

@ =0 @ = pa et = —pg.
0z

or oy
La premiere relation implique que le champ de pression ne dépend que de y et z.
Intégrons la deuxieme relation :

0
875 =pa donc p(y,z) = pay + f(2).

Dérivons cette derniere relation par rapport a z : a—p = f'(2). Par identification avec la troisiéme projection, on
z
trouve :
f'(z) ==pg donc f(z)=—pgz+C.

Le champ de pression se met sous la forme p(y, z) = pay — pgz + C. Déterminons la constante d’intégration C' a
I’aide de la condition aux limites :

p(y=0,2=0)=po=C dou p(y,z) = play — gz) + po.

21.20 b) La surface libre est ’ensemble des points du liquide soumis & une pression po
a
p(y,2) = play — gz) +po =po donne z= i

11 s’agit de I’équation d’un plan incliné d’un angle o = arctan (a/g).

21.21 a) On calcule
Fp = //p(Z) dydz = //pg(h —z)dydz
L h 22 h
:pg/ dy/(h—z)dz:ng[hz— —}
0 0 2 1o
2

h 1
= pgL(h® — =) = ZpgLh®.
pgL( 5) = 5P9

21.21 b) On calcule
My = //zp(z) dydz = //pg(hz — 2% dydz
L h 2 31h
:pg/ dy/(hz—ZQ)dz:ng{hi - Zf}
0 0 2 3 1o
K

, . .
= pgL(— — =) = = pgLh®.
99(2 3) 6pgh
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Fidl 599 Fond Ic o chimic d itions

Réponses
22.108) i 22.11 b) C1Vi + CaVa
L R R O B R T I I B R Viv
22.1D) . 1,1 x 10?2 L

nx M

22.3C) i 2213 D). 32¢g- L1

22,4 22.148) i
225 8) . 2204 b). oo
22.5D) ... ’ [H507] = 10" "mol - L™ ‘ 22,15 ) ...
22.5C) oo PHo = 2| 2245 b)..ooo
22.62). ... (0=285¢t () =580  22.15C)...uiiiiiiiiiiiii

22.6b).... | (@) = HoA, () = HA™ et () = A 22,16 8). ...
2216 D) ..o 0,128 mol
22.6 0 A )

22,6 €)1 A%

2217 D) 1,33
D27 8) it L52]

2217 €)oo
227h) oot

2218 8) ..t D
228 ) i 90g-L7!

2218 b) .
22.8 D) it 0,26 mol - L™* ) @
929 8) o ® 2208 C) i (©)

22.198) i 1,19kg
22.9 D). i

Vi+Va 22.19Db) i 0,44 kg
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Corrigés

22.1 a) Par définition, on a :

m _ 6g
M 12x12g-mol ™' +22x 1g-mol™! +11 x 16g - mol ™+’

L’application numérique donne n = 18 x 1073 mol.

N =nx N4 =18 x 10 *mol x 6,02 x 10** mol *.

L’application numérique donne N = 1,1 x 10,

22.2 ¢) Par définition, on a :

N =nx N =51,8mol x 6,02 x 10> mol™*.

L’application numérique donne N = 3,12 X 10%.

22.3 a) Déja, 24,0cL d’eau pesent 240 g, la quantité de matiére correspondante est donc :

240 g

= m = 13,3 mol.

I reste & calculer Np = n x Ma = 13,3mol x 6,02 x 10*>mol™* = 8,01 x 10**.

~ 240cL 240x107'L  240x10*m?®
1,37 x10%¥m® 1,37 x10¥%m® 1,37 x 10" m®

=1,75 x 1072,

22.3 ¢) Les Ny molécules d’eau se retrouveront dans I’ensemble du volume Viot, on considére donc qu’on préleve

un volume V' = 24 cL dans le volume total. Ainsi, le rapport des volumes nous donnera la proportion N de molécules
d’eau prélevées par rapport a Np.

Ainsi, le nombre N de molécules d’eau initiales présentes dans le verre a la fin est :

N =Ny x R=28x10* x 1,75 x 10722 = 1400.
22.4 On rappelle que 1cm® = 1mL et 1dm® =1L. On a pPCu =

24 x10%g
3L

on calcule pre = =8000g - Lt
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22.6 ¢) Par lecture du diagramme de prédominance, il s’agit directement de l’espéce HA™.

22.6 d) Commengons par calculer le pH de la solution. Il vaut pH = —log;,(1,0 X 107?) = 2. Une lecture du
diagramme de prédominance montre que ’espéce Ha A prédomine.

Le produit ionique de Peau est défini par a(HzO") x a(HO™) = K., ainsi il vient pH = — log,, <(I—II((§_))
a
1x 107"

Donc, on a pH = —log,, (10105
,0

) = 9. Une lecture du diagramme de prédominance & pH = 9 montre que

R 2— .
I'espéce A~ prédomine.

3x6g
20 x 1072L

Cm 90g
M 344g-mol™!

22.8 a) La concentration en masse est donnée par Cp, = Ng- L™t

22.8 b) Une analyse dimensionnelle permet de retrouver que C' = =0,26mol - L™".

. ey 2 5N . -1 5N oy
22.9 a) Une concentration en quantité de matieére s’exprime en mol- L™, seule la derni¢re proposition est

homogene (mais fausse).

22.9 b) La concentration de ces ions dans le mélange est donnée par le rapport de la quantité de matiére sur le

. (O %
olume total, soit Fe3t i = .
v e = v,
22.10 a) La masse m1 de caféine est m1 = C1 x V1 = 0,7g- L™ 'x100x1073L = 0,07g. La concentration en
masse dans la solution finale de volume V = V; 4+ V5 = 250mL est donc : C; = m__ 007e =0,28g-L7".

V250 x 107%L

22.10 b) La masse m2 de sucre est ma = C2 X Vo =40g - L™'x150x107°L = 6g. La concentration en masse

dans la solution finale de volume V = Vi + Vo = 250 mL est donc : Cy = m2 _ 67g73
1% 250 x 107° L

=24g-L7".

. .y o . -1 . N
22.11 a) Une concentration en quantité de matiére s’exprime en mol - L™ ", aucune de ces relations n’est homogéne,

elles ne peuvent donc pas étre correctes.
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22.11 b) Lors du mélange, la quantité de matiére se conserve. La quantité de matiére totale en sucre est

n=n1+ny=C1Vi +CoVa.

Le volume total du mélange est V = Vi + V> (en négligeant la contraction des volumes). La concentration en

CiVi + CLVx
quantité de matiére du mélange en sucre est donc C' = no_ it Gl

Vo O Vi+W
m nxM
22.12 a) OnaC’m_Vz v
. L n X q . O xV
22.12 b) En partant de la relation précédente C,,, = — = v il vient Cy, x V.= n x M puis =n

22.12¢) Ona Cp = % et C,, = M x C, ainsi % = M x C. Soit alors m = C x M x V. Finalement, on a

22.13 a) Lors d’une dilution, la quantité de matiére prélevée a la solution meére est conservée dans la solution
fille. Ainsi, on a C'V; = C¢Vy et donc :

v GiVs _ 20g- L7 x 100 x 1073 LL
oo 80g-L~* '

L’application numérique donne V; = 25 mL.

22.13 b) La méme démarche donne Cp, Vi, = CfVy, soit :

_ CmVim  40g-L7'x20x 107°L

C
4 V; 250 x 1073 L

L’application numérique donne Cy = 3,2¢g - L.

m 122
22.15 a) Onan:C’XV:C—xV:ii1
M 138 g - mol

22.15 b) La dissolution de K2CO3 donne deux ions K. Ainsi, on a n; = 2 X n = 4,4 mol.

x 250 x 107> L = 2,2 mol.

