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Fiche n° 1. Conversions

Réponses
1.1a)............. 1-10'm
1.1b)..oooi.... 2,5-10°m
1.1¢) ... 3-10°m
1.1d) ... 7,2-107m
1.1e)........... 52-1072m
1.1f) ... 1,3-107"m

L2b)

1.2d) .o 1,20-10""m
1.2€).....nn. 2,3-107%m
1.2€) .. 4,1-107"m

4,43-10% m

1.13b) ........ 4,43 - 10" km
1.14a) . ........... 10 000 m?

1.14¢).nnn...
1.14d). oo
1.14¢)..oinn ...
1140) ...

1.8F) oo,
1.3a)........... 7,3-10%m/s 1.17a) o
1.9 o
1.3b)......... 2,6 - 107 km/h , 1.17b)...... 1,6 x 10° kg/m?’\
1.10a)...... 1,03 x 10° TWh|
1.4 .. -2,4 MJ 118 ...t
1.10b)............. 722 TWh 119
1.5 .. 5,5-1072Q
1.10c¢)............. 406 TWh 1.20
1.6a)........... 1,99 - 10° Rg 1.10d)....oooenn 113 TWh 1.21 a) 30 dm)s
1.6b)........... 1,99 - 10° Qg 1.10€e)......ooenen. 64 TWh 1.211)... ’ 1année—lumiére/an‘
L6 00 1°R 1.10f) .............. 62 TWh
Bo) il & 1.22a)....... 0,017 tour /min
164) 900 A0 Q). 41 TWh
6d). , g
1.10h). ... 134TWh|  1.22Db)......... 0,001 7rad/s
1.6€). oo, 597 R
) E AL e Por]  1.22¢).. |1,90 10~ tour/min
1.616).......... 5971072 Qg -
) Li2a)....oooon 1.22d)...... 1,99 - 10_7rad/s‘
1.6g)............ 1,67-10°rg|  1.12b).... [0,000 000 000 1m]
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Corrigés

1.3 a) Il faut bien penser & garder le bon nombre de chiffres significatifs (deux ici car les données en possédent
également deux) :
v — 2><1,6-10*19C><150\/773.106111/S
- 9,1-10-31kg o ’

1.4 On a1Ws=1Jdonc 1Wh =3 600J donc 1kWh = 3,6 - 108 J.
Ainsi, on trouve T = 0,67kWh = 2.4 - 10° J = 2,4 M.J.

_ — 102
1.5 OncalculeR—59_1068/mx371‘10_6m2—575 1077 Q.

1.11 Pour comparer ces abondances et trouver la plus petite, on peut les convertir dans la méme unité, par
exemple en ppm :

Silicium Or Hydrogeéne Fer Oxygéne Cuivre

2,75-10°ppm | 1-10%ppm | 1,4-10°ppm | 5,0-10*ppm | 4,6-10°ppm | 50ppm

lan x 365,25 jours/an x 24h/jour x 3 600s/h x 3,00 - 10° m/s = 9,47 - 10*° m.

La distance entre Alpha du Centaure et la Terre est donc 4,7 x 9,47 - 10 m = 44 - 10*° m.
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0,25¢g
0,4cL

1.16 b) La masse volumique de la farine est = 0,625kg/L = 625 kg/mS.

1.18 Le volume du cube est (10cm)® = 1 000 cm®. Sa masse est donc :
11,20 g/cm® x 1 000 cm® = 11,20 - 10° g = 11,2kg.

4 , L .
Le volume de la boule est §W(15 em)® =14-10°cm® = 1,4 - 107 m®. Sa masse est alors :

19 300kg/m® x 1,4-10"% m® = 270 kg.

1.21 a) On résume les calculs dans le tableau suivant :

20km/h | 10m/s | 1année-lumiére/an | 22mm/ns 30dm/s | 60cm/ms
556m/s | 10m/s 3,00 - 10° m/s 2,2-10"m/s | 3,0m/s | 600m/s
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Fiche n° 2. Signaux

Réponses
218) et —sin(a)
21 D) e —sin(a)
201 €) e cos(a)
20 A) cos(a)
202 ) 2 cos(2t)

2.2 b) ... | ~2sin(t + 4) cos(t + 4) = —sin(2t + 8) |

2.2C) i ’ cos?(t) — sin(t) = cos(2t) ‘
2.3a)....... 2Acos(w1_w2t) cos(wt>
2 2
w2 —wr (w1t w
2.3b)....... 2A s1n( t) s1n< t>
2 2
24 ... ’ Asin(y) cos(wt) + A cos(ip) sin(wt) ‘

2.5 8) o
2.5 D)
2.5 C) et
2.5 d)

2.6 (©
2T Q)
2T D) e grad
2.7 C) e

2.8 C) _%” rad
2090 8) L us(t)
2.9 D) e ui (t)
2.9 C) e\ us(t)
210 8) 1. [0]
210 D) i %

2.128) %
U()
2,12 D) =2
V2

2,15 D) o
2.15C) e |25in(3,9 — 132 + 0,37) |
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Corrigés

2.1 a)
En utilisant le cercle trigonométrique, on voit directement que :
sin(a + 7) = —sin(a).

Remarquons qu’on peut également utiliser les formules trigonométriques :

sin(a + 7) = sin(a) cos(m) + sin(7) cos(a) = — sin(a).

sin(7 /2= )

cos(a + b) = cos(a) cos(b) — sin(a) sin(b
{ cosga i_ b; _ cosEa; cosgbi N sinEa; sinEb; pour obtenir  cos(a + b) 4 cos(a — b) = 2 cos(a) cos(b).

On a
w1 +w2t
a+b=uwt a= 2
a—b=wst b="5t

On en déduit :

Acos(wit) + Acos(wat) = 24 cos(w1 —;—wz t) cos(w1 ;w2 t).

w1 + w2 w1 — w2 .
tw = conviennent.

Ainsi, C =24, Q =
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2.3 b) On somme les formules trigonométriques :

{ cos(a +9) = cos(a) cos(b) = sin(a) sin(b) pour obtenir  cos(a — b) — cos(a + b) = 2sin(a) sin(b).

On a
w1 + w2
a—b=wt a = 2 t
a—+b=wst b—w2;wlt.

On en déduit A cos(wit) — Acos(wat) =24 sin(wY2 ;wl t) sin(wl tw t).

2.4 On utilise la formule trigonométrique : sin(a + b) = sin(a) cos(b) + cos(a) sin(b).
On a Asin(wt + ¢) = A[sin(wt) cos(p) + cos(wt) sin(p)] = Asin(p) cos(wt) + A cos(¢) sin(wt).
Ainsi, B = Asin(p) et C = Acos(p) conviennent.

2.5 a) On a sin(0) = 0. La courbe 2 est la seule courbe passant par le point (0,0) et est donc la seule courbe

compatible. On vérifie aussi que la courbe 2 est comprise dans l'intervalle [—1, 1] et que sa période est égale a 2.

2.5 b) On a cos(0) = 1, ce qui est cohérent avec les courbes 1, 3 et 4. Ce n’est donc pas suffisant pour déterminer
quelle courbe correspond a la fonction cosinus. Mais on sait de plus que cos(z) € [—1,1], ce qui correspond a la
courbe 4. On vérifie également que la courbe 4 a une période égale a 2.

2.5 c) On a 1+sin(0) =1 et 1 +sin(z) € [0,2]. Cela correspond a la courbe 3. On vérifie également que la
courbe 3 a une période égale a 2.

2.5 d) On a cos®(0) = 1 et cos®(z) € [0,1]. Cela correspond & la courbe 1. C’est aussi la seule courbe qui a une
période égale a .

2.6 On peut mettre Asin(wt + ¢) sous la forme B cos(wt) + C'sin(wt) avec B = Asin(p) et C' = Acos(yp).
On a donc ici :

En faisant le rapport des deux équations, on obtient = tan(¢) = 1, ce qui correspond & ¢ = %

On utilise alors la premiére équation : Asin(

%)z%:l.Donc,A:\/ﬁ

Finalement, cos(wt) + sin(wt) = v/2sin(wt + 7/4), ce qui correspond 4 la réponse @
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2.9 ¢) Le signal u1(t) a pour période 71 = 300 ps. Le signal us(¢) a pour période Tn = fi = 125 ps. Enfin, le
2

2
signal us3(t) a pour période T3 = T — 628 ps. On classe donc les trois signaux par ordre croissant de période :
w

3
T> < T1 < T3 puis, par identification : us(t) <— Voie A ; ui(t) +— Voie B; uz(t) «— Voie C.

2
2.10 b) Par définition, on a Ueg = 4/ —/ )2 dt. On calcule donc : Uei®> = —/ UO (%t) dt.

Pour calculer cette intégrale, il faut linéariser le cosinus au carré. Pour cela, on peut utiliser les formules trigono-

métriques :
cos(2z) = cos’(z) — sin’(z) = 2cos’(z) =1 donc cosax):“#ﬂ%)
D’ot :
Cos 47rt 2 9 T 9
2_@/T1 AT _%1/ Uo/ ,(41) w2
Ueff—T . 2—|— 5 dt—2 Todt oT cos Tt dth.
\ﬂ_/
=0
Uo

Ainsi, Ueg = —
V2

2.11 a) On lit graphiquement que la période est T' = 4 et que, sur une période, le signal prend les valeurs :

3VsilOs<t<
<t<

u(t)_‘wsns

On calcule donc :

3VsiOs<t<ls
u(t) =
1Vsils<t<4s.

On calcule donc :

Uett® —i</9dt+/1dt) —(9+3) = f:?yv?
Donc, Usgr = V3 V.

Fiche n° 2. Signaux



2.12 a) On calcule :

2.12 b) On calcule :
1 T/2 T Uy?
Uett” = Us dt 0dt ) = -
i T( o 0 +/ 2

. Uo
Ainsi, Uegg = —.
V2

2.13 a)
ou 'onde sonore a été émise et ’endroit ou se tient I’observateur. On a donc :

d=cs X At = 1,7km.

On garde uniquement deux chiffres significatifs car At est donné avec deux chiffres significatifs.

2.13 ¢)
propagation de la lumiere est instantanée.

Le délai entre 1’éclair et le tonnerre est dii a la durée nécessaire pour que le son se propage entre ’endroit

La durée 7 est trés inférieure a la précision de la mesure de 0,5s, on peut donc considérer que la

2.14 On lit graphiquement que la vague a avancé de 300 m en 1 minute, donc sa célérité est :

c= % =5m-s " = 18km/h.

2.15b) Onal=cT =48cm.

2.15 ¢) Compte tenu de la vitesse de propagation, on trouve :

Fiche n° 2. Signaux



Fiche n° 3. Etude des circuits électriques I

Réponses

3.38) i
33D) i
3.3C) i, [0]
34a).....oii. 80mA
34Db) . 30mA

3.5 a) ................ E—U1
35Db). e U, —E
3.5 C) ................ E—U1

3.12 Io

3.6C). AZa) 3
3.7a)................. —u/R

2) 3.12b)........... RR%IO
BTDb) E

1. .
BTC) i 313a) . .. 1 i+ Rin
5 13
3.8a) i ER 3.13b)......... ?Ri — 3R
Corrigés

3.1 Calculons le nombre d’électrons transférés pendant une seconde :

e 5000 électrons durant 1 ms correspond & 5-10°s71;

w
0.4}
=
Z| 5| o

2R+ R

1

e (0,2mol d’électrons durant 1an correspond &

w
—
=~
S
S5 (=

304D) o
315a). |z RzEfle + R,
3150 | p
e R;]iRJ;g + Ry

317a) oo, %R
3A7TD) e ZE
317¢C) i 7%
E

3.188) i Z—R
318b) .o %
3.18 ¢) £
«edO U)o vi vt vivnvneen 7@

0,2mol x 6,0 - 10*® molfl/(365jour can” ! x 24h - jour ™! x 3600s - hfl) =38-10"s7";

e 20 milliards d’électrons durant 1 min correspond &

20 x 10° min~?!
60 min/h~"

Par conséquent, c’est le courant @ qui donne la plus grande intensité.

=33-10%s"".
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3.2 La quantité de charge transférée vaut ¢ = I x At =4 x 107% A x 10s = 40 mC. Cette quantité de charge
correspond & un nombre d’électrons N = g/e = 40 x 1073 C/1,6 x 1071 C =2,5-10'7 électrons.

3.5 b) Les points A et C sont au méme potentiel, ainsi que les points B et D. Par conséquent, la tension
Uas = Ucp = —Upc = —U. Donc, Upagp =U; — E.

|
¢

5V

Dans la maille surlignée et parcourue dans le sens indiqué, on trouve la relation 12 — U3 — 5 = 0, ce qui donne
Us=T7V.

3.7 a) La loi d’Ohm s’écrit ©w = Ri en convention récepteur et u = —Ri en convention générateur. Ici la

résistance est fléchée en convention générateur. Ainsi, on trouve ¢ = —u/R.

3.7 ¢) La résistance est fléchée en convention générateur : on a u = —(3R) x (—i), d’ott i = %

3 8 a) ...... Req _ 12% + ]; : §R ............................................................................................................

38 b) ...... Rleq . : ]2% + ; : ;’ SOltReq _ ..............................................................................................

3 8 C) ...... Rleq . : ]1:€+ ...... + ]1% : J]\; 7 dbu Req 7 ﬁ ................................................................................
N fois

10 Fiche n° 3. Etude des circuits électriques I



3.84d) La résistance équivalente R4 est telle que :

LR T — —l(1+ L 1)—l(1+i)—l 3—a”
Rq R R(+4+a) R(l-a) R 14a 1-a/ R 1—a2) R\1-a2)

3—a?

2
OnendéduitReq—R(l 4 >

3.9 a) En associant les deux résistances en série, on se rameéne a deux résistances de 2k en paralléle, ce qui
est équivalent & une résistance de 1k(2.

3.9 b) En répétant la méthode précédente plusieurs fois, on arrive au méme résultat.
RR' AR(R+ R’
3.10 La résistance équivalente du dipdle AB vaut Req = 2R + SRL R soit Req = ﬁ

3.11 a) On doit résoudre :

4AR(R+ R')

SRRy ~OF soit AR’+4RR =GR’ +3RR dou RR'=2R".

Comme R # 0, on obtient R’ = 2R.

3.11 b) On doit résoudre :

4R(R+ R')

_§ . 2 /o 2 / [PRN /. 2
SRR —3R soit 12R°+ 12RR = 16R°+ 8RR d'ou 4RR =4R".

Comme R # 0, on obtient R’ = R.

3.11 ¢) Résolvons I’équation :

AR(R+ R

ST R — 2R soit 4R® + 4RR = 4R’ + 2RR’ dot 2RR =0.

Comme R # 0, il faut nécessairement R’ = 0.

3.12b) Isolons I :
R1]+R2(10+I) = 2Rs5Iy
(R1 + Rg)[ + Rolyg = 2Rsly
(Ri+R2)I = R2l

E— iRi—Ril =0 soit E= iRi—FRil.