10g
78g - mol !

22.16 a) La quantité de matiere de fluorure de calcium que 'on a dissoute est n = = 0,128 mol.

22.16 c¢) Une entité CaF; libére deux ions F~. Ainsi, en solution, on retrouve np— = 0,256 mol. Cela représente

une masse mp— = 0,256 mol x 19g - mol ™t = 486g.
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22.17 a) La masse maximale que 'on peut dissoudre dans ce volume est :

Mmax =s XV =330g- L' x20x 10 °L=6,6g.

Sur les 10 g introduits, il reste donc 3,4 g non dissous.

22.17 b) La masse volumique de la solution tient compte de la masse du soluté et du solvant (on ne tient pas
6,6g+20g
20 x 107 LL

compte de la masse non dissoute). Ainsi p = =1,33kg - L™'. La densité est donc d = 1,33.

22.17 ¢) Comme la densité réelle augmente & masse constante, il s’agit d’une diminution de volume. On parle

d’effet de contraction de volume lors d’une dissolution.

22.18 b) La courbe @ car elle présente une densité plus faible que I'eau et peut se retrouver liquide a 230°C
d’apres les températures d’ébullition de I'huile et de ’éthanol dans le tableau.

22.18 ¢) L’eau se vaporise a 100°C sous pression atmosphérique, cela se confirme par 'arrét de la courbe de

densité du liquide sur le graphe.

22.19 ¢) La quantité de matiére d’acide chlorhydrique pur contenu dans ce litre de solution est :

3
po 00
M 36,5g - mol

Ainsi, la concentration en quantité de matiére de ce litre de solution est C' = 12mol - L™ .

22.20 Prenons 1L de solution. Cette solution contient n = 18 mol d’acide pur. Soit une masse en acide
Macide = N X M = 18 mol x 98¢g - mol ™t =1 764 g = 1,764 kg. Ce litre de solution présente une densité d = 1,84,
donc il pese 1,84kg. Ainsi, le titre massique vaut :

22.21 La masse de la solution est m = p x V = 0,789 x 1kg-L™' x 10000L = 7890kg. Elle contient 95,4 %
d’éthanol pur, soit une masse :
meton = 0,954 x 7890kg = 7527,06 kg.

Cela représente une quantité de matiere :
_m _ 7527,06 kg
T M 46,07 x 10~ % kg - mol~!

= 163 383 mol = 163 kmol.
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IF'iche n° 23. Fondamentaux de la

chimie en phase gazeuse

Réponses
03 1 RT LN 23.120)............. 0,21 bar
L Y ? 23‘9 a) .......... _ Z Pka
Vo = 23.134a).............
23.22a)........ 12,5L - mol !
23.9Db) ... 2313 D) ... ... n—{p
23.2Db)........ 24,9L - mol ! 2n
23.9 ¢) NN+ p
23.2¢)......n 495L-mol M| T 2 ’ 23.13¢)...in. ging
) NngRT,
23.2 d) ........ 24,9L - mol 23.9 d) ............. n‘()/ 0 (n ~ g)
03.3 @ 0 23.13d)........... yr—
L n
23.10a) ........... 151 mmol
3(n—¢)
23.4a). ... 23.10b)............... 0,788] 23.13¢).......... P;
2 ® | [EESREYS =
23.10¢C). ..o 0,21
23.4D). .o © © L ©
23.10d) ........... -213 mbar
23.4C). . @ (213 mber 23.154) ... [0]
23.10€). ... 8 mmol 23.15 b)
284d). @] 23108 0,162 T
23.15¢C) ...
23.5 ®)|  23.10g)........... 164 mbar| &
23.6).......... 0078g L1 2310 P2 ()
23.11a). ..o -faux 23.16a)......... s
23.6b)........ 24,8L - mol ~* ) Px, P,
23.11b) ..,
- mol~! P°)5
23.6¢)...ininn 23.11¢C). . 23.16b)............ 7]3(4 13
Hyt O2
23.6 ). oo 2311 d) .
CO,](P°)?
23.7a) . i RT 23.16¢)........ [CO=)(P7)
) BT 2312a)............. c) Poun, PB.C?
23.7b).. | RT +bP — Vi+ 372 23.12b). ... 0,78 bar o
m m 2 3
23.7 ) 0] 23.12¢)........ 2 x 10 * bar 23.16d)...ooo Pco,C°
23.8 @ 23.12d)......... 9 x 10" bar 23.17 @
23.12¢)........ 6 x 1073 bar
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Corrigés

PP . P v, RT . . . . . .
23.1 Par définition, le volume molaire s’écrit V,,, = —, soit V,,, = —— par identification avec ’équation d’état

des gaz parfait (PV = nRT). Le volume molaire est indépendant de la nature chimique du gaz : il ne dépend que
des conditions de température et de pression.

23.2 a) Pour un gaz parfait, on a V;,, = Ici, P = 1,00 x 10° Pa et T = 150K. L’application numérique

8,31J-K™' - mol™! x 150K
1,00 x 10° Pa

P

donne : V,, = =12,5L-mol™" en considérant le bon nombre de chiffres significatifs.

T
23.2 b) Pour un gaz parfait, on a V;, = R— Ici, P = 1,00 x 10° Pa et T = 300K. Par rapport au cas a),

la pression est inchangée et la température est doublée : le volume molaire est donc doublé. On peut le vérifier
~8,31J-K ' -mol" x 300K
- 1,00 x 10° Pa

par 'application numérique : V,, =249L- mol ™! en considérant le bon nombre de

chiffres significatifs.

T
23.2 ¢) Pour un gaz parfait, on a V,, = R? Ici, P = 5,000 x 10® Pa et T = 208 K. L’application numérique
8,31J - K !-mol ' x 298K
donne : V,,, = 3
5,000 x 10° Pa

T
23.2d) Pour un gaz parfait, on a Vi, = R? Ici, P = 5,00 x 10* Pa et T = 150 K. Par rapport au cas a), la
pression est divisée par deux et la température est inchangée : le volume molaire est donc doublé, comme dans

8,31J-K ' -mol™* x 150K
le cas b). On peut le vérifier par I'application numérique : V,, = =
) On p patr app d 5,00 x 10* Pa

=495L-mol ! en considérant le bon nombre de chiffres significatifs.

=249L- mol™! en

considérant le bon nombre de chiffres significatifs.

23.3 On note V,, le volume molaire du gaz sous ces conditions. La masse de gaz est :
%
m=nxM=—M
Vin
en exprimant n via la définition du volume molaire, a savoir V,,, = —. Ainsi, la masse est proportionnelle au produit

MYV, la valeur V,, ne dépendant pas de la nature chimique du gaz.

En convertissant les volumes en litres (par exemple), les applications numériques donnent une masse de 20/V,,
pour hélium, 24/V,, pour le dioxygeéne (avec M(O2) = 2M(0O)), 28/V,, pour le diazote (avec M (N2) = 2M(N))
et 20/V;, pour le dihydrogeéne (avec M (Hz) = 2M (H)) : la réponse @ est la bonne.