Fiche n° 3. Etude des circuits électriques I 11



3.13 b) Appliquons la loi des mailles en parcourant la maille dans le sens ABDE :

1 1
E— JRi—3R(i—i)=0 dob E:ZSRZ'—?)Ril.

3.14 a) Additionnons les deux relations aprés avoir multiplié par 3 la premiére :

) ] donnent ainsi 16Ri = 16F d'ou i= E
13Ri — 12Ri; = 4F R

{ 3Ri+ 12Ri, = 12F

3.14 b) Dans la premiére relation, remplagons i par E/R :

3.15 a) Rappelons la régle du diviseur de tension :
Dans un circuit ou N conducteurs de résistances Ri, ..., Ry sont placés en série, la tension Uy qui régne aux bornes

de la résistance Ry est donnée par la formule :

N
Uk_R1+R2+~~~+RNU avec U—;Ul.

Ry
Ri+ Ro+ Rs+ Ry’

Ici, cela donne U; = F x

3.15 b) Ici, on cherche la tension aux bornes de l’ensemble des résistances { Rz, R3} placées en série et donc
Ry + R3
Ri+Ro+Rs+ Ra’

équivalent a Ra + Rs. La regle du diviseur donne alors Uz = E X

3.15 ¢) Attention, ici il y a un piége. La loi du diviseur de tension donne Us = U ou U est

) ) Ri+Ro+ R3+ Ry
la somme algébrique des tensions orientées dans le méme sens que la tension que ’on cherche. Aussi a-t-on U = —F
Ry

Ri+ Ro+ Rs+ Ra’

de sorte que Us = —F X

3.16 a) La formule du diviseur de courant donne 171 =7 TaR)

Par conséquent, « doit vérifier I’équation :

= % c’est-a-dire o = 2.

" 1/(aR)
1/(aR)+1/R

1/R

et 1221Xm7

11 =1

ce qui permet de déduire i2/i1 = a. La solution est donc o = 3.

On peut aussi tout simplement écrire la loi des mailles : aRiq1 = Riz pour aboutir plus immédiatement au résultat.

12 Fiche n° 3. Etude des circuits électriques I



3
3.17 b) Simplifions le montage en remplagant ’association (R || 3R) par un conducteur de résistance Req = ZR.

3.17 ¢) La encore, on peut utiliser la formule du diviseur de tension en faisant attention & I'orientation :

E
—Uy=Ex —3*—— soit Up=——.
2 X i % SOl 2

Remarque : on peut aussi obtenir Uz a l'aide de la loi des mailles : E 4+ Uy — Uy = 0 avec Uy = %E

2
3.18 a) Remplacons lassociation (2R || R) par un conducteur de résistance Req = SRR gR. On obtient

le circuit & une maille suivant :

La loi des mailles donne alors £ — Ri — %Ri —Ri=0,doui= §E

SR

3.18 b) La formule du diviseur donne :

. 1/R . 2. E

H=— Xi==1= —.

1/R+ 1/(2R) 3' T AR
. (¢ € us simple consiste a utiliser la loi des ncoeuds : ¢ 12 = 11, Cé qul donne 2 =1° — 1= ———.
3.18 Le pl 1 liser la loi d d d R

On peut aussi utiliser la formule du diviseur de courant en faisant attention a l'orientation des courants :

1/(2R) . 1. E

T1R+12R) 'T3' T 8R

Fiche n° 3. Etude des circuits électriques I 13



Fiche n° 4. Etude des circuits électriques II

Réponses
A1 ()|  410b)
: : E|
4.2 a) ......................... u:L%—i—LI% 4.10 C) ...................................... E
400 d) . E
42D)eroe e )
E
dz u u 4.10 e) ...................................... —
4.2C) it T | R |
A1 A)
4.2 d LL
2d) T | ATLD) [0]
A3 AL C) o 2B
3R
4.4 a) du (1,1 1
A at \C T O)" | a1 d) S F
cc' 7
44b). C+C A128) i E
du
4dc) i=(C+C) | 412b) R
2
A4 d) o 413 1) ﬁ+§.7E
.......................... dt LZ = L
A5 (a)
duc 1 1
413 b)) — —F
A6 c ) it " RC"“~ ke
......................................... 5
dit) 1 .
4.13cC).oiii —i(t) =
AT A) @ 3¢) dt +RCZ() 0
du
AT D) o 4.13d) ... Y =
(@) 3d) i=g+Cy
4.8 @ 413 ¢) du N iu _E
A3€) T Re"" RO
4.9a) @ et @
A4148). ue(t) = E<1 - e*t/f)
4.9D) (a)et (¢
; E —t/T
A.9C) i B A4D) t)=ge
4.9d). @, (et (D] 414¢)eiii uc(t) = -E
4d9e). @ ® et O 4a5a). oo ()
410 8) .ttt [0]
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AA5 D) (©) d®>uv  Rdu 1
4.17&) ............. @+EE LCU—LC

415 C) e (a) >
417 b) duv  1duw 1,
415 d) i Ty dt? " RCdt ' LC

405 €)oo 418a). .. | E x (1 — cos(wot)) |

A5 6) o 1,3kQ E
) - 418 D) —— sin(wot)
—1 LWO
416 2) i [wo] =T
416D [Q st sams dimension] 409 8) o M)

C
416.d). .o R\E 439 d) .. (a)

Corrigés

4.1 L’intensité est une succession de droites. Sa dérivée est donc constante par morceaux (et non définie
au niveau de la discontinuité). Si le dipdle se comportait comme une bobine, la tension devrait étre constante par
morceaux, ce qui n’est pas ce que ’on observe. Il ne s’agit donc pas d’une bobine.

4.2 a) En vertu de la loi d’additivité des tensions, on a u = L% + L'%,

4.2 b) On peut donc écrire u = LCq% & condition de poser Leq = L+ L.

4.2 ¢) En vertu de la loi des nceuds, on a i = ip + ir/. Aprés dérivation, ceci donne — = % + %
- di | .
4.2 d) On peut écrire u = Leq& a condition de poser :
! *lJri soit L LL
Leg L ! T L+ L
: s . LxL L
4.3 On commence par regrouper les deux bobines en parallele. On obtient alors L; = I+L = —. Cette
L L
bobine se retrouve alors en série avec la premiere, d’oll Leq = 7 + 7= L.
4.4 a) En vertu de la loi d’additivité des tensions, on a u = uc + ucr. Aprés dérivation par rapport au temps,
on obtient du _ (i + i)
a — \C ¢
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d
4.4 b) On peut donc écrire ¢ = Ceqd—qz a condition de poser :

L _1 + soit C. cc
Ceq C  C T o+
. . . s du
4.4 c) En vertu de la loi des nceuds, on a ¢ = i¢ +icr = (C + C )E

4.5 Si le dipéle est un condensateur alors I'intensité est proportionnelle a la dérivé de la tension. La tension
est constituée d’une droite croissante, puis d’une droite décroissante de pente opposée et enfin d’une parabole de
type at® + bt + ¢ avec a > 0. Si I'on dérive la tension, on obtient alors une constante positive, puis une constante
opposée et enfin une droite croissante (at 4 b). C’est bien ce que ’on observe.

Notez que la tension est continue, ce qui est le propre d’un condensateur.

4.6 On commence par regrouper les deux condensateurs en parallele. On obtient alors C1 = C/2+C/2 = C.
- . N CxC
Ce condensateur se retrouve alors en série avec le premier, d’ott Ceq = crC - c/2.
, . . duc ) . N . oL
4.7 a) En régime stationnaire, on a e 0, d’ou ¢ = 0. Cela correspond a la relation constitutive de
I'interrupteur ouvert, qui ne laisse pas passer le courant.
. . . di N . N . I
4.7 b) En régime stationnaire, on a Fri 0, d’'ou ur, = 0, ce qui correspond & la relation constitutive de
Iinterrupteur fermé.
4.8 En régime permanent, la bobine se comporte comme un fil et le condensateur comme un interrupteur

ouvert. L’ampoule A; est court-circuitée et ne brille pas. Le courant dans la branche du condensateur est nul :
I’ampoule As est éteinte. Reste 'ampoule A2 dont la tension a ses bornes est F : elle brille donc.

4.9 a) La tension aux bornes du condensateur est toujours continue ; de plus, la tension d’un interrupteur fermé

est nulle, donc toujours continue.

Pour affirmer que la tension aux bornes d’un condensateur est continue, il faut se placer dans un cas ou il n’existe
pas de courants infinis pendant une durée infiniment bréve.

4.9 b) Du fait de la présence de la bobine, ’'intensité ¢ du courant électrique est une grandeur continue. Vu que

ur = Ri, c’est aussi le cas de la grandeur ug.
4.9 c) Du fait de la présence du condensateur, la tension uc est une grandeur continue. En revanche, i est
discontinue : sa valeur passe de i(0”) = 0 4 i(0") = E/R. Par conséquent, ur = Ri est également discontinue.

4.9 d) Le courant 4 circulant & travers une bobine est continu. On en déduit que ur = Ri est aussi continu. De

plus, la tension uc aux bornes du condensateur est aussi continue. Seule la tension aux bornes de la bobine peut
présenter une discontinuité.
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4.9 e) Les courants 7 et i3 sont continus car ces courants traversent une bobine. Ainsi, d’apres la loi des noeuds,

le courant i 1'est également.

La tension u est celle aux bornes du condensateur donc continue (la présence de la bobine en paralléle n’y change
rien). Finalement, la tension ur, ne l’est pas car uz(07) = 0 (régime stationnaire) et ur,(07) = E (loi des mailles).

4.10 a) A ¢t =07, linterrupteur K est ouvert donc 1(07) = 0. De plus, ce courant circulant dans une bobine, il
est continu, d’oti finalement 3(0%) = i(07) = 0.

4.10 b) La tension ur n’est pas nécessairement une grandeur continue, il convient alors d’appliquer la loi des
mailles & instant t = 07, d’ott E = Ri(0") + ur(07).

De plus, on a par continuité du courant (bobine dans la branche) i(07) = i(0") = 0 car K est initialement ouvert.
On en déduit finalement que ur(07) = E - Rx0=E.

4.10 ¢) Le courant ¢ n’est pas nécessairement une grandeur continue car il n’y a pas de bobine dans la branche.
On applique alors la loi des mailles & I'instant t = 07, d’ott E = Ri(0") 4+ uc(0™).

Or, on a uc(0%) = uc(07) (continuité de la tension aux bornes du condensateur) puis uc(07) = 0 car ce dernier
est initialement déchargé. On en déduit finalement que i(0") = E/R.

4.10 d) La tension ugr n’est pas nécessairement continue. On applique alors la loi des mailles (maille de gauche)
a Vinstant t = 0%, d’ott E = ur(01) + u(0™).
Or, la tension u est a la fois celle du résistor mais aussi celle du condensateur car ces dipoles sont placés en parallele.

On en déduit que u(07) = u(07) (continuité de la tension aux bornes du condensateur) puis u(0%) = 0 car ce dernier
est initialement déchargé, d’oti finalement ur(0") = E.

4.10 ¢) On applique la loi des nceuds & linstant t = 07, d’ott i(07) = i1(07) +i2(0T).

De plus, on a i2(07) = u(0")/R = 0 et i(07) = ur(0")/R = E/R d’aprés la question précédente. On en déduit
finalement que i,(07) = E/R.

4.11 a) La tension u aux bornes du condensateur est continue. De plus, on a u(0™) = 0 car le condensateur est
initialement déchargé. On en déduit que u(07) = 0.

4.11 b) Pour le condensateur, on a, & instant t = 07,4, (07) = C—
de ce courant.

La loi des nceuds indique que i(0%) = i1(07) + i2(07). Or, on a i(07) = i(07) = 0 par continuité du courant
circulant dans la bobine, et du fait de I'ouverture de K pour ¢ < 0. De plus, on a i2(0%) = 2u(07)/R = 0. On en

du +\
Sy =o.

déduit que i1(07) = 0 et donc que

4.11 ¢) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme

2F
un fil. La loi des mailles indique alors E = Ri(+00) + gi(—koo), d’ott au final i(+00) = 3R Ce résultat aurait aussi

pu étre obtenu a l'aide d’un schéma équivalent.
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4.11 d) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme
un fil. On observe alors un pont diviseur de tension formé par les deux résistors restants.
R/2 1
_R/2 E=-FE.
R+ R/2 3

On en déduit u(+o0) =

duc 2 E R
4.12 b De 1 é iere, I’équati i f i t — + —i=——=,douT=—-.
) e la méme maniere, ’équation mise sous forme canonique es i + R ) RO’ ou 7 5
N . C e . , . . . . di
4.13 a) Le circuit ne peut étre simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri + L&
. . . . di R. FE
puis de mettre cette équation sous la forme canonique pr + fz = I

4.13 b) Le circuit ne peut étre simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri 4 uc.

. . o o . duc N . . .
L’équation constitutive du condensateur indique ¢ = C'——, d’ol1, en combinant avec la loi des mailles :

dt

B duc

duc 1
sduit sa f . duc 1 1
On en déduit sa forme canonique n + ROYC = Ro

4.13 ¢) La loi des mailles indique que E = Ri + uc. Cette fois-ci, il faut garder 4 et remplacer uc. Cependant,

la relation constitutive du condensateur fait apparaitre la dérivée temporelle de cette tension.

Il convient alors de dériver I’équation obtenue & ’aide de la loi des mailles et d’écrire R% + d:;—tc = 0. Finalement,
di 1
btient — 4+ —i = 0.
on obtien T + RCZ 0

4.13 d) Le circuit comporte deux mailles indépendantes mais ne peut pas étre simplifié. Il convient alors de faire
particulierement attention aux indices et variables utilisées pour les différents courants et tensions.
du
La loi des neeuds indique que i = i1 + 42 avec i2 = u/R et i1 = CE' On obtient alors, en combinant ces résultats,
U du
I’équation i = — + C—.
4 JTIT

4.13 e) La loi des neeuds ayant déja été appliquée, il convient d’appliquer la loi des mailles pour la petite maille

de gauche; on en déduit ¥ = Ri+wu. On combine alors ce résultat avec celui de la question précédente pour obtenir

queE:u—i—RCi—q:—}-uet auﬁnald—u—i—lu*E.

dt = RC ™~ RC

4.14 a) Cherchons une solution particuliére constante. On trouve u, = E. La solution générale est donc de la
forme Ae” /7 + E. La condition initiale donne uc(0) =0= A+ E, soit A = —FE. Finalement, uc(t) = E(l — eft/T).

4.14 b) Ici, I’équation différentielle est homogene (sans second membre). La solution est de la forme Ae™". La

condition initiale donne i(0) = E/R = A. Finalement, i(t) = %efﬁh.
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1
4.14 ¢) Cherchons une solution particuliére constante. On trouve up = §E . La solution générale est donc de la

+ %E‘ La condition initiale donne u(0) = %E‘ =A+ %E, soit A = 0. Finalement, uc(t) = %E

forme Ae”t/"

4.15 d) La courbe 2, associée & I’expression de u1, posséde une asymptote horizontale d’expression ui(+00) = Ei.
On en déduit F4 = 4V par lecture graphique.

1
4.15 e) La courbe 3, associée a l'expression de ugz, posséde une valeur initiale uz(()+) = §E2. On en déduit

E> = 4V par lecture graphique. On peut vérifier que ’asymptote donne uz(+00) = Eo = 4V.

E
4.15 f)  La courbe 1, associée & I’expression de i(t), a pour ordonnée & P’instant initial 5(07) = 3mA = f donc
ona R=FEi/i(0") ~1,3kQ.

2
4.16 a) On a dans le membre de gauche de I’équation d’ordre 2 : {dm} = [wg] [z] donc [z]T? = [w?,] [x].

Finalement, on a [we] =T ".

2
4.16 b) On a dans le membre de gauche de 1’équation d’ordre 2 : [itf] = {Ug} {i—ﬂ donc [z]T* =T"" [CS?T
Finalement, on a [Q] = 1; donc, @ est sans dimension.
di
4.17 a) La loi des mailles indique que FE = Ri—|—u+Ld—i. De plus, la relation constitutive du condensateur donne
que i = C%. On en déduit que :
du d*u d’uv  Rdu 1 E
E=RCE LCSZ soit —2 +—~ 4 —u= .
ROG rutllqe o @t T a """ o

di
4.17b) La loi des noeuds donne i = i1 4 2. Cependant, la relation constitutive de la bobine fait intervenir ﬁ.

On dérive alors la loi des noeuds puis on la combine avec les relations constitutives des deux dipdles de droite pour
obtenir di = Cd2—u + “.

dt de2 L
La loi des mailles (petite maille de gauche) indique ensuite que E = Ri + u. On dérive cette relation pour faire

apparaitre la dérivée temporelle du courant puis on combine avec ’expression de cette derniére. D’ou :

d*u R du

d? 1 d 1
On en déduit finalement son expression canonique d—tg + @d%: + ov= 0.

4.18 a) Cherchons une solution particuliére constante (comme le second membre). On trouve up, = E. La solution

générale est de la forme A cos(wot + @) + E. Les conditions initiales donnent :

uc(0) =Acos(p)+ E=0 o=
duc soit
F(O) = —Awpsin(p) =0 A=-FE.

On en déduit que uc(t) = E(1 — cos(wot)).
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4.18 b) La solution est de la forme A cos(wot + @) = a cos(wot) + bsin(wot). Appliquons les conditions initiales :

i(0) =a=0 a=0
di E soit E
@ sho=7 = Too

On en déduit que i(t) = Li sin(wot).
wo

4.19 a) Le facteur de qualité est inférieur & 1/2 pour la courbe 3. De plus, il est sensiblement égal au nombre

d’oscillations observables dans le cas du régime pseudo-périodique. On observe environ dix oscillations pour la
courbe 2 et six pour la courbe 1. La courbe 2 posséde donc le facteur de qualité le plus grand.

4.19 b) La fonction u1(¢) ne contient pas de grandeurs circulaires (cos(wt) ou sin(wt)) et évolue de u1(0) =a—b

vers ui(+00) = 0. Cela correspond & la courbe 3.

4.19 ¢) La tension us(t) présente des oscillations amorties et tend vers zéro lorsque ¢ tend vers U'infini. Seule la
courbe 2 vérifie ces propriétés.

4.19d) Ona lim wus(t) = E. Seule la courbe 1 présente une asymptote horizontale d’ordonnée non nulle.
t——+o0

4.19 ¢) On détermine la pseudo-période T" en mesurant la durée correspondant a 10 oscillations : 107" ~ 52 ms
d’ott T ~ 5,2ms. On en déduit Q = 27/T ~ 1,2 x 10°rad - s~ .
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Fiche n° 5. Etude des filtres

Réponses
Bula) e Va2 +b?
Bl D)t b/a
B C) et ©)
Bl d) .t ()
B2 8) .
B2 D) Lt [0]
B2 C) ot
B2 d) /2
1
B2 @) et o
B2 f) oo
1
9.38) i —
a) R+ iCw
RjLw
5.3D) i
) R+ jLw
RjLw
B5.3C) i Rt ilw_ RLCW?
‘g R(1 — LCw?)
Bd) TR
Bud (a)
BB &) et
5.5 D)
BB (@
1 1
5.7a). ... 5 cos(a + b) + B cos(a — b)
So cos(2m fpt)
msS
5.7D) ... + (cos(%(fp + fo)t)
+cos(2n(fp — fo)t)>

BT ) (a)
B8 @) .+ttt (©)
B8 D) e (@)
BB C) et @
58 ) .. )
5.98). . 1+3j$ci+JR§w
59 D) e 1/3
B C) et 1/3

5.10b) . c.oiiiiiii ’u(? +jRCw) — u,
5.10 c) !

A0¢) e T 3R — (RCw)?
510 d) ...
10 ¢) !

L D O B T T R I I %
510 ) .o 1/3
BAL A) et 9,5dB
511 Db) .o 20 10g<>

Wo

o+ ()
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w\ 2 BuLB A) ot /4
5.A1d) o 10log|{ 9+ [ — o
wo BuIB D)
2 .18 C) oo z
5.11¢).... QOlog(;u) — 1010g<1 + (:j) ) ) 2
1
Brl4 8) ..t
2
5.11 1) ..... ZOIOg(w> + 1010g<1 + <°‘}) ) 514 D) i 1/V2
wo w1
BuLA C) ot 1/4
BuLZ A) .t
(o] BB &) e —28,0dB
B2 D) o /2
BB D) o
w
5.12¢C) i al"ctan(wl BuLB C) oot —-8,0dB
515 d). . |-+20 dB/décade
512 d) ... —arctan(w
3wo 516 Q). 15,0 kHz

516 C)

5.12€) i g - arctan(w> BAB D).
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Corrigés

5.1 a) En multipliant les deux expressions de Z par leur conjugué complexe, on obtient :

ZxZ" = (a+b)a—jb) = Z&(cos(¢) + jsin(p))(cos(p) — jsin(p)).

a= Zpcos(p) et b= Zpsin(p).

. a . b . sin(y) b Zo b
Ainsi, on a cos = — et sin = —. Puis, tan = = — —. Dong, on a tan =—.
insi, (¢) = 7 et sin(p) = 7. Puis, tan(y) cosle) ~ Zo a , (0=~
5.1 ¢) On utilise une représentation géométrique du nombre complexe Z. Les axes des abscisses et des ordonnées

du plan complexe correspondent respectivement a la partie réelle et a la partie imaginaire de Z. L’argument ¢ est
I’angle entre ’axe des abscisses et la droite passant par le centre du cercle et Z.

On constate que si a > 0 alors ¢ est compris entre —7/2 et 7/2.
De la méme maniére, on constate que si a > 0 et b < 0 alors ¢ est compris entre —m/2 exclu (a > 0) et 0 inclus.

5.2 a) OnaZyg=+vR2+0=R.

5.2 d) On a tan(p) = — — +o0. Donc, ¢ = arctan(—) = g

5.2 ¢e) OnaZ ! = —j—=—. Donc, Z| 0—|—<—i)2*i
¢~ jcw - C 0= Cw) ~ Cuw

5.2 f) On a tan(p) = 7&% — —o0. Donc, ¢ = arctan(féé) = 7%'

5.3 a) OnaZ —RJrL

. Zpg = icw
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5.3 b) Les deux dipoéles sont associés en parallele, nous devons sommer les admittances :

1 1  R+jLw
XAB:XR—’—XL:E—FM :7R‘]Lw .

RjL
Nous en déduisons alors I’expression de I'impédance complexe du dipéle AB : Z,p = R—fj—ig
jLw
5.3 ¢) Les trois dipdles sont associés en parallele, nous devons sommer leurs admittances
1 1. R+ jLw — RLCOW?
Y, g =Y Y Yo==+ —+jCw=
Lap=Lpt Lyt Lo=qH o Hicw RiLw
RjLw

Nous en déduisons alors ’expression de I'impédance complexe du dipéle AB : Z,

T~ R+jLw— RLCw?’

5.3 d) On commence par considérer un circuit équivalent au circuit donné.
Z,
Le circuit donné est équivalent au schéma ci-contre, ot on a :
A B
1 1— LOw?
Z, =jL _— =
4y =it jCw jCw
R
L’admittance du dipodle est donc :
1 1 R+Z 1— LCw® 1 1 — LOw? + jRC
XAB:7+7:£: R4 : w __ w+J2w
R Z, RxZ, jCw lejL% R(1 - LCw?)
R(1 - LCw?)

Nous en déduisons alors ’expression de I'impédance complexe du dipéle AB : Z, 5 =

1—- LCw? +jRCw’

5.4 On commence par considérer un circuit équivalent au circuit donné.
Z,
C’est le circuit ci-contre, avec Z; = R+jLw. Ainsi, 'admittance équivalente est : 4 B
1 jCwxZ,+1 1-LCw?+jRCw
Y.z =jC — = =1 = .
LA =) w—i—Zl Z, R iLw
C
R+ jLw

Nous en déduisons alors I’expression de I'impédance complexe du dipéle AB : Z,p = 1= LCw? + jRCw’

T
—>

%

La période du signal est sur 5 carreaux. La base de temps indique 20 ps/division.

5 carreaux ’\
T=5x20x10"%s soit T =1x10""ps. 5 carreaux | 240
1
La fréquence du signal observé est donc fo = 7= 10kHz. 0V r J

base de temps : 20 ps/division
calibre vertical : 1V /division

24 Fiche n° 5. Etude des filtres



5.5 b) Nous avons 5 carreaux pour la double amplitude, soit 2Uy =5 x 1 =5V. Donc, on a Uy = 2,5V.

5.7 b) On calcule :

s(t) = So cos(2m fpt) (1 + m cos(2m fot)) = So cos(27 fpt) + mSo cos(2 fpt) cos(27 fot)

= Sp cos(2m fpt) + mZSU <cos (27r(fp + fo)t) + cos (27r(fp — fo)t)>.

5.8 a) Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 1kHz, 3kHz et 5 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s1(¢) est nulle. Le spectre @ est donc a associer & s1(t).

5.8 b) Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 2 kHz, 4kHz et 6 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s2(t) est égale & 1 V. Le spectre @ est donc & associer & s2(t).

5.8 ¢) Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 2kHz, 4kHz et 6 kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s3(t) est nulle. Le spectre @ est donc a associer & s3(t).

5.8 d) Nous notons la somme de 3 fonctions sinusoidales de fréquences respectives 1kHz, 3kHz et 5kHz.

spectres @ et @ ne peuvent pas convenir.

De plus, la valeur moyenne de s4(t) est égale & 1V. Le spectre @ est donc & associer & s4(t).

N Z
5.9 a) A T’aide d’un pont diviseur de tension, on constate que u, = u =2

——=——_ Ainsi, on a :
4+ Zy

Z, R 1 R 1+jRCw

R~ 1+jRCw 3R + jR?Cw + &

. u,
E(J"J) == 1 3
iCw + 1+jRCw

w Z, +Z, 1+jRCwR+

e

3R+ j(R0w— ;) 1+i5(RCw—g&5)
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5.9 b) Par identification dans I'expression de H (jw) trouvée précédemment avec la forme canonique, nous en

1
déduisons que Hg = 3

5.9 d) Par identification de 'expression de H(jw) trouvée précédemment avec la forme canonique, nous en
1
déduisons que x = RCw donc que wo = Re L’application numérique donne :
1 1

= = =21 x 10* rad/s.
RC T Ix10°Qx47x 10 °F rad/

5.10 b) En multipliant la réponse précédente par la résistance R, on obtient Ri = Ri; + Ri,.

Ainsi, d’apres les trois égalités, on a :

. H . 1
H(w)= —— et  H(jw) = —— ol
I1+45 -2 14 3jRCw — (RCw)
ontrouveH*1etx*i*RC’wdoncw*ietQ*1
o T wo °~ RC e

5.11a) On a Ggp, = 201log(]|3]|) = 20log(3) = 9,5dB.

5.11b) Ona Gap, = 201og(‘ji() - 201og(i).
wo W

5.11 ¢) On calcule :

1
2 2\ 2
G, =2010g(’1 +ji’) :2010g< 1+ (i) > :2010g<(1+ (i) ) )
w1 w1 w1
2 2
=20 x 110g(1—|— <i> ) = 1010g(1—|— (i) )
2 w1 w1
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5.11d) Ona:

5.11e) On calcule :

H
Gas; = 20 log(‘ ?2

==3

2
= 201og(wi) - 1010g(1 + (wi) )
0 1

5.11 f) On calcule :

H
> = 20log IH2:> = 20log(|H,|) — 201log(|H;|) = GaB, — GaB,
g

Gasg = 20log(|Hy x Hyl) = 20log(|Hy| % |Hs|) = 201og(|H,[) + 20log(|Hy|) = Gas, + Gas,

2
:201og(wi) +10log(1+ wi) )
0 1

Im(H P
5.12b) Ona s =arg(H,) = arctan(Rne]EHz;> = arctan(“éf) = xEToo arctan(z) =

5.12f) Ona ys=arg(H, x Hy) =arg(H,) +arg(H;) = g + arctan(%).

5.13 a) Notons que © = 2 so. Ainsi, on a :
wo

p =arg(H(jw)) = arg(l fjm) = arg(jz) — arg(l + jz) = arctan(%) - arctan(%) = g — arctan(x).

T T
= 1 — — arcta ==
o=, dim 5 —actan() = 5

Fiche n° 5. Etude des filtres 27



5.13 ¢) On a vu plus haut que ¢ = g — arctan(z) ; ainsi, pour w < wo, c’est-a-dire pour z — 0, il vient que :

p= g —arctan(0) = g

1—j 1-— 1—j 14+1

5.14 a) Pourmzl,ﬂ(jr):—‘?,doncG(m)_ J:‘ J.|:\/T_

1+j L+j| A+j Vi+1
5.14 b) Pourz =1, H(jz) = — ) , donc G(z) = |— U |‘]| S :i,
o 1+ L+j] +j VvI+T V2
. 1 1o 1
5.14¢c) Pourz=1etm=2, H(jz) = - 5 =—,donc G(z) = |—| == = -
L+4j+()° 4 4 4 4

0,04

5.154) Ona Gas = 201og( ) — _28,0dB.

5.15b) Ona Gas = 201og(0’114) — _17,1dB.

5.15 d) En faisant Papplication numérique, on trouve que la pente a de la droite vaut :

. Gas(C) —Gas(A)  —8,0dB+28,0dB 90 dB
log(f(C)) —log(f(A))  log(2000) — log(200) '
GaB
Donc, le gain du filtre augmente de 20dB 0 — f
lorsque log(f) augmente d’une unité, soit e
lorsque la fréquence f est multipliée par 10, —10 B L
soit lorsque f augmente d’une décade. _20 1 +20dB/decade
La pente de la droite (AC) observée sur le 50 A o -
graphe est bien de +20dB/décade. B =~
—40
1 10" 10° 10°

5.16 a) Nous observons un maximum pour z = 1. Nous en déduisons que f, = fo = 15,0kHz.