23.4 a) Cette loi stipule que, & pression et quantité de matiére fixées, le rapport volume/température est constant,

c’est-a-dire que le volume est une fonction linéaire de la température. La représentation graphique V = f(T) est
donc une droite : c’est la réponse @

23.4b) Cette loi stipule que, & pression et température fixées, le rapport volume/quantité de matiere (appelé
volume molaire) est constant, c’est-a-dire que le volume est une fonction linéaire de la quantité de matiére. La
représentation graphique V = f(n) est donc une droite : c’est la réponse @
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23.4 ¢) Cette loi stipule que, & volume et quantité de matiere fixés, le rapport pression/température est constant,
c’est-a-dire que la pression est une fonction linéaire de la température. La représentation graphique P = f(T') est
donc une droite : c’est la réponse @

23.4d) Cette loi stipule que, & température et quantité de matiére fixées, le produit pression X volume est

constant, c’est-a-dire que la pression est une fonction inverse du volume. La représentation graphique P = f(V) est
donc une branche d’hyperbole : c’est la réponse @

23.5 L’équation d’état d’un gaz parfait est PV = nRT.

Ainsi, si I'on fait subir une transformation isotherme (7" est une constante) & une quantité de matiére donnée (n
est une constante) d’un gaz parfait, alors le produit PV est identique a chaque instant de la transformation. Dans
notre cas, en notant P; la pression du gaz dans la bouteille, V1 le volume du gaz contenu dans la bouteille, P> la
pression du gaz respiré (égale a la pression atmosphérique, soit 1bar) et V2 le volume de gaz que le plongeur peut

; 1
respirer, on a P1Vi = P>V5 ou encore Vo = FVL
P

L’application numérique donne :
200 bar

Vo =
? 1bar
Une bouteille de 12 L remplie d’air comprimé a 200 bar contient donc 1’équivalent de 2400L d’air a la pression
atmosphérique.

x 12L = 2400L.

23.6 a) Par définition, on a p = —.

Sachant que m = 0,70 mg et V = 0,0090 L, lapplication numérique donne p = 0,078 g - L.

. RT _ | 5 .
23.6 b) Pour un gaz parfait, on a V,,, = e Ici, on a P = 1,00 x 10° Pa et T" = 298 K. Finalement, on trouve
Vin = 0,0248m® - mol ™" = 24,8 L, - mol .

23.6 d) On a trouvé M ~ 2g- mol~'. Sachant qu’on a M(H) =1g- mol ™! et que le corps simple formé par
I’hydrogene est le dihydrogéne Ha, on déduit que M (Ha) ~ 2¢g - mol™'. On en conclut que le gaz formé est Hs.

\%4
23.7 b) En identifiant V5, = — dans ’équation d’état de van der Waals et en développant le produit, on obtient
n

a ab
PV, =RT+bP — — + —.
\% RT + Vm-b-vﬂ21

23.7 ¢) En identifiant les deux expressions obtenues précédemment, on constate qu’elles sont identiques si, et

seulement si, a = b = 0.
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23.8 Intuitivement, il semble que la pression totale doit étre supérieure a chacune des pressions des bouteilles
individuelles. En modélisant tous les gaz comme des gaz parfaits, la pression correspond exactement a la somme

des pressions des différentes bouteilles. En effet, pour chaque bouteille, n; = : Ti’ avec Vi = Vo=V =V, =V

(toutes les bouteilles sont de méme volume). Apreés mélange, la bouteille finale contient une quantité de matiere
n = ZZ ni, donc la pression totale s’exprime Piot = ZZ P; (loi de Dalton). On remarque que la pression des gaz
dans chaque bouteille correspond a la pression partielle dans le mélange obtenu.

23.9 a) Les gaz étant parfaits, chaque contenant initial vérifie '’équation d’état des gaz parfaits, c’est-a-dire que
P.Vi

RT
flacon, ce dernier contient une quantité de matiére n = > » Nk Le mélange obtenu se comportant a priori lui aussi

N
RT, RT; n 1

comme un gaz parfait, on a P = niio 0 Zk " En injectant ’expression de ng, il vient P = — E PV,
Vo Vo Vo

. Une fois I’ensemble des contenants transvasé dans le

le contenant k£ contient une quantité de matiere ny =

k=0

N N
1 P
23.9b) En partant de expression P = — E P V), obtenue précédemment, on obtient P = 9 E 1="F.
Vo k=0

N
k=0
1 — Vo
23.9 ¢) En partant de expression P = N Z P V) obtenue précédemment, on obtient P = POVE Z k.
k=0 k=0
N(N +1
On reconnait la somme des entiers naturels de 1 & N. Ainsi, on a P = %Pg.

N N
1 ;. . ’IIURTU N?’Lo RTO
23.9d) En partant de P = — P Vi (obtenu précédemment), on obtient P = 1=
) P Vi ;;:o kVie ( P ) - ;;:o Vo

ins N 119 l
23.10 b) On a zims(Na) = = m(f) = 1512221

inspirée et expirée et que la quantité de diazote est inchangée, on retrouve naturellement la fraction molaire du
mélange expiré.

= 0,788. Sachant que la méme quantité de matiere totale est

nins(N2)  32mmol

= = 0,21. On peut aussi considérer la quantité totale : on trouve
Ntot 151 mmol

23.10 ¢) On a xins(02) =
2(03) =1 — 0,788 = 0,212.

23.10 d) On a Pins(02) = Zins(02) X prot = 0,212 x 1013 mbar = 213 mbar. On peut aussi considérer la pression
totale : on a Po, = 1013 mbar — 800 mbar = 213 mbar.

23.10 f) On a Zexp(CO2) = Ttot — Texp(N2) — Texp(02) = 1 — 0,788 — 0,050 = 0,162.
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23.10 h) On a Pexp(CO2) = Zexp(CO2) X prot = 0,050 x 1 013 mbar = 51 mbar. On peut aussi considérer la pression
totale : on a Pco, = 1013 mbar — 800 mbar — 162 mbar = 51 mbar.

23.11 a) Si les pressions partielles sont égales, alors les quantités de matiére sont égales d’apres la loi de Dalton :
la proposition est fausse.

23.11 b) Si les fractions molaires sont égales, alors les quantités de matiére sont égales, par définition de la fraction
molaire : la proposition est fausse.

23.11 ¢) Les gaz étant différents, ils n’ont pas la méme masse molaire; donc, si leurs quantités de matiére sont
égales, leurs masses ne peuvent pas I’étre : la proposition est vraie.

23.11 d) Si les volumes sont identiques, alors les quantités de matiére sont identiques, par définition du volume

molaire : la proposition est fausse.

9 x 10° Pa
x 2 ~1
1013 x 10° Pa - bar

=9 x 10" bar, avec le bon nombre de chiffres significatifs.

23.13 a) On a not(t) = nn, () + nu, (8) + nnug () = (n— £(2)) + (3n — 3E(t)) + 2£(t) = 4n — 2£(2).

La quantité de matiére totale dépend de l'avancement. La réaction ayant lieu dans un volume constant et la
température étant constante, la pression dépendra elle aussi de 'avancement si ’on considere des gaz parfaits.

RT
23.13 b) On sait que Piot(t) = nyot, gazeux(t)7 avec V le volume et T la température du systéme (constantes).

Pour I’état initial, on a P; = 4n——. Pour un état intermédiaire quelconque, étant donné la réponse a la question
RT 4n—2 2n —
el 3 P = 3

précédente, on a Piot(t) = (4n — 2€) x v in o P;.
NMNH (t) 2€ 25 2n — € f
.1 P = Pio 327 Py Pio = —P;.
23.13 ¢) On a Puug = oxi P (1) Ntot tot (1) dn — 2¢ ot (1) In — 28 2n 2n
n, (1) n—§& 2n—¢§ n—¢
23.1 Pn, = P =227 P (¢ P; P;
3.13 d) On a No TNy Lt t( ) Teot t t( ) dn — 25 B n
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9313 ¢) Ona Py, =, Pror = 22 p g2 30238 p gy 830 =88m =&, 3n=9) ),

Ntot T 4n — 2¢ In —2¢& 2n 4n

Les résultats obtenus sont cohérents car on remarque que la loi de Dalton est vérifiée : Piot = Pu, + Pn, + Prus.