5.16 b) La courbe de gain est maximale pour z = 1. Nous pouvons relever G4g max = —2 dB.

Aux fréquences de coupures, le gain doit vérifier Gag(zc) = GaB max — 3dB = —5dB.

La premiére valeur de z. collectée sur le graphique est x.1 = 0,78, elle correspond a une fréquence de coupure
fcl = 0,78 X f() = 11,7kHz.

5.16 ¢) La seconde valeur de z. collectée sur le graphique est zco = 1,28, elle correspond & une fréquence de
coupure feo = 1,28 x fo = 19,2kHz.
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Fiche n° 6. Energie et puissance électriques

Réponses
6.1 a) 16,5 kJ 6.9 In(2)Ry
8.1 D) oo 4,6 Wh ol
) [46Wh| B.108) .. e e Tf
B.208) o !
6.2Dh) ... ’Hyundai Toniq 6 ‘ 6.10D) ... ek + Er
R+r
6.2C) . i ’ Hyundai Ioniq 6 ‘
6.10 c) E-e
6.3 ) . (a) R+r
E —e)?
6.3 D) i 6.10d) ... (7
) @ ) R+
6.3 C) i E—
© .10 €)oot o f
B 3,75 W
o] B0 ) <
6.5 ) . — L
T B.10E) e
6.5 b) Uoto
AR 2 6.112) i @
6.5 C) .......................... %C S(@) 6.11 b) ..................................... @
1 612 8) oo
6.5d). ... Uoto (2 + - Sin(zb)) @
2
6.12 D) i (a)
6.6 2) ..t [0]
2
6.6 D) . [0] 613a)........................ exp(—t/7)
6.6 ) 3 cos i W E?
T 12 6.13D) ..t exp(—2t/1)
6.6d). ... 16 W 2
E
- 6.13¢)........ ¢ (exp(ft/T) - exp(th/T)>
6.7 A) R
T
6.13d) ... CE?
R
2 1
BT D) v (r + R)? 6.13€) ... §C’E2
r—R 1
6.8 8). 2 2OE?
G RP| BIBD SCE
d
6.8 D) i @ 6.148). .. i EC%
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d(iCui(t B.15 8) ..t W12
6.14b) ... (;Cue ) 2) R
dt 7
6.15b)...........
1742
6.14C) i d(Qj—:f (1) \/(Rc +Ry)* + (Xg + Xu)°
t
.14 d) eoeee e cE?’|  6.15¢) RuE” 20X + Xu) _
T (Re + Ru)? + (Xg + Xu)Q)
6.1de) . i 50E2
2 P2 2
6.15d)...... pr_Fo = Fu) + (X6 + Xu)
614 ) i . 0] 2
((Rc + Ru)? + (Xe + Xu)2)
6.148) Lop
2 6.15€) .o (©

Corrigés

6.1 a) L’énergie contenue dans la batterie vaut £ = PAt ot P = 5W et At = 55min = 55 x 60s = 3300s.
L’énergie vaut donc £ =5 x 3300J = 16,5 kJ.

6.1 b) L’énergie contenue dans la batterie vaut £ = 16,5kJ. Par ailleurs, e = 1 Wh est ’énergie consommée a
une puissance de 1 W pendant 1h, soit e=1W x 3600s = 3,6kJ.
16,5kJ

On a donc E =

sal < L Wh=46Wh

6.2 a) L’énergie contenue dans la batterie vaut &2 = 77,4 kWh.
La consommation moyenne valant C' = 15,1 kWh/100 km, ’autonomie en kilometres vaut :

E 77,4kWh

C = 15 1KWh/100km _ rokm-

6.2 b) En reprenant le calcul de la question précédente, e = 1 W/h = 3,6 kJ, donc I’énergie totale stockée dans

les batteries des voitures de série vaut, en joules, £ = 77,4 X 10°® x 3,6 X 10* J = 279 MJ. C’est donc la voiture de
série qui possede la batterie de plus grande capacité.

6.2 c) La puissance en cv du moteur de la voiture électrique de série vaut P = 239/0,735cv = 325 cv.
................................................................................. [T
6.3 a) La puissance regue par la résistance s’écrit P = ik Ici, on a donc
9 . 5 9
P= 10 5in (wt) = %0 1-— cos(Zth)).

9 9
La puissance a donc une valeur moyenne de 20" une valeur maximale de 0 et une période T'=0,5s.

C’est la réponse @ qui est la bonne.
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6.3 b) Commencons par linéariser ’expression de la puissance. On a :

2
P(t) = % = liO (1 +2 cos(wt))2 = liO (1 + 4 cos® (wt) + 4cos(wt))
1
= (3 + 2cos(2wt) + 4 cos(wt)).

On constate que la puissance est maximale a t = 0. De plus, la composante fondamentale de ce signal est de période
m
7)

. N 71' . .
égale & Ttondamental = — = 2. Finalement, comme u(t) s’annule (par exemple en wt = 3) la puissance s’annule
w

aussi.

Il n’y a qu’une courbe qui vérifie ces conditions : c’est la @ qui est la bonne.

2
9

6.3 ¢) La puissance a pour expression P = % =10 exp(——) On a donc

dP(t) 29 ( 2t) dP(t) 29 9 1

—_—t == —— d —(t=0)=—=—=—-——"W_. .

at 7107 one a ZO="T T Vs
En exploitant la pente a l’origine, on trouve que c’est la réponse @ qui est la bonne.
6.4 On lit graphiquement une période de T' = 3ms et un décalage temporel At = 0,5ms entre les deux
At 1

signaux. Le déphasage est donc ¢ = 277? = g rad. Donc, cos(p) = 3

Les amplitudes de la tension et de 'intensité sont respectivement Uy = 3V et Ip = 5 A. La puissance moyenne vaut
1 1
donc Pmoy = 53\/ X H5HA x 3 =3,75W.

6.5 b) On a P(t) = uoio cos” (wt 4 1) = - (1 + cos(2wt + 21/))).

On integre :

1 io [T
Pmoy = T X % /0 1+ cos(2wt + 2¢) dt
1 wuoio 1 . T ugio
== x — [t+ — 2wt + 2 = —.
T>< 3 [+2wsm(w + w)}o 3

On peut retenir la propriété <0052 (wt + 1/;)> = <sin2 (wt + qp)> = %

6.5 c) On a P(t) = uoio cos(wt) cos(wt + ) = ?[cos(np) + cos(2wt + ¢)].

On vérifie ensuite que :

T

e 1
2 = = 2 = —— | sin(2 =0.
(cos(2wt + ¢)) T /0 cos(2wt + @) dt 5T [sm( wt + gp)] . 0

Donc, on a Pmoy = % cos(¢).
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6.5 d) La puissance peut se décomposer en plusieurs termes :

P(t) = uoto(l + cos(wt))(2 + sin(wt + 1))

= u0%0(2 + 2 cos(wt) + sin(wt + ¥) + cos(wt) sin(wt + 1))

= uoto (2 + 2 cos(wt) + sin(wt + ¥) + cos(wt) cos (wt + ¢ — g)) .

On peut alors séparer les calculs de valeurs moyennes :
Pmoy = Uoto <2 + 2{cos(wt)) + (sin(wt + ¥)) + <cos(wt) cos (wt +1— E) >)

2
= uplo (2 + %COS(’L/J — g))
= uglo (2 + % Sin(w)) .

T
1 .7 jwt —iy jwt j(wt—m/4)
u=2 —=— )" =2|e "4 | =2¢

6.7 a) La loi des mailles permet d’écrire E = u, +ugr =71 + RI = (r + R)I. On a donc I = %
6.7 b) La puissance dissipée dans le conducteur ohmique de résistance R vaut P = url = RI? = EQ%.
r

2_ —
QzEglx(r—&—R) R;Z(r—i—R):Eg(rJrR)(r—&—R) 42R7
dR (r+ R) (r+R)
soit finalement : I R R
= F*(r+ R)— =2
dR ( )( +R)* (r+R)?
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11 faut annuler la dérivée pour trouver l'extremum de P(R). Comme P(R) est positive et vaut 0 en

6.8 b)

R =0et en R — 00, alors cet extremum est un maximum. On a alors, par annulation du numérateur Ryax = 7.

Sion a R = 2Ry, alors on a "/ = 2 et donc r/Ry = In(2). Finalement, on a r = In(2)Ro
E—e

On applique la loi des mailles E — Ur —ur —e =0. Ona donc E —e = (R+7)I, et donc I = Rir
r

La batterie est en convention récepteur; donc, on a :
eR+ Er

6.10 b)
FE—e eR+er+rE —re
U: I = = =
et €+TR+’I“ R+r R+r

E—e

La puissance fournie par le chargeur vaut P = EI = ER n
r

6.10 c)

—e>2: (E—e)2.

:|2R U ——

ET() h|==¢C [

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts

2
U1:E et U2:U3=§E.

Les énergies stockées dans les condensateurs sont alors :
4 2
§C<7E2) = CE”

_lape _ 4 _
51—2CE, 52—90E et 53— 9

On a alors & < &1 < &3. Clest la réponse @ qui est la bonne.
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6.11 b) On fait le schéma :

2C R

|
aia

Us

6VT<> Us| == 3C 12vT<> u|l——=c

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :
U =12V, Ux=-6V et Us=6V.
Les énergies stockées dans les condensateurs sont alors :
& = %C(u)2 =720, & = % x 2C(6)* = 36C et & = % x 3C(6)? = 54C.

On a alors & > &3 > &. Clest la réponse @ qui est la bonne.

6.12 a) Les énergies stockées dans les différentes bobines sont :

&= %L(4)2 =8L, & ==x2L(3)°=9L et & = % x 3L(1)* = ZL.

Donc, on a £ < & < &2. Clest la réponse @ qui est la bonne.

6.12 b) Les bobines se comportent comme des fils en régime permanent. Le montage se simplifie alors :
I R

ET() R R 2R

1> I3

En calculant les résistances équivalentes, on peut déterminer les valeurs des courants :

1, = 8E _2(£>_E ot 1_1<£)_E
'T R’ >~ 3\5R/)  5R * = 3\5R/) ~

Ainsi, les énergies stockées dans les bobines sont :
1 _(8E\> 32LE® 1 2E\?> 4 LE® 1 E\? LE?
51:§L(8 ) =3 52:f><2L< ) - ot & 7><3L( )—3

5R) 25 R?’ 2 5R) ~ 25 R? T2

On a & < & < &1 : c'est la réponse @ qui est la bonne.
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6.13 b) La puissance dissipée par effet Joule 'est dans la résistance et vaut donc :

R(CE)*
2
En simplifiant & Paide de la relation 7 = RC, on trouve Py(t) = exp(—2t/7)

6.13 ¢) La puissance instantanée regue par le condensateur vaut :

2

Pe(t) = uc(8)i(t) = E(1 — exp(—t/7)) x g exp(—t/7) = CE (exp(—t/T) _ exp(—2t/7‘)).

Remarquons que, par conservation de la puissance, cette derniere expression peut s’obtenir en faisant la différence
entre les deux précédentes, la puissance regue par le condensateur étant égale a la puissance fournie par la source
de tension dont on a retranché la puissance dissipée dans le conducteur ohmique. C’est un bon moyen de controler
le résultat.

6.13 d) Il faut intégrer la puissance Pg(t) fournie par la source sur toute la durée de la charge du condensateur,
c’est-a~-dire de t =0 a t = +00. On a donc :

&g = /tf=+°° Pr(t) dt = /t,+oo f2 exp(—t/7)dt = (—7) sz [exp(—t/r)} ;‘C’C — CE?

=0 t=0

. s 1,9
Remarquons que cette expression est homogene a ’énergie contenue dans un condensateur §Cuc.

6.13 ¢) 1l faut intégrer la puissance P(t) sur tout le temps de la charge du condensateur, de t =0 & t = +0c0 :

t=—too t=+oo 2 2 too
£ :/ Pot) dt:/ Cf exp(—2t/7)dt = CF (-2) [ewi-2t/m] " = tor®
t t

=0 Jt=0 T 2 0

6.13 f) Il faut intégrer la puissance Pc(t) sur tout le temps de la charge du condensateur, c’est-a-dire de ¢t = 0
at=+o00. On a donc :

t=4o00 t=+o0 2
e :/t Po(t) dt :/ f (exp(—t/T) — exp(—2t/7)) dt.

=0 t=0

On reconnait les deux intégrales précédentes donc :

CE® too  CE?

0 T

Ec = (-1)

[exp(—t/T)] (—g) [exp(—Qt/T)} :Oo = %CEQ.

Alternativement, on aurait pu effectuer le calcul suivant :

t=4o0 t=—4oc0 t=—4oc0 t=—+4o0
50:/ Pe(t) dt:/ uci dt:/ ue - 0 34e dt:/ d<10u20>
) ) at ) 2

=0 t=0 =0 =0

pour trouver :
1

1
Eo = §C(u%(+oo) - u%(O)) = §C'E27
qui est le méme résultat.
Remarquons que, par conservation de ’énergie, cette derniére expression peut s’obtenir en faisant la différence entre
les deux précédentes, I’énergie regue par le condensateur étant égale a ’énergie fournie par la source de tension dont
on a retranché I’énergie dissipée dans le conducteur ohmique. C’est un bon moyen de contréler le résultat.
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at dt

6.14 d) On intégre la puissance Pg(t) sur tout le temps de la charge du condensateur, de t =0 & t = 400 :

o= [ et gi—cp [T que=cE - —0)) = CE?
B = G t= . uc = (uc(tf+oo)fuc(tf0))f0 .
t=0 t=

6.14 ¢) On integre la puissance Pc(t) sur tout le temps de la charge du condensateur, de t =0 a t = +o00 :

e e 15y 1 2 2 | R—
o = Po(t) dt = d(iCuc) = 5C(uc?(+00) — uc?(0)) = 3CE™.
t=0 t=0

6.14 f)  On intégre la puissance Pr(t) sur tout le temps de la charge du condensateur, de t =0 & t = 400 :

£ = /tt:m Pr(t) dt = /t:m o ; L) = SL(E (+o0) — #(0) = 0.

6.14 g) 1l faudrait intégrer la puissance dissipée par effet Joule Py (t) = Ri*(t) sur tout le temps de la charge

du condensateur, de t = 0 a t = 400. Cependant, on n’a pas accés a 'expression de i(¢). On peut alors malgré tout
se servir de la conservation de 1’énergie :

EJ:EE—EC—EL:CEQ—%CE2—O:%CEQ.

6.15 b) La loi des mailles donne :

ec = (Za + Zu)i
donc Ev/2e/%t = [Re + Ru + j(Xc + Xu)][\/iej(wt-w)
donc E = [Rg + Ru + j(Xa + Xu)|Te%.