P;

Po

e . . . . n
pression de référence (1 bar). Pour un gaz parfait, cette pression partielle s’exprime P; =

23.14 L’activité a d’un gaz s’exprime a = oll P; est la pression partielle du gaz i dans le mélange et P° la

avec n; la quantité

de matiere du gaz ¢ dans le mélange, T' la température du mélange et V' le volume total du mélange. Si ’on ajoute
20 moles de dioxygene alors n; triple : la pression P; et donc l'activité sont triplées (la réponse @ est exclue). Si
'on agrandit Penceinte & 4m® alors V est doublée : Pactivité est divisée de moitié (la réponse b est exclue). Si I'on
double la température alors I'activité double, a condition de considérer la température absolue, qui s’exprime en
kelvins. Ici la température est de 25 °C, soit 298 K, dont le double vaut 596 K, soit 323 °C (la réponse @ est exclue,
la réponse @ est correcte).

23.15a) Ona Qi = . La grandeur P° n’apparait pas, elle est & la puissance 0. On constate que le résultat

TL32

simplifié est bien sans dimension, conformément & la définition d’un quotient de réaction.

4,2 2
P
23.15b) Ona Qs = %702 La grandeur P° est & la puissance —2. On constate que le résultat simplifié
nzngng, (P°)

est bien sans dimension, conformément a la définition d’'un quotient de réaction.

5, 2 2 02
ning: ¢ (P°)
n3ni (C°)2 P2
simplifié est bien sans dimension, conformément a la définition d’un quotient de réaction.

23.15¢) On a Q3 = . La grandeur P° est & la puissance +2. On constate que le résultat

3 2 o
ny ciC° P
23.15d) Ona Qs = ——— -
N3Nt €y  P°
est bien sans dimension, conformément a la définition d’un quotient de réaction.

. La grandeur P° est & la puissance —1. On constate que le résultat simplifié

23.16 a) L’activité d’un gaz parfait dans un mélange vaut le rapport de sa pression partielle sur la pression de

» X : : o Piuy (P)* _ PRug o2
référence, le tout a la puissance de son coefficient stoechiométrique : on trouve Q = P, PﬁQ (P2~ P, PSQ (P°)".
1(P0)4PO _ (PO)5

PiPo, Py, Po,’

23.16 b) L’activité d’un corps pur en phase condensée vaut 1, donc ag,o@) = 1 : ainsi, Q =

23.16 c) L’activité d’un solvant vaut 1, donc ap,o() = 1; 'activité d’un soluté en solution vaut le rapport de sa

concentration dans la solution sur la concentration de référence a la puissance son coefficient stoechiométrique : on
1 x [CO2)P°(P°)?  [CO.)(P°)?

trouve QQ = T Pon, Péz = Por, P%Z o

23.16 d) L’activité d’un solvant vaut 1, donc am,00) =1 : on trouve Q = %.

2847 On est & Neauiibre donc le quoticnt do éaction vaut I constante d'équiibee.
OnaK—O— a(CO2(aq)) _ [CO2(aq))/C° _ [CO2(aq)] P° _ 70g-L7! " 1,00bar 0,050.

a(COs))  P(COs(g))/P°  P(COsz)) C°  44g-mol~! x 3,0bar = 1,00mol - L™*
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IF'iche n° 24. Reéactions chimiques|
Réponses
DAL 8) o [2CO + 0, =2C0, |
2L D) e 2 Agt + Cu=2Ag + Cu®' |
241 C) oo [2NO + 2 CO =N, + 2 COy |
241 ) o S202™ + 217 =2807" + 1,
DAL €)oo 2CsHis 4250, = 16 COp + 18 Hy0 |
DAL ) oo MnO; +8H* +5Fe*" = 5Fe?™ + Mn®* + 41,0
242 8) ny —¢&
24,2 D) ny — 3¢
24,2 C)
243 (@)
244 L (o)
B 0) ;&\E;;z : ZEE?OO_);;
2.5 D) e a(NH3+)°q X a(H507)eq
a(NH} )eq X a(H20)eq
25 C) oo a(HOl?‘hzggf‘oﬂeq
245 ) K° = II((A
2 0 107
P (a)
246 D) (a)
2416 C) . ()
246 ) .. (©
2T ®)
B ) oo oo
326 Réponses et corrigés



2419 A) (a)
2410 D) (a)
(C°(Va + Va))?
DATO ) oo
Y (CVi =) x (CaVa — )
o 2
2410 D)+ oot & —¢(C1Vh + CaVi) + CLCa VA Vs — W —0
DAL 8) oo 21— K°) +£,K°(Ch + Co) — K°C1C, =0
2ALL D) €2 +6,(Cy + K°C°) - K°C1C° =0
DAL €)oo (E(K° 1) — EK°(my + ) + K°niny = 0]
24. 00 d) e 4K°€? — 5<4K°n + P V) +K°n?>=0
RT
2411 €)oo |E(UK°P + P°) — €(4nK°P + nP°) + K°n*P = 0|
DAT2 ) oo 7,6 x 10 2mol - L' |
2AT2 D) e 3,6 x 102 mol - L' |
p 2 I 2
2413 D) o
2414 Q) oo (a)
D 0 O (a)
2404 C) oo (a)
2414 ) oo M)
NH
2415 A) e pH = pK 4 + 1og10([NHf’;}>
4

2ALE D) 8,0
2AL6 Q) e 24 KAC® €, — K4C1C° =0
2ALB D) v 8.8 % 10~ mol - L' |
DALO C) oo 3.9
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Corrigés

24.1 a) On commence d’abord par équilibrer les atomes de carbone (un de chaque c6té). On a deux atomes
1
d’oxygene a droite, on doit donc en placer deux a gauche. Ce qui donne : CO + 3 O2 = COa.

On préfere raisonner avec des coefficients stoechiométriques entiers, il suffit alors de multiplier les coefficients par
deux : 2CO + O3 = 2COs.

24.1 b) Initialement, les charges ne sont pas équilibrées. Il faut mettre 2 Ag™ pour ajuster les charges. Enfin,
on équilibre I’élément Ag en mettant un coefficient 2 au produit Ag. On obtient 2 Ag™ + Cu = 2 Ag + Cu®™.

24.1 ¢) On commence par équilibrer ’élément azote : 2 NO 4+ CO = N3 + COs. Les carbones sont équilibrés
mais pas les atomes d’oxygéne. On doit donc trouver x tel que :

2NO 4+ 2 CO = N3 + £ CO».
En raisonnant sur ’atome d’oxygene, on trouve 2 + x = 2z, soit x = 2.

24.1 d) Commengons par équilibrer les atomes d’iode puis le soufre et enfin Poxygene. On arrive 4 :

S205” + 217 =2S0; + 1.
On s’apercoit que les charges sont de facto ajustées. La réaction est équilibrée!

24.1 ¢) Commengons par ajuster les atomes d’hydrogene : CgHis + O2 = CO2 + 9H20. Poursuivons avec les
2

atomes de carbone : CgHis+ O2 = 8CO2+9 H20. Puis avec les atomes d’oxygene : CsHis+ 7502 = 8C0O2+9H-0.

Terminons en multipliant tous les coefficients par deux : 2 CgHis + 2502 = 16 CO2 4+ 18 H2O.

Puis les atomes d’hydrogene : MnO, + 8 HT + Fe*" = Fe* + Mn®" + 4H,0.

Les éléments sont équilibrés. Comptons les charges : +9 & gauche et +5 & droite. Les charges ne sont donc pas
ajustées. Or, on n’a pas encore considéré le fer. Appelons = son coefficient :

MnOj; +8H' + zFe’t = zFe®" + Mn*t 4 4H,0.