En prenant le module, on obtient :
E
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6.15 ¢) En reportant I’expression de I obtenue dans celle de P, on retrouve I’expression donnée dans I’énoncé :

P _ R.E?
” (RG +R1L)2+(XG +Xu)2.
a fonction dont il faut calculer la dérivée est du type P (Xu) = . La dérivée sera donc du type :
La f d 1 f; lculer la dérivé d Pm (X f(;()Ld/l donc d
P [(Xu)
Xy (f(Xu))?
Finalement, on calcule :
me _ *RuEQ Q(Xg—f—Xu) ;
v ((RG + R + (Xa +Xu)2)
6.15 d) La fonction dont il faut calculer la dérivée est du type P (R.) = jg"((;iu)) , la dérivée sera donc du type :
OPm _ f'(Ru)g(Ru) — f(Ru)g'(Ru)
ORy (9(Ru))?

Ainsi, on calcule :

0P
OR.,

(Re + Ru)? + (Xg + Xu)? — 2Ru(Rc + Ru)
((Rc + R+ (Xo + Xu)2)2
_ g2 R% + R+ 2RaR. + (Xa + Xu)® — 2R§ — 2R, Re
((Re+ B2 + (X + X.02)
(RE — RY) + (Xo + Xu)?
((RG + Ru)? + (X + Xu)2)2

— B2

— B2

6.15 ¢) On cherche pour quelles valeurs de R, et X, les deux dérivées partielles de Py, sont nulles.

On a OPrm =0 pour X, + X¢ =0, soit X, = —Xg.
0Xy
2 p2
On aura alors ggm = E? (Fg = Ru) 5. Alors, on a ng =0 pour Rg = R..
“ (o + R+ (Yo + X.)2) "
Mathématiquement, on pourrait avoir comme solution Rg = R, ou Rg = —R,,. Ainsi, la solution @ pourrait ausst

étre considérée comme correcte. Mais, en physique, on a nécessairement Rg > 0 et R, > 0.

Fiche n° 6. Energie et puissance électriques 37



Fiche n° 7. Amplificateurs linéaires intégrés

Réponses
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Corrigés

7.1 Les circuits pouvant fonctionner en régime linéaire sont les circuits @ et @ Avec une rétroaction sur
la seule entrée non inverseuse, les montages @ et @ fonctionnent en régime saturé.

7.2 a) L’impédance d’entrée d’un ALI réel est de Pordre du mégaohm (c’est-a-dire de l'ordre de 10° Q). Dans

le cas de I’ALI idéal, 'impédance d’entrée est supposée infinie.

7.2 ¢) Le courant de sortie est variable et dépend de la charge du circuit & ALI.
7.2 d) En régime linéaire, c’est la différence des potentiels entre les deux entrées qui est nulle : V; — V_ =0
7.3 a) La résistance Ra établit une rétroaction sur ’entrée inverseuse, I’ALI peut donc bien fonctionner en

régime linéaire.

7.3 ¢) L’entrée non inverseuse est reliée & la masse donc V' = 0. D’aprés le schéma : V4 = V. Le régime

linéaire donne donc V4 = 0.

7.4 a) Le potentiel de I’entrée non inverseuse est nul et est égal au potentiel de I’entrée inverseuse en régime
linéaire.
7.4 c) Le potentiel de I’entrée non inverseuse est nul et est égal au potentiel de I’entrée inverseuse en régime
linéaire.
7.44d) Le potentiel de I’entrée non inverseuse est v.. Grace au régime linéaire, on en déduit que le potentiel de

Pentrée inverseuse est également ve.
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7.6 a) La loi des nceuds appliquée a I'entrée inverseuse donne i1 = i~ + i2. L’ALI étant idéal, on a i~ = 0
Finalement, on a donc 41 = i2.
7.6 b) D’apres le schéma, on a U
D’ou le résultat.

= v, — V. Comme I’ALI fonctionne en régime linéaire, ona V™ =V =0
7.6 c) D’apres le schéma, on a Uz = — vs. Comme I'ALI fonctionne en régime linéaire, on a V=~ = vt=0
D’ot le résultat.
s , , . . ) Ur
7.6 d) La résistance R; est représentée en convention récepteur. On a donc i1 = R
1
s , , . . ) Us
7.6 ¢) La résistance Rz est représentée en convention récepteur. On a donc o = ——.
2
7 SN s . o Ve Vs
.6 f) D’apres la premiere question, on a i3 = i2. Donc, on a — = —
7.7

. On en déduit le résultat.
Avec la formule donnée, amplification du montage vaut —=

c’est un réel négatif. Les tensions v,
et vs doivent donc étre en opposition de phase, ce qui n’est pas le cas des réponses @ et @ Sur la figure @,
1
lamplification vaut —1 alors qu’on a bien _6(: 0,5/3) sur la figure @ : seule cette derniere convient.
7.8

On peut se rappeler que 7 = RC est la constante de temps d’un circuit RC'.
7.9 a) En régime constant, un condensateur est équivalent & un circuit ouvert. Il n’y a alors plus de rétroaction
sur entrée inverseuse et I’ALI ne peut pas fonctionner en régime linéaire.
7.9b)  L’ALI fonctionne en régime linéaire donc V- =V =0
7.9 d) L’ALI est idéal donc i~ = 0. La loi des nceuds a l’entrée inverseuse donne ig = ic.
7.9 ¢) Le condensateur est représenté en convention générateur. Par conséquent, la loi d’Ohm donne :
. 1
Uc=—-ZXic avec 4= —
Yo c iCw
Ve
7.9 f) En combinant la loi des noeuds et la loi d’Ohm, on a ir = T o= —jCwvs
En isolant I’expression =, on trouve le résultat.
Ve
7.9 g)

A partir de Iexpression de H, on obtient que jRCwys = —ve

dws (¢
Cette relation devient, en grandeurs réelles, RC vs (t)

40
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7.10 b) Le déphasage demandé est égal a I’argument de la fonction de transfert. Cette derniére est un imaginaire

ur de partie imaginaire strictement positive, car H = — = .
P L & P ’ = jRCw  RCw

7.10 ¢) On utilise les réponses aux deux questions précédentes : 'amplitude de v. est multipliée par le gain et

E 0 E
le déph t intégré d 1 PV = ——— t+ - | = ——==— sin(wt).
e déphasage est intégré dans le cos : vo = =~ cos(w + 2) ROY sin(wt)

7.10 d) Avec un calibre de 250 ps/division, on mesure une période de 1 ms. La fréquence de fonctionnement est
donc de 1kHz.

1
7.10 ¢) Le module de la fonction de transfert est ——. Avec les valeurs numériques fournies, on trouve G = 3,1.

RCw

7.10 f) Le déphasage de vs par rapport a ve est de +g donc la tension de sortie doit étre en avance d’un quart

de période sur la tension d’entrée. Les réponses @ (tensions en phase) et @ (tension de sortie en retard) ne sont

pas compatibles. A la fréquence de fonctionnement, le gain est de 3, ce n’est pas le cas sur la réponse @

7.11 a) La fonction de transfert fournie se met sous la forme jRCwvs = —v.. Comme une multiplication par jw

en notation complexe correspond a une dérivation, on en déduit ’équation différentielle.

7.11 ¢) Une tension constante positive E s’intégre en fonction affine de pente négative — At + b. Ce n’est pas le

cas des réponses @ et @

Pour t € [0,500 ps], on lit E = 3V. Avec les valeurs numériques de R et C, on trouve une pente théorique de
—8,0 x 10° V- s'. Sur la courbe @, on mesure une pente de —6/500 X 107% = —12 x 10*° V- s alors qu’on a une

pente de —4/500 x 10° = —8,0 x 10° V- s~ " sur la courbe @

1 Ri R 1
12 —_— == 4 == =
7 a) OnabG2 7 TR a+a
- 1 1+a? 1«

7.12 b) Onac—z—a = 'DOHC’GQ_Iz_l+a2

1 Ry
7.12(}) OnaG1—GQ:1——.Donc,G1:G2<:>R——1<:>R1:R2

2 2

7.12d) On pose f(a) =a+ é. On calcule f'(a) =1— — = a; 1. Ainsi, on f'(a) =0 <= a = 1. Comme

fla) —— 400 et fla) — o0,

a—0t a—4-00

1
on en déduit que a + — est mininale quand o = 1.
@

7.13 a) I’ALI étant idéal, les courants d’entrée sont nuls. Ainsi, la loi des nceuds & 'entrée inverseuse assure

que 71 = 2.
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7.13 b) Les deux résistances étant parcourues par le méme courant, elles sont en série. Ainsi, on en déduit que

le circuit équivalent est :
Us

U1 Rl Vs

La formule du diviseur de tension aux bornes de R1 donne le résultat demandé.

7.13 ¢) L’ALI fonctionne en régime linéaire donc on a V© =V,

. . o R . ,
7.13 d) D’apres les questions précédentes, on a ve = 71115, d’ou le résultat.
Ri+ R»
7.14 Le gain de lamplificateur non inverseur vaut ici 6 : c’est un réel positif. Par conséquent, la tension

de sortie doit étre en phase et de plus grande amplitude que la tension d’entrée. Les réponses @ (tensions en

opposition de phase) et @ (sortie de plus faible amplitude) sont donc exclues.

Sur la réponse @, le gain mesuré est de 16 (8/0,5) alors qu’il est de 6 sur la réponse @ : seule cette derniere
convient.

7.15 a) L’ALI fonctionne en régime linéaire donc V' =V .

7.15 b) Les courants d’entrée de PALI idéal étant nuls quels que soient les potentiels des deux entrées, PALI se

comporte comme un circuit ouvert en entrée. L’impédance d’entrée tend donc vers +oo.

Ve s 19 s s 9 2
7.15 d) L’impédance d’entrée du montage est ici définie par Z. = =. L’intensité d’entrée étant nulle, 'impédance
— i

&

d’entrée est infinie.

1

0,16 - 10° Q ~ 16 kQ. 11 est

1R

7.16 ) Avec le condensateur, le module de 'impédance d’entrée est |Z.| =

&~

donc légerement plus grand qu’avec la résistance.
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Fiche n° 8. Sources lumineuses et lois de Snell-Descartes

Réponses

8.6D) ..o 8.10a)..............

8.3D) i T
2 8.78) il Non| 8.10b)........ 3,74 x 107 ]
83¢)..... aurcsin(n1 sin(i)) B.TDb).oe 811 ............... @ et @

n2

8.124a).... [226x10°m 5|

8.3d) .. |7 —arcsin(“tsin) | 8.8D)........oo..

2

Corrigés

8.2 b) L’angle 8 vaut 98° et 15 minutes d’angle, c’est-a-dire 5 = 98 + 15/60 = 98,25°.

En radians, on a § = 98,25° x ﬁ = 1,715rad (on garde 4 chiffres significatifs, comme la donnée de départ).

180°

8.2 ¢) On a v = 1,053 x = 60,33°. Or, 0,33° correspondent & 0,33 x 60 = 20’. Donc v = 60°20".

8.3 ¢c) La loi de Snell-Descartes pour la réfraction donne : n; sin(é) = ng sin(d). Donc § = alrcsin(E Sin(i)).
n2
8.4 a) La loi de Snell Descartes pour la réfraction donne : ni sin(i) = ng sin(r). On obtient pour r :

. ny . .. . 1
r= arcsm(n2 Sll’l(l)) € onc r = arcsin < 17

X sin(24,0)) = 16,3°.

Attention a bien régler la calculatrice en degrés ou a convertir 'angle en radians.
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1 1
8.4 b) Si la calculatrice est réglée en degrés, on a : r = arcsin(145 sin(0,674 x 80)> = 25,5°
, ™
1,4
8.4 ¢c) Onai= arcsin(E sin(r)) donc i = arcsin(’T5 sin 15,0) =22,0°
n1
8.5 a) On a D; = r — ¢. Attention, i et r sont orientés dans le sens trigonométrique, alors que D est orienté

dans le sens horaire.

27r:A+g+g+(27r—(a1+a2)).

Ainsi, on a A = (a1 + a2) — 7.

On utilise le fait que la somme des angles d’un triangle est égale & m dans IAJ. Donc, on obtient

W:A+(g—r)+(g—r'),etainsiA:T—o—r/.

8.7 b)

88 a) ...... Dapres la 101 d e SneHDebcartes On a msm(z) :msm( )Donc ..................................................
ns = n1 :112((?) —1,37 x % —1,25.

8.85)  On observo une réflexion totale st ™ x sn() > 1 done s s < (i) = L3T x in(60.09 = 115,

8.8 ¢) L’angle limite au-dela duquel il y a réflexion totale est i, = arcsin (%) Un milieu ne peut pas avoir un
ni
indice plus petit que 1 (cela signifierait que la lumieére s’y propage plus rapidement que dans le vide, ce qui n’est

pas possible). Donc, pour n; = 1,37, le plus petit angle limite de réflexion totale est :

) = 46,9° > 40,0°.

1
1¢,min = arcsin < 137

Donc : non, il n’existe aucun milieu 2 qui permette d’observer une réflexion totale dans ces conditions.

2 9_
89a) Onacos(d)=+/1—sin?(6,)=14/1— S g i)
n
. ) . o . nisin(F —0:)
8.9 b) Il s’agit d’un triangle rectangle, donc i = — — 6,. Donc la relation équivaut a > 1,
n2
5(6
c’est-a-dire a m > 1 et donc a cos(6r) > n2
ni

Fiche n° 8. Sources lumineuses et lois de Snell-Descartes



sin?(0;) _ mno

- 2 X 2
8.9 c) Ona4/1— > = donc 1 — 2 (6:) > (E) dont on déduit :
1

2 2
ny ny ni
2 2 n2\ 2 2 2
sin“(0;) <ni(1— (—) =nj —ns.
ni
2 2

105 m . s—!
810a) Onaf— < —200XITmMS 500 10" H, — 564 TH2.
Ao 532 nm

8.11 Au passage d’un dioptre, la fréquence et I’énergie d’un photon sont inchangées. En revanche, la vitesse
de propagation de la lumieére et la longueur d’onde dépendent de I’indice optique.

¢ 300x10°m-s7!
- 1,33

=226x10°m-s "

8.12 b) Ona)\:%:—:—: = 400 nm.
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Fiche n°9. Lentilles

Réponses
9.1 a) arctan AB
Jda)..o....... T oA
AB 180
9.1b) arctan(OA> X —

OA" A'B’
9.2 a) .......... m = E

9.6a). . ..o
9.6b) ...
9.6¢C) i
9.6 d)......ooiiiin,

9.7 a) ot

_p2
911 a).. e -/
F'A’
9.11 b)) FA — f

9.14a)......ociiiiiin.... (@)
9.14b).....oiii ()

OA’ = —15¢cm

9.15b). .o

9.3)..rrrieenn. oo oA OF | 9150
9.3d) ...l 20 cm Ava)...oo.
) [20cm] OA+OF |  915d)................
94a).....oiiii. Al]/?)l OA’ x f' D? — d2
1 9.10b)............ 9.16a) ............. D
f—OA’
ABy
9.4Db) ... . - 15D
OA x OA 9.16Db) ..., —_—
2 9.10¢)........... = ox 64
— 9.16C) v [0]
9.10d)................
Corrigés
. AB
9.1 a) Dans le triangle rectangle OAB, on a tan(a) = OA" Comme l'angle « est entre —mw/2 et m/2, on a
= arctan(@) our un objet lointain
o= OA ) Powr u j .
. . P . " AB 180
9.1 b) On effectue une conversion radians-degrés du résultat précédent : o = arctan(ﬁ) X -
103
9.1 ¢) Dans le triangle rectangle OAB, on a OA > AB. Donc, on a : o = tan(a) = 3,5- 10" km X 180 =0,52°.
™

" 384 400 km
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_ 1,4-10°km . 180
" 150 600 - 103 km

a = tan(a) =0,53°.

9.1¢) Méme si les valeurs ne sont pas strictement égales, elles sont proches d’un point de vue physique, ’écart
as —«
relatif entre elles valant ——— = = 1,9 %.
ar,
Les diametres angulaires de la Lune et du Soleil pour un observateur situé sur Terre sont proches.

9.1 f) La Lune et le Soleil ont la méme taille apparente sur le ciel. Si la Lune, plus proche de la Terre, se place

entre la Terre et le Soleil, celle-ci va dissimuler complétement le Soleil : on parle d’éclipse solaire. Les diameétres
apparents n’ont rien a voir avec ’alternance des saisons, liée a I’inclinaison de I’axe de rotation de la Terre, ni avec
leffet de marée, lié a 'attraction gravitationnelle de la Lune et du Soleil sur les océans et la croiite terrestre.

OA’  A'B
9.2 a) Par application du théoréme de Thales, on a — = ——.
OA AB
9.2 b) Par lecture graphique, on constate que OA’ = 8 unités horizontales et OA = —4 unités horizontales.
A'B" OA’ 8
D’apres la relation déterminée dans la question précédente, on a v = — = — = Lceaneanx -,
AB OA —4 carreaux
9.3 a) Le sens positif est le sens de propagation de la lumiére. Le point F est aprés O; donc O1F} = 40 cm.

AB
9.4 a) Dans le triangle rectangle O1A1B1, on a tan(a) = ! ,1 Comme 'objet est tres éloigné, 'angle o est

O.F}

petit ; comme il est exprimé en radians, on peut effectuer 'approximation a ~ tan(a).

AB
9.4 b) Dans le triangle rectangle O2A 1B, on a tan(a) = Ol F’l . Comme l'objet est trés éloigné, 'angle o est
202
petit ; comme il est exprimé en radians, on peut effectuer ’approximation o’ ~ tan(a’).

!
G=—= X = =,
a 13 AiB1 fj

1

9.4d) Graphiquement, on lit f{ = 16 carreaux et fs = 4 carreaux. Donc, on a G = ? = 4. Un objet lointain

2
observé a travers cette lunette apparaitra sous un diametre 4 fois plus important qu’a I'ceil nu.
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9.5 Pour se placer dans les conditions de Gauss (stigmatisme approché et aplanétisme), les rayons lumineux
issus d’un objet doivent passer preés du centre optique et étre peu inclinés par rapport a l’axe optique principal.

9.6 a) Ce schéma est correct car un rayon paralléle au rayon incident passant par le centre optique de la lentille
sans étre dévié couperait le rayon émergent dans le plan focal image de la lentille convergente.

9.6 b) Ce schéma, est incorrect car le foyer image F’ d’une lentille convergente est situé au-dela de la lentille

et non en avant (par rapport au sens de propagation de la lumiére). Ce schéma serait correct si la lentille était
divergente.

9.6 ¢) Ce schéma est incorrect car un rayon lumineux qui ressort d’une lentille paralléle a ’axe optique principal,

a une direction incidente passant par le foyer objet F. Ceci n’est pas le cas ici puisque le rayon incident passe par
le foyer image F'.

9.6 d) Ce schéma est correct car un rayon incident dont la direction passe par le foyer objet F ressort paralléle
a ’axe optique de la lentille.

9.7 a) On ajoute un rayon incident issu de B paralléle & I’axe optique principal et émergeant en B'.

On trouve la position du foyer image principal F’ & I'intersection entre I’axe optique principal et le rayon tracé.

En mesurant la distance OF’ sur le schéma et en tenant compte de ’échelle du document (8 carreaux sur le document
correspondent & 10 cm en réalité), on trouve : OF = 5,0 cm.

9.7 b) En utilisant la définition de la vergence, on a V' = 7 = 005m = +206

9.8 Pour comparer les lentilles, il faut comparer soit leurs distances focales images f’, soit leurs distances
1

focales objets f = —f', soit leurs vergences V = ?

Remarquons que le lentille @ est exclue d’office, car fj = —8,0cm < 0 donc il s’agit d’une lentille divergente

(f' < 0) et non convergente (f' > 0).

Calculons les vergences des trois lentilles qui sont encore & considérer. On a :
e pour la lentille @ Ve =48,06;

1 1
la lentill : == =———=+1250;
e pour la lenti e@ Vi I 0.080m +12,59;
e et pour la lentille @ Ve = % = f% =~ 0100m 1100 = +10,0 6.
—0,100m

On a V, > Ve >V, ; donc, c’est la lentille @ qui est la plus convergente.
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9.9 b) La situation @ est exclue d’office car 1’équation n’est pas homogeéne (n et mai» sont sans dimension
tandis que R est une longueur).

La situation @ permet de déduire que f' = ER c’est-a-dire une distance finie a laquelle convergent les rayons.

La situation @ conduit & f' — 400 : les rayons convergent & ’infini donc ils ne sont pas déviés.

Une autre approche consiste a voir que si les indices de part et d’autre du dioptre sont identiques, il n’y a pas de
déviation (loi de Snell-Descartes). Réponse : @

A /
9.10 a) On déduit de la relation 1 _ ; = L que OA’ = % x OF
oA’ OA  OF OA + OF
/ / / !’
9.10 b) On déduit de la relation 1 _ ; S que OA = % x OF . Ainsi, OA = OA [
oA’ OA  OF OF’ — OA/ fr—OA’
A /
9.10 ¢) On déduit de la relation 1 _ L = L que f' = OF = % x 04
oA’ OA  OF OA — OA/
—_— / P E—
9.10d) On a montré que OA’ = % Or, on a OA = —15cm et OF’ = 4,0 cm.
+
s .. . —= —15cm x40cm
L’application numérique donne OA’ = “T5em +40cm 5,5 cm.

Comme OA’ > 0, I'image A’B’ se situe aprés la lentille.

9.11 ¢) On a montré d’une part que FA —_ et d’autre part que OA = OF + FA.

Les applications numériques donnent :

—(12,0cm)®>  —(0,120m)?
50mm  5,0-1073m

FA = = —2,88m et OA =-0,12m + (—2,88m) = —3,00 m.

L’objet se trouve & 3m en avant de la lentille, il s’agit donc d’un objet réel.

9.12 b) L’image est renversée car v < 0.

9.13a) OnaOA’'=15met f =5,00- 10~2 m. D’aprés la relation de conjugaison de Descartes, on a :

111
OA” OA OF"
7 rasnd -2
On en déduit que OA = M Donc, on a OA = 15,0m x ?’00 107 m =-5,02-10"%m = —5,02 cm.
OF — OA’ 5,02-1072m — 15m
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9.13 b) Le grandissement v vaut :

A'B" OA’ 15m
AB OA —0,050 2m

Ainsi, la largeur de I'image sur ’écran vaut 299 x 36 - 107*m = 10,8m. De plus, la hauteur de 'image sur I’écran
vaut 299 x 24 -10" % m = 7,18 m.

Finalement, les dimensions de I'image sur 1’écran sont : 10,8 m X 7,2m.

1 1 — 1 R N
9.14 a) On sait que — — = ——. Ici, on a OA — —00 donc —= — 0" . Finalement, on a OA’ — OF’.
OA’ OA  OF OA

9.14 b) On sait que i — ; = . Ici, on souhaite que OA’ — 400 ; donc on souhaite que L —0"
o OA' OA OF /
et donc que OA — —OF’ = OF.

—_  OA x OF . _
9.15a) OnaOA’ = M Or, on a OA = —6,0cm et OF’ = 10,0 cm. Donc, on a :
OA + OF’

—= —6,0cm x 10cm
OA/ = 7— = —15 .
—6,0cm + 10 cm o

9.15 b) L’image se situe en avant de la lentille. On l'observera directement & travers la lentille, en regardant
dans la direction de 1’objet.

. N . A'B° OA _ |

9.15 ¢) Sa taille se calcule & 'aide de la formule du grandissement : v = — = —. Ici, on a

AB OA
/ p—
AB =28 L AB - TP o hem = 5.0em.
OA —6,0cm
9.15 d) Le grandissement est positif : il s’agit d’une image droite.
. 1 1 . . .
9.16 a) On transforme l’expression 7 = b3d ~ —(p_ay o0 mettant les fractions sous dénominateur commun
2 2
et en isolant f'. On a :
11 1 2 n 2 donc 1 _2(D-d)+2(D+d) 4D
froo2f —0-d " D+d D-d ff (D+d)(D—-d)  D>*—d?
D? — &

Final t, on t =

inalement, on trouve f 1D
9.16 b) En remplacant d par on arrive & f' = i ?62 15D

plag p ) = 1D Y
’ TN 4D

9.16 ¢) En remplacant f’ par —, on arrive a

50
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Fiche n° 10. Cinématique

Réponses
10.18) e 1h 6min 40s 10.9 b) (aw)? + b
101 D) oot
10.28) oot 10.9¢).onnn —aw*(cos(wt)éz + sin(wi)é;)
2 10.9d) oo aw?
10.2 D) .o dox 7 )
2 10.102) oo ’cos fe, + sin fe,
71
10.2c¢) o ag X T x(——i—r) de, .
) T T 10.10b). ..o det = 6(—sin &7 + cos 0e;)
103 o — -
@ 10.10¢C) . vviiiiiinn ’ e, = cos fe, — sin fey ‘
10.4 . @ 10.10d). ..o ’ e—; = sin fe,. + cos 06_(;‘
10.5a) cceeiiiiae ’a(cos(@)e_; + sin(6)e,) ‘ 10.10 o) de; ie:
s AU €)oo az ]
10.5b)......... a<cos(9)e‘; + (sin(e) + )a) I
a 10.118) . o =t
T
b
10.5¢)...... a 2cos96_;—|—(251n9 +)e_’> 1
) ( (©) O)+7 Jew 1011 D) oo e
10.5d) .o “DEY | 1011 €) e aer
10.68) oovvinii [r(cos(®)e +5m0)&) | 1011 d) oo
10.6 D). .o re, 1011 €) e a + 2abt2e_§
10.6 ¢)....oono. ] r(cos(0)es + sin(0)zy) + ze; ]
10.128) ..o roe /T (e_; + we—g>
106 d) ..o T
10.7 8) it rsin®)]  10.12 1) roe_t/7<(12 _wz)e—;_ <2w)6—5>
T T
10.7b) ...t ’rsin(@)(cos(gp)a + sin(p)ey) ‘
10.12C) e
10.7 ¢). .. ’rsin(@)(cos(gp)e}'—!— sin(p)ey) + rcos(0)e2 1012 d)
10.7d) e e
) e 1012 €) coveeeee e
10.7€) i ’008(9) e, — sin(0) 6_5‘
10013 8) o
10.8a) oveiiiiiii 494km-hH 1018 b) .
-2
10.8 D) 8,0m-s 10.13 ) eeneeein e ——at® + vot
109a)...... ’ aw(— sin(wt)e, + cos(wt)e,) + be, :
1013 d)..co gat2 + L
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fo1d P 1015 8) . 0o
A4 b)) —— V02
gdt T 1015 D) oot
Corrigés

10.1 a) La voiture avance & vitesse constante. Pour parcourir 100 km, il lui faudra le temps :

100 km
7‘ = ——
90km -h~!

=1,11h =1h 6min 40s.

10.1 b) Pour parcourir 100km a 80km - h™?%, il lui faudrait le temps 7 =
trajet serait donc allongé de At = 7' — 7 = 0,14h = 8min 20s.

10.2 a) L’accélération est constante durant le temps 71 et la vitesse initiale est nulle. La vitesse & un instant ¢

vaut donc v(t) = ap X ¢, d’ott v1 = v(11) = ao X 1.

10.2 b) Pour ¢t € [0, 7], la vitesse est décrite par équation : v(t) = ao X ¢. La distance parcourue & la date ¢

1 2
s’écrit donc d(t) = 500 X 2. Ainsi, on a d; = d(11) = do X

10.2 ¢) La distance totale parcourue est diot = d1 +d2, avec di évaluée & la question précédente et ds la distance
parcourue par le véhicule dans la seconde phase du mouvement ou il progresse a vitesse constante.
Or, on a d2 = v1 X T2. Ainsi, on a diot = ap X 71 X (;—1 +7'2).
10.3 A ¢t = 0, Pavion a une vitesse nulle. Sa vitesse au temps ¢ s’écrit alors v(t) = a x t et la distance qu’il
1
parcourt vaut d(t) = 7@ X t2.

. . . v
D’abord le temps t4 ou ’avion atteint la vitesse vg vaut t4 = by
a

. L. - . . . -1
Pour faire 'application numérique, il nous faut exprimer la vitesse v en m-s™~ . On a :

1 50m st
— . t d. tg = ———— — 20s.
3600s 50m -s et donc t4 55m. 2 Os

180 x 10°m
Vg = —————

La longueur de la piste correspond a la distance parcourue pendant cette durée, donc :
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10.4 La vitesse de la voiture & un instant ¢ ’écrit v(t) = v; — a X t avec :

~ 110 x 10°m

s =110km-h™! = = s
v 0km 3600s 30,6m - s

_ ;  30,6m-s!
Ainsi, le véhicule s’arrétera a la date ¢, telle que v; —a Xt =0m - s ! Onat,= L % =3,06s.
a m-s

1
La distance parcourue pendant le freinage vaut d(t) = v; X t — ia x 2.

2

v
La distance d’arrét d, correspond a la distance parcourue pendant la durée ¢, : c’est d, = 21 = 46,7m.
a

€. - & = cos(f
e e_ézcos( +§):—sin(9)
€, ey =0.

Par conséquent, on a :
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10.8 a) La vitesse de la balle a I'instant ¢; s’écrit T(M, t1) = vy (t1)es + vy (t1)ey, avec :

z(t + At) — z(t1) (1) ~ Y AD = y(h)
At n = At

et At =0,05s.

Vg (tl) ~

Nous obtenons le tableau suivant :

t (en s) 0 | 005010 | 0,15
vy (enm-s ') 7 7 7 7
vy (enm-s~ ') | 11,8 | 11,4 | 11,0 | 10,6

A Dinstant initial, nous pouvons écrire : vy ~ \/(7111 . s_1)2 + (11,8111 . s_1)2 =13,72m-s ' =494km-h~".