L’équilibre des charges donne 7 4+ 2z = 2 + 3z, d’ou = = 5.

i(t) — n; (0
24.2 a) Par définition, 'avancement est 1ié aux quantités de matiére des produits ou réactifs via & = M
Vi
ou v; est le coefficient stoechiométrique algébrique du produit ou réactif. On obtient donc :
No +  3Ha) =  2NHsg

Etat initial ni n9 0

Etat final ny —¢& ng — 3¢ 2
24.3 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions

@ et @ Ensuite, par définition, I'activité des produits de la réaction doit se trouver au numérateur et celle des

réactifs au dénominateur. On garde donc ’expression @

328 Réponses et corrigés



24.4 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
, @ et @ Ensuite, par définition, I'activité d’un solide seul dans sa phase vaut 1, ce qui exclut les propositions
e et @ On garde donc ’expression @

a(NHs3)eq X a(H20)eq

24.5 a) D’apres la loi d’action de masse, on a K° = Qeq =

24.5 b) La constante d’acidité est la constante d’équilibre associée & la réaction entre I'acide du couple et I'eau :

NH] + H,O = NH; + H30™.
a(NH3z)eq X a(Hz0)eq
a(NHJ )eq X a(H20)eq -

D’apres la loi d’action de masse, on a donc : K4 =

24.5 ¢) La constante d’autoprotolyse de ’eau est la constante d’équilibre associée & la réaction :

2 H,O = H;0" + HO ™.

H;0% HO™
D’apres la loi d’action de masse, on a donc K. = a(H507)eq x a(HO )eq.

a(H20)24
24.5 d) On a, d’aprés les questions précédentes :
_ a(NHs)eq X a(HsO")eq ot K - a(HO ™ )eq X a(H30)eq
a(NHJ )eq % a(H20)eq ‘ a(H20)2q '
K NH3)e H20)e P o
Donc —2 = @(NHs)eq X af 20} L. On en déduit donc que K° = A
Ke  a(NH])eq X a(HO™ )eq K.
o Ka 1079% 4,75
24.5e¢) OnakK K. = 101 10

. [HF], x [CH3COO~ |
24.6 ¢) A l'état initial, Q; = L =1 > K°. La réaction évolue donc dans le sens indirect.
[CH3;COOH]; x [F~]

. [HF], x [CH;COO~ ] ) L6
24.6 d) A I'état initial, Q; = t=25%x10°=10""° = K°.
[CH3;COOH]; x [F~]

7

7

Ainsi, le systéme est a ’équilibre et n’évolue pas.

24.7 On calcule, pour chaque réactif, le rapport entre sa quantité de matiere initiale et son nombre stoechio-
métrique. Le réactif pour lequel ce rapport est le plus faible est le réactif limitant.

n(Fe3T) n(OH™);
1

On trouve ‘= 3,0 x 1072 mol et = 2,0 x 10" *mol.

L’ion hydroxyde HO™ est donc le réactif limitant.

Remarque : on ne prend pas en compte les ions Na™ ni C1™ car ce sont des ions spectateurs et non des réactifs.
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n n _
24.8a) Ona 71 = 1—; =5,0x10 2mol : les réactifs ont donc été introduits en proportions stoechiométriques.

Dans ce cas, il n’y a pas de réactif limitant (ou alors tous les réactifs sont limitants).
L’avancement maximal est alors £max = 5,0 X 10" %mol.

QC4H10(g) —+ 13 Oz(g) — SCOQ(g) =+ 10 HQO(g)
Etat initial ni No 0 0
Etat final niy — 2£max ng — 13£max 8€max 1O€max

Comme la réaction est totale, ’avancement atteint a ’état final correspond a I'avancement maximal &max calculé a
la question précédente. On a donc n(CO2)f = 8Emax = 4,0 X 10" *mol.

24.9 a) On calcule dans un premier temps les quantités de matiére initiales de tous les réactifs :

n(AgT)i=n1=CxV =0,25mol-L™" x20x107%L = 5,0 x 10”° mol
m 0,254 ¢
Mcy  63,5g-mol™?

et n(Cu); =ng = =4,0 x 10~ mol.

On calcule ensuite les rapports entre les quantités de matiére initiales et les nombres stoechiométriques :

n(Cu);
1

n(Ag")

5 L =25x10 2 mol < =4,0 x 10~* mol.

Le réactif limitant est donc Ag™.

24.9 b) On dresse un tableau d’avancement pour cette réaction :

2 Ag+(aq) + Cu(s) = Cu2+(aq) + 2 Ag(s>
Etat initial ni na 0 0
Etat ﬁnal ny — ngax ng — §max émax ngax
La réaction est totale, donc ’avancement final est égal & ’avancement maximal.
Le réactif limitant est 1’ion argent (Ag™), donc 'avancement final est &pax = % = 2,5mmol.

A Pétat final, on a donc n(Cu); = 4,0 mmol — 2,5 mmol = 1,5 mmol.

a(PhCOOH)eq X a(H20)eq
a(PhCOO ™ )eq X a(Hz0 )eq
seul dans sa phase, son activité vaut 1. Comme H2O est le solvant, son activité vaut 1. L’activité des especes
aqueuses s’exprime en fonction de leur concentration et de C°.

. Comme PhCOOH est un solide

24.10 a) D’aprés la loi d’action de masse, K° =

Avec les expressions du tableau d’avancement, on a alors :

K° = 1x1 _ (" +w))?
(& 950 « (F 9] CVi-9x@V=9

24.10 b) A partir de la relation précédente, on déduit (C1Vi — &) x (CaVa — €) =

Apres développement, on obtient :

€ —£(C1Vh 4 CoVa) + CLCa Vi Vs —
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24.12 a) La résolution du polyndéme du second degré donne deux solutions :
o1 =T7,6%x10""mol - L™" et &,2=52x10""mol L.

L’avancement final ne peut pas étre supérieur & Pavancement maximal €y max = 1,0 X 107  mol - L™'. On en déduit
donc que &, = 7,6 X 10 2 mol - L.

24.12 b) La résolution du polynéme du second degré donne deux solutions :
€01 =36x10"2mol- L' et &o=-56x102mol-L "

Il est indiqué que la réaction se déroule dans le sens direct, donc I’avancement doit étre positif. La solution &, 2 est
par conséquent impossible. On a donc &, = 3,6 x 10" 2 mol - Lfl, qui est bien inférieur & ’avancement maximal.

H +
En solution aqueuse diluée, 'activité de H3OT est a(H;O1) = [307(3} L’expression précédente devient donc :
[H307) 5,0 x 1072 mol - L.™*
p 0810 ( Co 0810 1,0 mol - L1 s

24.13 b) Les concentrations [HO ™| et [H307] sont liées via la constante d’autoprotolyse de I'eau :

- : [H30+] K.C°
K=t 12082 ] = .
(Co)2 donc Co HO |

On a donc :

He —lo [Hz0F] _ 1 KC°\ _ 10x 107" x 1,0mol - LY _ )
ph = 210 Co = £10 [HO | = 210 1,0 x 10 2mol . L° =12.

24.14 a) Une solution & pH = 1,0 posséde une concentration en ions oxonium [HzO"] = 10™"%mol - L', et une

solution a pH = 2,0 posséde une concentration en ions oxonium [HgOﬂ =102 mol - L.

24.14 ¢) Les concentrations [HO ] et [H30"] sont liées via la constante d’autoprotolyse de I'eau :

- + 0\2
o= B e 00" = S
On a donc :
e pour la solution @, [H;01] = 5,0 x 107 mol - L7,
e Pour la solution @, [H30%] =1,25 x 10" mol - L.
C’est donc la solution @ qui est la plus concentrée en ions oxonium.