10.8 b) L’accélération de la balle a linstant ¢1 s’écrit @ (M, t1) = az(t1)es + ay(t1)ey, avec :

Vg (tl + At) — Vg (tl)
At ’

vy(ts + At) — vy (t1)
At

az(t1) ~ ay(t1) ~ et At =0,05s.

Ceci donne :

Tm-s ' —7m-s7! _ 11,4m-s71 —11,8m-s7! _
az(0) ~ 505s =0m-s2 et ay(0)~ 005 = 2

0
10.11b) Onab= -5 - Ainsi, b est homogene & un angle sur un temps au carré. Comme un angle est une grandeur

sans dimension, on a bien le résultat donné.
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4 2 1
10.12 ¢) On a w = 4,78 tour - min~' = W =0,5rad - s™'et - = w? = (— - w2) =0s 2
T

Ainsi, on a @(M,t) = —9T0% o ~t/7g2 L’accélération est donc orthoradiale.
T
N Loy 11 ° oy 1 WP
10.12 d) Ona @(M,t)- T(M,t) = roe 2/ (_ (7 - ‘*’2) - QUJ) = roZe 2/ (—3 Y ) < 0. Le mouve-
T T T T
ment est donc décéléré.
_ 0 _ _
10.12 e) On ar =roe UT et t = . Donc, on a r = rpe 0/x7) _ poe™ car wr = 1.
w

10.13a) Ona a(A) = . En projetant sur 'axe (0, e,/), on obtient —a = 4 Puis, en calculant

dt
va(t) t
/ dvA:/ —adt,
vo 0

10.13b) Ona @(B) = d”d(f)

dv
. En projetant sur l’axe (0, &,/), on obtient a = =B, Puis, en calculant

dt
vp(t) t
/ dvp :/ adt,
0 0

da'y z’, (t) ) t t
10.13 ¢) Sur I'axe (0,e5/), on a va(t) = e Donc, on a / dx’y :/ vadt = / (—at + vo) dt.
0 0 0

on obtient vg(t) = at.

1
Donc, on a x4 (t) = —Eat2 + vot.

’ zg(t) t t
10.13 d) Sur l'axe (0,¢€,7), on a vp(t) = dgf- Donc, on a / dap = / vpdt = / at dt.
L 0 0

10.13 e) Nous observerons une collision & la date t; si 24 (t1) = z

o5

1 1
(t1) donc si —iat% + voty = §at1 + L.
Donc, t1 doit étre une solution réelle positive de I’équation suivante :

L

v
- 24+ = =0,
a a
.. . N vo ) 2 L . . 02
ce qui impose une valeur positive pour son discriminant A = (—) —4— > 0. Donc, on doit avoir L < o
a a a
Apres application numérique, on trouve que la distance L doit vérifier L < 67 cm.
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dv

10.14a) Ona @ = e 7. En projetant, nous obtenons :
dvg
=0
dt
dv, _
a -~ 7

Donc, on a vz = C* = vg,. En intégrant une deuxiéme fois, vu que M est initialement en O, on obtient : z(t) = vost.

10.14b) Ona @ = i—: = ¢. En projetant, nous obtenons :
dvg
=0
dt
dv,
a -~ 7

v, (t) t

Donc, en intégrant, on a / dv, = / —g - dt donc v, = —gt + vo,. En intégrant une deuxiéme fois, vu que M
V02 0

est initialement en O, on obtient :

1
z(t) = —§gt2 + vo,t.

10.14 c) A partir de Pexpression de z(t), on peut écrire t = z/vo,. On remplace ¢ par cette expression dans z :

1
= —59(x/v02)” + v0:/vos.

2, Yo
gx+ “x

Finalement, on trouve I’équation z = — =5
2v5,, Voz

10.15 a) On suppose que le lion et la gazelle se déplacent en ligne droite sur 'axe (Oz). On prend 'origine des
temps au moment ou la gazelle apergoit le lion et lorigine de 'axe (Ox) a la position du lion quand la gazelle
I’apergoit.

On integre deux fois pour avoir la position du lion zr, puis celle de la gazelle ¢ en fonction de temps :

1
l‘L(t) = vot + iaLt2

1
xg(t) =dpy + 50,(;252,

avec vg = 5,0m~sfl7 ar, :3,0m~572, ag = 2,0m-s*2 et dop = 10m.

Puis, on égalise ces deux positions pour déterminer le temps ¢1 ou le lion attrape la gazelle. On obtient une équation

du second degré sur t; :
%t? + vot1 — do = 0. (*)
On résout cette équation du second degré qui admet deux racines réelles dont 'une est négative. Le temps cherché

*voJr\/Z

arp —ag

est la racine positive : c’est t; = ott A = v + 2do(ar, — ac) est le discriminant de I'équation ().

On trouve finalement ¢t; = 1,7s.

1 _
10.15 b) La gazelle aura parcouru la distance d = §act§, avec ag =2,0m-s et t; = 1,7s le temps mis par le

lion pour rattraper la gazelle. Finalement, on trouve d = 2,9 m.
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Fiche n°11. Principe fondamental de la dynamique

Réponses
11 P F mavs
mi + Mo
11.28). ..o \/(me2 —T)? 4 (mg)?
11.2b) . arctan (W)
11.38) i ap(t —to)
11.3 D)t [0]
1123 €)oo a—ko {1 e_k(t_t(’)}
114a). .o ’cos(a)e__{ + sin(a)e,
114Db) oo ’ —sin(a)e, + cos(a)e, ‘
I ) ’cos(a)e_; + sin(a)e,,
11.4d) .o ’ —sin(a)e, + cos(a)e, ‘
11.5a) e ’ —Psin(a)e, — P cos(a)e, ‘
115 D)oo
11.6a) . .covveniinen... ’ Pcos(0)e, — Psin(@)e_é‘
116 D) oo
11.6¢).ernnn... ’ (Pcos(0) —T)e, — Psm(@)e_é‘
11T ) oo Pe;
11.7b) oo ’ —T cos(8)e, — T'sin(0)e,
11.7¢) et ’ (P —Tcos())e, — T'sin(f)e, ‘
11.8a)......... GCLOt2 + xo> & — votée, + 2062

11.9¢)..oienn.... (vot + zo)ex + Yyoey + %gt%_z’
11.10a) oo ’cos(@)e}’—l— sin(@)e‘y"
11.10b) ..o ’ —sin(0)es + cos(@)e_y"
11.10¢) oo —0sin(0)é, + 0 cos(0)e,
11.10d)............... —fcos(f)e, — Osin(f)e,

TR TS W

(it — réz)e_ﬁ + (27'“9 + 7’9.)6_5

1113 8) o

11.17Dh) oo fm% + Psina
TLA8 A) ce oo 2%
T1.A8 D) oot g %
1108 C) oveee e g
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Corrigés

11.2 a) Pour obtenir F, il faut pouvoir éliminer a.. L’astuce consiste & utiliser I'identité suivante :
sin? a4 cos®a = 1.

Fsina = mRw” — T
On a { sma = maw , soit F*(sin” a + cos®a) = F* = (me2 - T)2 + (mg)®. Finalement, Dintensité

Fcosa =mg

d’une force étant positive, on trouve F' = \/(me2 —T)* + (mg)?.
Lo . Fsina = mRw® — T . . .
11.2 b) Quand on écrit le systéme sous la forme , on s’apercoit qu’il suffit de faire le
Fcosa=mg
rapport des deux équations pour éliminer F'. On obtient :

mRw? — T

Rw* - T
tana = ——— , d’ou « = arctan (mw)

11.3 a) La solution générale s’écrit v(t) = aot + C1, olt C; est une constante d’intégration que 'on détermine &

l’aide de la condition v(to) = 0. Cette condition donne C; = —aoto, d’olt la solution v(t) = ao(t — to).

kt

11.3 b) La solution générale s’écrit v(t) = Ae™**. La condition initiale v(to) = 0 implique A = 0 puisque e ** > 0
pour tout ¢. Ainsi la solution est v(t) = 0.

11.3 ¢) La solution de I'équation homogene est v(t) = Ae™*". Une solution particuliére (constante) est v = %.
Les solutions sont v(t) = Ae™ " + %. La condition initiale v(to) = 0 donne A = f%ekto. Il en découle la solution

générale : v(t) = %0 [1 _ e#c(tfto)]_

11.4 a)

La composante suivant e, correspond au produit scalaire :

@ -ex =1 x cos(a).

De méme, la composante suivant &, est le produit scalaire
@ e, =1xcos(r/2 —a) = asin(a). On peut retrouver ces ré-
sultats géométriquement (cf. ci-contre).

Sur le schéma proposé, —7/2 < o < 0. On peut introduire 3 tel
que B — a = 7/2. La composante suivant e, vaut :

be=b -2 = cos(f) = cos(m/2 + a) = —sin(a).
De méme, la composante suivant e, vaut :

b, = b &, = sin(B) = cos(a).

On peut vérifier le résultat pour quelques situations : & = 0, ou
e —> . Nl —
b =e,;oubien a = —7/2, 00 b =e;.
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11.4 ¢)

—
e
. N . . . y
Il s’agit de la méme situation que pour le vecteur @ mais avec
un angle a orienté comme sur le schéma proposé et donc tel que
—71/2<a<0.0na:
cosa ey
= e = e . x
Ccz = C-eg =cos(a) et cy =7 ey =sin(a). > &
(6
N N . . sin a ey |
On retrouve ces projections a ’aide de la construction ci-contre. .
****** c
11.4 d)
On trouve :
=7 - .
dy = d - eg =cos(n/2 + a) = —sin(a)
et R .
N
dy = d - ey = cos(a). o

La construction ci-contre confirme ces projections.

11.5 a) La composante suivant €, du poids est P, = P.& = Pcos(a + 7/2) = —Psin(a). De méme, sa

—
composante suivant e, s’écrit P, = P - e, = Pcos(a + m) = —P cos(a). Ainsi, le poids s’écrit :

11.6 a) La composante suivant e, du poids est P, = 77’) -ep = P cos(f). De méme, sa composante suivant €0

Sécrit Py = P - &) = Pcos(a+ w/2) = —Psin(f). Ainsi, le poids s’écrit :
P = P cos(f)e,; — Psin(6)es.

T = —T cos(0)es — Tsin(0)e,.

<l
I
8
|
+
<.
S|
+
I
I
5
=+
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11.8 ¢) Dans le systéme de coordonnées cartésiennes, le vecteur accélération s’exprime en fonction des dérivées

secondes des coordonnées : @ = i€, + jjé, + €. = aoé,.

11.9b) L’accélération s’écrit @ = vz€, + Vyey + V2€,. On en déduit :

vy, = 0 Vg = Ch
vy = 0 donc vy = Co
i)z = g Vz = gt + Cd

Les conditions initiales imposent C1 = vg, C2 = 0 et C3 = 0. Finalement, on trouve ¥ = voé, + gte,.
11.9 ¢) Le vecteur vitesse s’écrit ¥ = @e, + yey, + ze..

Par identification avec ’expression obtenue précédemment, on a :

& = r = vot + Cy
y = 0 donc y = 1 Cs
z = gt z = Egt2 + Cs.

Les conditions initiales imposent C4 = xo, Cs = yo et C¢ = 0. Finalement, on trouve :

—

—> —> 1 —>
OM = (vot + xo)ex + Yoy + Egt2ez,

11.10 ¢) 1 suffit de dériver le vecteur e, = cos(f)e, +sin(f)e,, en utilisant le fait que e, et &, sont des constantes

de, d 0 dsin(6
der _ cos( )e_’ + sin( )e_y> Ici, 6 dépend du temps, par conséquent on a :

(vectorielles). On a donc

dt e dt
dcos(d) d§ _dcos(®) =, .
@ @ X a9
De méme, on a d%nt(@) = 6 cos(6). Finalement, on trouve :
ddir = —@sin(h)e; + O cos(9)e,.

11.10 d) En partant de 5 = —sin(f)e, + cos(f)e,, on trouve :

deg dsin(6) _, d 0) _, s
% =— Sl(i( )ez + C(c)li( )ey = —0cos(f)e, — Osin(h)e,
11.11 Le vecteur O_M’ est colinéaire et de méme sens que €,. Sa norme étant égale a r, on a W =re,.
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11.12 a) 1l suffit de dériver le vecteur position en utilisant les résultats des exercices précédents. On trouve :

= = —e, =re, +rbeg.

YT T e .

11.12 b) Dérivons le vecteur vitesse :

o d¥ _ dr_,  .de& | d(rd)_, deg 2 s ¥ PN
a = i 7dte,~ Tdt + a eg +rb T 7( —rf )er+(2r0—|—r6')e@.

11.13 a) Calculons le carré scalaire :
T?=(-F-P)>=F>+P*+2F.P =5,

car F - P = 0. Par conséquent, T'= V5 N2 ~ 2.2 N.

tana = F/P soit «a = 0,46rad.

On peut aussi utiliser les produits scalaires. Par exemple :
T-F=Tx Fcos(r/2+ a) = —TFsino.

De plus, compte tenu de ’équilibre des forces, on a :
T - F=(-F-P)F=-F>-P.F=—F2

Il en découle sina = F/T, soit o = 0,46 rad (c’est-a-dire a = 26°).

c’est résoudre le systeme d’équations suivant
0 T, == T
0 soit T - F

Sachant que F' = 800N et § = 20°, on obtient 7' = 1,17 kN.

11.14 ¢) Résoudre I’équation vectorielle R = 6,

(T" —T)cosd
(T' +T)sinf — F
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11.15 Le principe fondamental de la dynamique impose mg + F =m@. En projetant la relation précédente
suivant la verticale descendante, on obtient mg — F' = ma, ce qui donne F' = m(g —a) = 1,6 N.

11.16 L’homme subit son poids P = m7g et la force de contact due & 1’ascenseur -F (principe des actions

réciproques). Le principe fondamental de la dynamique donne mg — F = m@. En projetant sur la verticale
ascendante, on obtient ma = —mg + F, soit F = m(a+ g) = 80kg x 10,8m -s~ > = 864 N.

3 re —> —> d — —>
11.17 a) Le principe fondamental de la dynamique donne P + ]T,: + ft =ma, avec @ = v e; (eg est le vecteur

unitaire orienté suivant le vecteur vitesse; c’est le vecteur tangent au vecteur vitesse dans la base de Frenet). Si
I’'on projette la relation suivant la normale &, au support, on aboutit & :

dt

P cos(m—a) fn 0 0

dov
P& +faat+h-a=mSe e,
—— — ——

ce qui donne fn, = —P cos(m — o) = Pcosa.