24.14 d) Les concentrations [HO ™| et [H307] sont liées via la constante d’autoprotolyse de I'eau :

_ [HO7] x [H507] _ K. (o)
K. = ()2 donc [H;07] = [HO ]

On a donc [H30"] = 1,0 x 10~ "* mol - L™ pour la solution @

Quant a la solution de pH = 9,0 : sa concentration en ions oxonium est [H30+] =1,0x 107 mol - L™

C’est donc la solution @ qui est la plus concentrée en ions oxonium.
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24.15 a) La concentration en ions oxonium en solution est liée aux concentrations en NH} et en NHjz via la
constante d’acidité du couple (NH /NHs) :

BNl x [1007] g, [HaOT] _ KalNI])

Ka = =
4 [NHJ] x C° Ce [NH3]

On retrouve ainsi la formule d’Henderson :

H;0" KA[NH} NH;

24.15 b) Numériquement, on trouve :

[NH;] 1,0 x 10* mol - ™!
H=pKa+]l =92+1 =89
PR pRat Og“’([NHj] o810\ 5 0% 10 P mol LT

24.16 a) On écrit un tableau d’avancement pour cette réaction, ou &, représente ’avancement volumique :

‘ CH3COOH(.q) + H20¢) = CH3COO,, + Hs0(4,
Etat initial Ch exces 0 0
Etat final CiL—¢& exces &y &y
avec Cp = % = 1,00 x 103 mol - L1,

A D’équilibre, d’apres la loi d’action de masse, on a :

O — Ky — GCH3COO )oq a(Hs0™)eq
= B AT T (CH3COOH ) eq X a(H20)eq

En solution aqueuse diluée, on remplace les activités par leurs expressions. On obtient :

[CH3CO0  Joq X [H30V]eq

KA = CH,CO0M., C°
Ensuite, on remplace les concentrations par leurs expressions trouvées dans le tableau d’avancement. Il vient :
Ka= 5 done €4 KaC®& — KaCiC® =0
(C1 = &)C° v v '

24.16 b) La résolution du polyndéme du second degré obtenu a la question précédente donne deux solutions :

£o1=12%x10""mol et & 2=—1,3x10"*mol.

Le quotient de réaction a l'instant initial vaut Q; = 0 (il n’y a pas de produits & 'instant initial).
Ainsi, on a Q; < K4 :la réaction se produit dans le sens direct. L’avancement doit donc étre positif et on a £, = &y,1.

Ainsi, & Péquilibre, [CH;COOH] = C; — &, = 8,8 x 10 *mol - L.

Lo
CO
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IF'iche n° 25. Cinétique chimique]

Réponses
25.108) oe i @]  25.7b)e
257 C) e Alp — akt
25.1b) .. @ ) Ao
25.8 ) . i v = k[A]
25.00C) o (©)
25.8b) .o [[AJo x exp(—akt) |
251 d) .
© 25,9 Q) .. k[A)?
25.2 ) e (a) 1
25.9D) . ap akt
25.2 D) ) 0
25.2 @] 2590) [Alo
. C) ............................... 1 + a[A]okt
25.2d) .. A
) © 25,10 8) ... [Alo
2ak
25.3 8) i Oui : 2
In(2)
25.10 D) oo
25.3D) i Oui g ) ak
1
25,8 C) et Non 25.10 C) et Alook
0
25.48) i 5,0mmol - L™! - min™* ‘
’ 25,01 ).ttt
25.4 b) .................. 177mm01 . L_l . min_l ‘ 25.11 b) ................... 7 90 X 1074 571 ‘
25.4C) i 3,3mmol - L' - min™* ‘ 25.12 a) @
-1 -1
254 d)e 1 Tmmol -1~ min~!| 25.12b) oo @) et ()
25.58) i RT (In(A) — In(k))
25,12 C) ettt O
25.5b) .o 53kJ - mol !
2512 d) . @
25.6 a) In(4) — Lo
e RT 25,13 8) 0 i i m=1
25.6b) .. iieiii [1.8x 10°K] mol ™' | 25.13b)........... In (k x [Ha)7") +nn ([S]o)
25.6 ). 5,3x 104 Lomol Lot o 9 L1
ABC) =3
1 d[A]
25.7 a) ............................... —EW 25.13 d) ............. 3700 L1/2' m01_1/2~ min_l ‘
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Corrigés
25.1a) Cest @ car la vitesse volumique s’exprime en mol - L™' - 57",
25.1 b) Clest @ car la vitesse volumique s’exprime en mol - L™'.s7! et la concentration en mol - L™".

Une analyse dimensionnelle sur v = k[A]* donne k en L - mol ™% - s ".

25.2 a) Par définition, on a viorm(NHs) = +d[1:11§13} .
H
25.2 b) Par définition, on a vaisp(H2) = ,d[dtQ]
1 d[NH d[N 1d[H
25.2 ¢) Par définition, en utilisant les coefficients stoechiométriques, on a v = = [NH] =— [N,] =—- [ 2}.

2 dt dt 3 dt

25.4 a) On utilise la tangente & la courbe a ¢ = Omin et on calcule le coefficient directeur de la tangente.

La vitesse de disparition du réactif est égale & I'opposé du coefficient directeur de la tangente a la courbe.

On en déduit : vaisp(CLO ™ Jomin = 5,0mmol - L™" - min~".

25.4 b) On utilise la tangente & la courbe & ¢ = Omin et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente & la courbe. On en déduit :
Vtorm (C€O3™ )omin = 1,7 mmol - L™ min~!.

25.4 ¢) On utilise la tangente & la courbe & ¢ = O min et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente & la courbe. On en déduit :

Vtorm (CL™ )0 min = 3,3 mmol - L' min~!.

1
25.4 d) Par définition, la vitesse de réaction est égale & v = ﬁvdisp/form.
v

On en déduit ici que v(t = Omin) = %’Udisp(céoi)Omin = 1,7mmol - L~! min'.
E. P
25.5a) Onaln(k)=In(A)— BT On en déduit : E, = RT(ln(A) — ln(k)).
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25.5b) Ona E, = RTi(In(A) —In(k)) et Ea = RT>(In(A) — In(2k)). On en déduit :

1 1
Ea<—RT1 _ —RTz) — In(2),

puis E, = _ILH(?) L’application numérique donne : E, = 53kJ - mol ™'
>, T
25.6a) Onak=AXex (—ﬁ) done In(k) = In(A) — L2
.6 a ak= exp| — 4 ) done = BT

E.
25.6 b) Le coefficient directeur de la droite a est égal & a = —f. On en déduit donc que ’énergie d’activation
vaut B, = —a x R =1,8 X 102 kJ - mol 1.
25.6 ¢) L’ordonnée a lorigine de la droite b est égale a b = In(A). On en déduit donc le facteur de fréquence

vaut A = exp(b) = 5,3 x 10" L-mol ™" -5,

25.7 b) Par définition de 'ordre d’une réaction, on a v = k[A]° = k.

[A] t
25.7 ¢) On a donc _L1diA] =k donc d[A] = —ak dt. Il vient par intégration : / d[A] = —ak dt.
a dt [Alo t=0
(Al t
Ainsi, on a [[A]] = —ak [t] 1o €@ qui donne [A] = [A]o — akt.
[Alo -
25.8 a) Par définition de 'ordre d’une réaction, on a v = k[A]" = k[A].
[A] t
25.8 b) On a donc _1da] = k[A] donc diaj = —akdt. Il vient par intégration : / dia) = fak/ dt.
o dt [A] (Ao [A] t=0
(A] t
Ainsi, on a [1n[A]} = —ak [t} , ce qui donne In ([A]) —In ([A}o) = —ak(t —0).
[Alo t=0

Finalement, on trouve [A] = [A]o X exp(—akt).

[A] t

25.9 b) On a donc ,l% = k[A]? donc 7(&?2] = akdt. 1l vient par intégration : /[A]O f% = ak /z:o dt.
Ainsi [1}[A] kz[tr i d L L ke

insi, on a | — =a , ce qui donne — = —— + akt.

[A]J1al t=0 (Al [Alo
1 [Alo
25. Al =
5.9¢) On a donc [A] T o TF a[Aok
[Alo
25.10 a) Lorsquet =t;/5, 0na [A}tl/2 = %. On a donc %— [Alo = —akty /2. On en déduit alors : 15 = %.
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N A
25.10 b) At =t;/2, on a I'égalité % = [A]o X exp(—ak X t1,2). En simplifiant de part et d’autre par [A]o, il

1 In(2
reste 5= exp(—akty2), soit In(2) = ak X t1/2. On en déduit I'expression du temps de demi-réaction : t1, = M

R 2 1 1
25.10 ¢) At =ty,9, on alégalité —— = —=— + a X k X t, soit —— = & X k X t1/2. On en déduit 'expression
[Alo  [Alo [Alo

In(2
25.11 b) Pour l'ordre 1, on a t1/ = 1n>< ]1 La moyenne des temps de demi-réaction obtenus est de 877s.

In(2)

877

On en déduit que k = =7,90 x 107%™,

25.12 a) D’aprés 1’énoncé, les ions hydroxyde sont en large excés donc RBr est le réactif limitant de la transfor-

mation. On constate que, aprés 70 minutes, la concentration en RBr est divisée par deux et que, aprés 140 minutes,
soit 2 x 70 minutes, la concentration est divisée par quatre. On en déduit que ¢,/ = 70min (réponse @)

25.12 b) L’ordre partiel par rapport & chacun des réactifs étant de 1, on peut écrire la vitesse v = k[RBr]'[HO™]'.

La réponse @ est donc correcte. En outre, les ions hydroxyde sont en large exces par rapport au 1-bromo-2-
méthylpropane, donc on suppose leur concentration constante au cours de la transformation. Ainsi, on introduit
une constante de vitesse apparente kapp = k[HO™ ]o; la vitesse peut donc s’écrire v = kapp[RBr] (réponse @)

25.12 c¢) L’ordre partiel par rapport & RBr valant 1, la concentration en RBr vérifie [RBr] = [RBr]o X exp(—kappt),
soit In([RBr]) = In([RBr]o) — kapp X ¢t. Donc, le tracé de In ([RBr]) en fonction du temps devrait étre une droite de

coefficient directeur —kapp et d’ordonnée a l’origine In ([RBr]o). C’est la réponse @ qui est correcte.

25.13 a) Dans la série 1, [S]o est fixe. De plus, vy est doublée/triplée lorsque [Hsz]o est doublée/triplée donc vg

est proportionnelle & [Hz]o. Ainsi, on a m = 1.
25.13 b) Onawvg =k x [S]o" X [Hz]o™ donc In(vg) = In (k X [Hg]om) +nxIn ([S]o). C’est bien une fonction affine
de coefficient directeur n et d’ordonnée a l’origine In (k X [Hg]om)‘

exp(—5,19)
1,86 x 10—3

25.13 d) Grace a la valeur de 'ordonnée a l'origine, on trouve k = = 3,00 L'2. mol /2. min~'.
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IF'iche n° 26. Chiffres significatifs et incertitudes|

Réponses
26.18) e
26.1D) . 1,9 x 1073
26.1 €)oo
26.1 )t 1,600002 x 10° |

26.2 8) ...
26.2 D).
26.2C) i
26.2 ).\
26.3 ). ...
26.3D) ..t
26.3C). it 1,0 x 1071

26.4 .. (© et (D

26.58) ... (19,10 +0,36) m |
26.5 D) ... (0,90 +0,36) m |
26.5C) .o [(91.0+35)m? |
26.5d). ...
26.6 ..o (59,0 1.4) mmol - L |

Corrigés
26.1 a)

26.78) .. (1,191 +0,035) W |
26.7D) .o ’(1,175j:0,059)W‘
26.7 C) e (a)
26.8 8) ... M)
26.8 D) . (@)
26.8 C) . @
26.9a)..... (1\/(”(;))24r (“(DD)>2+ (“9)2
26.9b) ... (74,4 +4,4) |

26,10 8) ...
26.10 D) ...

26.10C) ..o (4,93 +0,15) V
26,11 ... (25,017 +0,092) cm |
26.12 .o (a)
26.13a). ... (1,780 + 0,050) mm |
26.13b) .. (2,49 +0,14) rm? |
26,14 8) ...t M)
26.14 D).t M)
26.14C) i (a)

Pour passer en écriture scientifique, on garde une puissance de 10 et un préfacteur compris entre 1

(inclus) et 10 (exclu). On rééerit alors 31,5 sous la forme 3,15 x 10",
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26.1b) On écrit 0,0019=1,9 x 10>

26.2 a) C’est le nombre de chiffres de 0,39 qu’il faut regarder, il y a 2 chiffres & partir du premier non nul, le

nombre de chiffres significatifs est 2.

26.2 b) C’est le nombre de chiffres de 12,84 qu’il faut regarder, il y a 4 chiffres & partir du premier non nul, le

nombre de chiffres significatifs est 4.

26.2 ¢) C’est le nombre de chiffres de 12,250 qu’il faut regarder, il y a 5 chiffres & partir du premier non nul (il

faut prendre en compte le zéro final), le nombre de chiffres significatifs est 5.

26.2 d) Les zéros avant le premier chiffre non nul ne comptent pas dans le décompte des chiffres significatifs,

ceux apres si : le nombre de chiffres significatifs est 2.
26.3 a) Les deux données ont deux chiffres significatifs, on garde donc deux chiffres significatifs lors de la
multiplication : on a d = vt =80km-h™" x 0,10h = 8,0 km.

26.3 b) 1l faut additionner la longueur et la largeur puis multiplier par deux. On a :

p=2x (6mm + 15cm) = 31,2cm.
Dans la somme, la précision est limitée par la longueur (précise au centimetre prés). Il faut donc arrondir au
centimetre pres : on écrit p = 31 cm.

26.3 ¢) Déja, on a Ry + Rz = 0,9kQ + 100Q = 1,0k, avec deux chiffres significatifs.

On calcule alors le gain par une division, en gardant le plus petit nombre de chiffres significatifs entre le numérateur
(trois chiffres significatifs) et le dénominateur (deux chiffres significatifs) :

Ry 1000
Ri+ Ry 1,0kQ

=1,0x10""
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26.4 L’incertitude-type est exprimée dans le résultat final avec deux chiffres significatifs, avec un arrondi par
valeur supérieure, ou au plus prés (les deux options sont acceptées). Le résultat numérique est ensuite arrondi au
niveau du dernier chiffre significatif de I’incertitude-type, donc ici au millimétre. On en déduit f' = (120 & 33) mm
ou f = (120 4+ 32) mm.

26.5a) Onaz=xz+y=19,1met u(z) =+/0,22 4+ 0,32 = 0,36 m. En arrondissant I'incertitude & deux chiffres,
on obtient (19,10 £ 0,36) m.

26.5b) Onaz=xz—y=09m et u(z) =+/0,22 + 0,32 = 0,36 m. En arrondissant I'incertitude & deux chiffres,
on obtient (0,90 £ 0,36) m.

Lorsque l’on soustrait deux grandeurs physiques proches, le résultat est en général moins précis que la donnée la
moins précise.

26.5¢c) Onaz=xxy=91m"etu(z)=91x \/(0,2/10)2 +(0,3/9,1)2 = 3,51 m°. En arrondissant 'incertitude
a deux chiffres, on obtient (91,0 % 3,5) m>.

26.5d) Onaz=y/z=091cetu(z) =091 x \/(0,2/1())2 +(0,3/9,1)2 = 0,035 1. En arrondissant l'incertitude
a deux chiffres, on obtient (9,10 £+ 0,35)><1071.

26.6 On commence par calculer le résultat avant de s’intéresser aux incertitudes :

cg-Vp _ 100,0mmol -L™" - 11,8 mL

Va 20mL

cA = = 59 mmol - L™,

On propage 'incertitude pour ce produit de grandeurs indépendantes :

u(ca)  [{ u(cn) 2+ u(Va) 2+ u(Vs)\*
ca cB Va Vs '
Numériquement, cela donne :

_ 2,0mmol - L~ \* 0,10mL \° 0,10mL \°
—59 1.1 it hfccionnchtoliie M 2 ’ )
u(c4) = 59mmo \/(100,0 mmol - Ll) * (20,00 mL) T\ 11.80mL

On obtient u(ca) = 1,4mmol - L', et finalement ¢4 = (59,0 + 1,4) mmol - L™".

26.7 a) On calcule la puissance : P =U x I = 2,382V x 0,500 A = 1,191 W.

On applique ici la propagation des incertitudes & P = U x I en écrivant :

u(P) _ [(u@)\*, (u@))
P U I )"
Numériquement, cela donne :

2 2
0,050 V 0,010AY"
u(P) = 1,202 W x \/(2,382\/) + (07500A) = 0,035 W.

Finalement, on obtient P = (1,191 + 0,035) W.
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26.7 b) On calcule la puissance : P = R X I’ =470 x (0,500 A)2 =1,175W.

On applique ici la propagation des incertitudes & P = R x [ 2 Ona:

u(P) _ [(u®R)) L (uD
P R 1 ’
Numériquement, cela donne :

2
0,141 2 0,010A)”
u(P) = 1,175w\/( 100) X (0750%) — 0,059 W.

Finalement, on obtient P = (1,175 4 0,059) W.

26.7 ¢) Les mesures sont P = (1,191 £+ 0,035) W et P = (1,175 4 0,059) W. Les deux intervalles se recoupent :

les mesures sont compatibles.

26.8 a) L’épaisseur du tube est la différence entre le rayon extérieur du cylindre et le rayon intérieur. Le rayon
d

77

étant la moitié du diametre, on trouve e =

1 1
26.8 b) On applique la formule donnée dans les prérequis de cette section avec a = 3 et b= —5 On trouve :

u(e) = \/(;)2 w(D) + (—%)2 W (d) = % (D) + *(d).

10,3 mm — 6,8 mm

26.8¢c) Onae=

1
5 =1,75mm, et u(e) = 5\/(0,1 mm)? + (0,1 mm)? = 0,071 mm. Finalement,
on a donc e = (1,750 + 0,071) mm.

26.9 a) On a, pour ce produit de grandeurs indépendantes :

ud)  [(uM)\ . (uDd)\? | (u@))®
d_\/</\> *(D) +<e>-

d:ZQ — 9 632,8nm x 3m

7 S lmm = 74,447 pm.

Le nombre de chiffres conservés ici n’est pas significatif, juste assez grand pour pouvoir étre ajusté ensuite. On
calcule ensuite numériquement ’incertitude :

2 2 2
0,10 nm 10 x 1073 m 0,30 cm
— 74,44 O, 10nm ) — 4 4pm.
u(d) =74, 7nmx\/(632,8nm> +< 3,000m > +<5,lcm> A

Finalement, on obtient d = (74,4 + 4,4) pm.

26.10 a) On peut faire le calcul a I'aide d’un tableur (fonction MOYENNE() souvent), d’une calculatrice ou de
10
Python (fonction mean() de la bibliothéque numpy par exemple). On obtient m = Z Ui =4,9295V.

i=1
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26.10 b) Le calcul est fait par une fonction prédéfinie du tableur (ECARTYPE() souvent), de la calculatrice ou

de Python (fonction std() de la bibliothéque numpy par exemple). On obtient oy = 0,472 042429 825493V, soit
0,472V en gardant trois chiffres significatifs.

L’incertitude-type sur la valeur moyenne est donc finalement u(m) = 0,15V.

11 faut exprimer la moyenne au centiéme de volt, ce qui donne le résultat suivant : m = (4,93 £ 0,15) V. Cette valeur
moyenne est la meilleure estimation de la « valeur vraie » que 'on peut faire & partir de cette série de mesures
répétées.

26.11 On calcule une valeur moyenne de 25,017 cm et un écart-type des mesures de 0,301 cm, ce qui donne une
incertitude-type sur la valeur moyenne de 0,087 cm.

L’incertitude-type est, avec deux chiffres significatifs, au centieme de millimetre, il faut donc garder les chiffres
jusqu’a cette décimale : on obtient (25,017 £ 0,087) cm.

. u(R
Pour n = 5, on obtient % ~ 0,44 %.
La réduction de l'incertitude vient du fait que les incertitudes sur les composants sont indépendantes les unes des
autres. On retrouve ici le facteur « 7 » qui permet de passer de l'incertitude sur une mesure (une résistance) a
n
celle sur la moyenne d’une série de n mesures (les n résistances en série).

26.13 a) Le zéro de l’échelle mobile est entre 1,7mm et 1,8 mm. Il y a 20 graduations dans ’échelle mobile, le

SN . L , 1mm
pied a coulisse a donc une précision affichée de

= 0,05 mm. La graduation qui est alignée avec une graduation

fixe est la 16° de 1’échelle mobile, on lit donc :
d=1,7mm + 16 x 0,05 mm = 1,78 mm.

Le résultat de la mesure est alors d = (1,780 + 0,050) mm, puisque, conventionnellement, les incertitudes sont
données avec deux chiffres significatifs.

26.13 b) La section droite est un disque de diamétre d. Sa mesure vaut donc s = 7(d/2)°. Numériquement, on

obtient :
(1,78 mm
s=7m X | —

2
La section étant reliée au diameétre par une fonction puissance, on a :

2
) = 2,488 5mm”.

u(s) u(d) 0,05 mm
—_— = 27 = 2 —_— = .
s d % 1,78 mm 56%

Finalement, on obtient u(s) = 0,14 mm? et le résultat s’écrit s = (2,49 & 0,14) mm>.
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26.14 a) On compare une valeur & une valeur de référence. On vérifie que l'incertitude de la valeur tabulée est
tres inférieure a celle de la mesure. En effet, 'inégalité

(0,69m-s7")? =048m> s> <« (2,3m-s")?=53m? . s>

est bien vérifiée (il y a plus d’un facteur 10 entre les deux valeurs).
4,92m-s~!

On peut donc utiliser la formule simplifiée : on a z = —
23m-s

=21>2.

Ainsi, les deux valeurs sont incompatibles.
26.14 b) On compare deux valeurs avec la méme incertitude, on doit appliquer la formule compléte, mais qui se
simplifie un peu puisque les incertitudes sont les mémes. On trouve :
0,2°C

z=—" " —24>2
V2 x 0,060 °C

Ainsi, les deux valeurs sont incompatibles.
26.14 ¢) On compare une valeur & une valeur de référence exacte : on a z =

donné, les deux valeurs sont compatibles.
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