11.17 b) En projetant la relation fondamentale de la dynamique suivant la direction tangentielle au support, on
obtient :
B.& +ha+h-a=mag
t n t t t — dt t t,

P cos(m/2—a) 0 —ft 1

11.18 a) Le principe fondamental appliqué au bloc By donne 2mg + ﬁ—i— ’1_"; = 2ma;. En projetant cette relation
suivant le sens du mouvement, on obtient :

T
GG et R-en+Ti es=2mal e, soit a3 = ——.
N v N —— —— 2m

11.18 b) Le principe fondamental appliqué au bloc B2 donne m§’+7_“2) = masz. En projetant cette relation suivant

le sens du mouvement, on obtient :

- — — — —> . _ T2
mg-ey,+1z-€y =maz-€; soit a2 =g— —
N~ N —— m
g -T2 a2
11.18 ¢) On a les relations :

T1 T2

a; = — et as =g— —.

2m m

Multiplions la premiere relation par 2m, et la deuxieéme par m, puis additionnons-les. On trouve :
2mai + maz = T1 + mg — Tb.

Comme a1 = az et T1 = Tb, on obtient 3ma; = mg, soit a1 = az = g/3.
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Fiche n° 12. Approche énergétique en mécanique

Réponses
12,1 oo (©) 12.98) oo 2+gé+7229+%
m m
12.28) oo mg(f —y) p—
12.9b) ..o +—C+—(=0
12.2Db) oo ’mg(x sin(a) — H) ‘ ) ¢ mC mC
12.20) cuiie e “mgReos(0)|  12.10a) ... 1)
12.2d) .o mgr(cos(1) — 1) + Ey 12.10 b) .o @
123 oot )| 12.10¢) i (a)
2 1210 d) oo
124a) —k(y — £)* — kb ) ©
2
12,01 8) ittt [0]
2 2
1 T 1 L
. = - 1211 D) oo
12.4b) 2 <cos(ﬁ) ZO) Qk(sin(ﬁ) EO) ) @
12.11€) it [0]
124 ¢) i ’Eo +k(z — £o)? ‘ 1201 d) oo [a]
125a) . o 12.1208) 0o (a)
125 D). —hR
) 12.12 D) (a)
12.5C) v —(2a + 2b)h
1212 C) 0
12.5d) .o —(a+b+c)h ®
1212 d) .
12.5€) oo ) ) ®
1206 .o © 12120€) oo ®
2 1202 0) o ()
12.7 a,) ................................ — ﬂ
g 12.138) oo @), (©) et (@
12.7D) e 0,65rad = 37°
1213 B) i M)
12,8 8) ot 58m-s!
12.13C) oo , t
12.8) ° @@
128 €)oo 1213 d) e (@) et ()
12,14 ..o 33,6 m/s
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Corrigés

12.2 a) L’axe est ici orienté vers le bas, on a donc Ep,(y) = —mgy + Ki. On veut Epp(¢) = 0, d’ott K1 = mgl.
Finalement, on a Epp(y) = mg(f — y).
12.2 b) On peut raisonner de deux maniéres :
e La coordonnée verticale (axe de g) z est liée & x par z = zsin(a). On a donc Epp = mgx sin(a) + Ka.
L’énergie potentielle étant nulle en z = H, on a Epp(z) = mg(xsin(a) — H).
e Dans le repere (O, e5,€,), on a ¢ = —gsin(a)e, — gcosag,.

On en déduit le travail élémentaire pour un déplacement selon z :

O0W = —mgsin(a) dx = —d(mgzsin(a) + K2) = —dEpp.

On en déduit que Fpp(z) = mgzsin(a) + Ko.

L’énergie potentielle devant étre nulle en S, qui correspond a x =

12.2 ¢c) Dans la base polaire, 'accélération de la pesanteur s’écrit § = gcos(f)e, — gsin(f)eg. Donc, le travail

élémentaire pour un déplacement sur le cercle (selon eg) est :

SW =mg -dOM = —mg sin(@)Rdf = — d(—mgR cos() + K3) = — dFpp.

On a donc Epp(8) = —mgRcos(f) + K3 et, comme on veut Epp(7/2) =0, on a K3 = 0. Ainsi, on a :

Epp(6) = —mgR cos(0).

12.2 d) Fixons un axe (Oz) vertical ascendant avec O au centre du cercle. L’énergie potentielle de pesanteur
s’écrit alors Epp = mgz + Ky. Or, on a z = rcos(v), d’oit Epp = mgr cos(y) + K.

La convention choisie (Epp(1) = 0) = FEy) entraine que :
mgr COS(O) + K4 = Fp, dou Ky =FEy— mgr.

Finalement, on trouve :
Ep = mgr(cos(w) — 1) + Eo.

12.4 a) L’axe est orienté vers le bas, la longueur du ressort s’identifie donc directement & la coordonnée y.

La force de rappel s’écrit F= —k(y—~4o)éy. On en déduit donc (en calculant le travail élémentaire ou par intégration
directe) que :

1 e
Epe(y) = gk(y - ZO)Q +C*.

Or, on veut Epe(y = 0) = 0, d’ott C* = f%kZOQ. Ainsi, on a :
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12.4 b) On calcule d’abord la longueur ¢ du ressort en fonction de la coordonnée x. Un peu de trigonométrie
2 dont = —
L’ " cos(fB)

potentielle vaut donc :

donne cos(8) = . Par rapport & la coordonnée ¢ (mesurée le long de I'axe (OA)), I’énergie

1
Epo(6) = k(¢ — L) +C*.

On a donc : ,
Epe(z) = Sk —% — 4] +cte
peA™ = 9% cos(B)  ° ’

On détermine alors la constante afin d’avoir Fpe(A) = 0. Lorsque le point M est en A, la longueur du ressort vaut

L , )
L(A) = s (d) On résout donc :

2 2
Epe(Z(A)):1k< L —(o) +C* =0 cequidonne Cte:—1k< L —€o>.

sin(B) 2\ sin(B)

1 T 2 L ?
Epe(ilj’) = Zk(cos(ﬁ) —Eo) — 2k<Slnm — fo) .

Finalement, on trouve :

e La longueur du ressort de gauche vaut x. La force exercée par celui-ci sur la masse s’exprime donc comme

1

ik(ﬁﬁ — 60)2.

° Eg longueur du ressort de droite vaut 2{p — x. La force exercée par celui-ci sur la masse s’exprime donc comme
Fy = k(2o —x — fo)es = k(fo — z)ex (attention au signe devant k qui doit &tre cohérent), d’ot une énergie

}7)‘9 = —k(x — £o)eés, d’ott une énergie potentielle (& une constante pres) E, , =

potentielle (& une constante prés) E, 4 = ik(ﬁo — )%

En additionnant les deux contributions, et en demandant que Epe(£o) = Eo, on obtient alors Epe(x) = Eo+k(z—£)>.

12.5 a) Déterminons le travail élémentaire. On a :

=
171

Or, par construction, les vecteurs vitesse et déplacement élémentaire sont colinéaires, d’ou :
OW = —hdOM.

Par intégration, on a donc :

W = —hdOM = —h dOM = —ht.
AB AB

Les autres cas se calculent semblablement.

12.5 e) Si la force était conservative, son travail ne dépendrait que des points de départ et d’arrivée, et serait
donc nul sur un chemin fermé (points de départ et d’arrivée confondus). Ce n’est pas le cas pour les chemins c) et
d), la force n’est donc pas conservative.

12.6 On applique le théoreme de ’énergie cinétique entre le point de départ et le point d’arrét. L’entrainement
précédent permet d’affirmer que le travail de la force de frottement vaut —hd. On a donc :

1 2
AE. =0— 5mv02 = —hd donc d= m;;(;
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12.7 a) La masse n’est soumise qu’au poids, force conservative, et & la tension du fil qui ne travaille pas car

elle reste orthogonale au mouvement. [.’énergie mécanique se conserve donc entre le point de départ et le point de
rebroussement.

1
e Au départ, Er, = B, = —muvg” (on pose z = 0 pour la position initiale de la masse, et on prend E,(0) = 0).

2
e Au moment du rebroussement, E,, = E, = mgz(0o) = mgl(1 — cos(6p)), car on a alors z(0) = £ — £cos(9).
Ainsi, on a :
1m'u 2 = mgl(1 — cos(o)) donc cos(p) =1 — ﬁ
gt =g 0 AT

12.8 a) En appliquant le théoréme de 1'énergie mécanique entre le début et la fin de la chute libre, on a :

1
Em(tﬁn chute) - Em(tdébut chute) = Qm'UOQ - mg(H - 60)

Les forces étant conservatives, I’énergie mécanique est conservée et on a donc :

vo = /29(H — £o) = /2 x 9,81 m-5=2 x (2,0m — 0,30m) = 5,8m -5 .

12.8 b) La masse n’est soumise qu’a des forces conservatives : son poids, ainsi que la force de rappel du ressort.

On peut donc appliquer la conservation de I’énergie mécanique entre la position d’arrivée sur le ressort (z = £o) et
la position d’altitude minimale (z = z,,), pour laquelle la vitesse s’annule. On a donc :

%mUOQ + mgly = mgzm + %k(zm - 60)2.

1 1 1
Ainsi, aprés calcul, on trouve gk‘zfn + (mg — klo)zm + 51{:(02 — gmvo2 —mgly = 0.

On ne demande qu’une réponse numérique, on peut donc passer aux valeurs numériques pour simplifier la résolution :
50022, — 290,22, + 25,4 = 0.

Cette équation posséde deux solutions, z1 &~ 0,47 m et z2 ~ 0,11 m. La premiére solution correspond & une position
supérieure en altitude a la position initiale, et n’est donc pas celle qui nous intéresse. On retient donc z,, = 0,11 m.

12.8 ¢c) La masse n’étant soumise qu’a des forces conservatives, elle revient en z = ¢y avec la méme vitesse

qu’elle avait en arrivant, a savoir vg. Elle atteint donc une altitude maximale quand sa vitesse s’annule en z = H.

12.9 a) On choisit un axe vertical descendant de maniére & pouvoir identifier z & la distance OM, qui est la
longueur du ressort.
Afin de déterminer I’équation différentielle, on souhaite appliquer le théoréme de la puissance cinétique. Or :
e la puissance du poids vaut mg - ¥ = mg# (axe descendant) ;
e la puissance de la force de rappel vaut —k(z — fo)es - U = —k(z — £o)%;
-

e la puissance de la force de frottements fluides vaut —a¥ - T = —az”.

Le théoreme de la puissance cinétique donne alors :

dEc—i(lmz'z)—méé—m 2 —k(z — o)z — az’
dt — dt\2 - =mg 0 :
D’oﬁﬁnalement:2+gz+fz:g+%.

m m m
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12.9 b) On détermine la position d’équilibre en projetant la premiére loi de Newton sur I’axe vertical descendant :
mg

mg — k(zeq — o) =0 donc zeq = fo + P

On obtient zeq > fo, ce qui est physiquement cohérent.
On pose donc ( = z — zeq. En réinjectant dans 1’équation différentielle obtenue précédemment, on obtient :

. .k Y . .k
(+3<+—(¢+£0+@):g+—° donec {4+ ¢4 =0,
m m k m m m

On peut également obtenir cette équation en écrivant la force de rappel par rapport d la variable ¢ et en en déduisant
l’énergie potentielle associée.

12.10 a) Au voisinage de x = 0%, la fonction énergie potentielle est équivalente & 3/ z2. Ici, la fonction représentée

par le graphe tend vers —co en 0, on a donc nécessairement 5 < 0.

Pour x — +00, la fonction énergie potentielle est équivalente & a/x. Ici, la fonction représentée par le graphe tend
vers 01 en +oo, on a donc nécessairement « > 0.

Ce potentiel est physiquement impossible car Ep(x — 0+) — —00 : l’'énergie potentielle n’est pas bornée inférieu-
rement, on pourrait donc théoriquement utiliser ce potentiel pour extraire une quantité infinie d’énergie.

12.11 a) La position d’équilibre stable correspond & I’état qui minimise 1’énergie potentielle.

e Déterminons le minimum de Iénergie potentielle E,(0) = mgl(1 — cos(6)) en cherchant la valeur .4 telle que :

dE,
o

d*E,

(geq) =0 et W

(Beq) > 0.

La premiére égalité donne dE, (0cq) = mglsin(feq) = 0 et donc eq = 0 [7].

dé
nal d’E, B
Finalement, en tenant compte de W(ﬂeq) > 0, on trouve foq = 0 [27].

e On aurait pu remarquer que les minima de mgé(1 — cos(6)) correspondent aux maxima de cos(f), qui sont bien
les oq = 0 [27].

12.11 b) On dérive ’énergie potentielle, en écrivant :

dEp =Kz + 22>
dz

dE. / /
L’équation q P2 =0 a alors trois solutions : z;1 = 0, zo = 7; et z3 = — 7;.
z

Il s’agit des positions d’équilibre de ce potentiel.

On dérive une seconde fois afin d’étudier la stabilité. On a % =K+ 3222
Finalement, on obtient : dng (=)= >0
dz?
dszzp (z=122) = I€+3A<*§) =-2k<0
d;b;p( = 2) = n+3A(—§) — 2k <0
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12.11 ¢) On calcule la dérivée de Iénergie potentielle :

dE,
dx

= 2U0ﬂ3:e5“°2,

qui montre que d—p s’annule pour z = 0, qui est donc une position d’équilibre.
x
Pour étudier sa stabilité, on dérive une seconde fois :

d’E,

T2 = 2UeB(1+ 282%)e""",

qui, en z = 0, vaut 2Uy > 0. Cette position d’équilibre est donc bien stable.

12.11 d) On calcule la dérivée de ’énergie potentielle :

dE,
d¢

= 2Fy sin(¢ — a) cos(¢ — a).

dFE,
Ainsi, —2 s’annule pour ¢ = a et ¢ = a + g, qui sont les positions d’équilibre dans l'intervalle [0, .

do

Afin d’étudier leur stabilité, on dérive une seconde fois :

By g
i o(cos”(¢p — a) —sin®(¢ — a)).
., d°E, . . o, . s
e On calcule ensuite 152 (¢ = a) = 2Fy. Ce dernier terme étant positif, la position d’équilibre ¢ = a est donc
stable.
’E,
e Pour l'autre position d’équilibre, on a d¢2p (p = a+ 7/2) = —2F). Cette dérivée seconde étant négative, la

position d’équilibre ¢ = a 4 7/2 est instable.

12.18 d) Le mouvement entre x2 et z3 correspond a un état 1ié : c’est un mouvement dans un puits de potentiel.
Comme le mouvement est & un degré de liberté, il est également périodique. Cependant, les positions extrémes
étant éloignées de la position moyenne (d’équilibre z3), ce mouvement n’est pas harmonique.

12.14 On a vu précédemment que les trajectoires correspondant a 1’énergie mécanique Es3 sont des états de
diffusion, le point matériel peut donc bien s’échapper a l'infini.

Le mouvement du point étant conservatif, on applique la conservation de 1’énergie mécanique entre le départ et
« Parrivée » a l'infini. On a :

1 2F 2x1300kg-m? s 2 _
FE3 = fmvgo donc Voo = o x 1300kg - m” - s =33,6m-s L
m 2,3kg
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Fiche n° 13. Moment cinétique

Réponses
13.108) .o — ||| cos® —6
13.4€) e -33
13.1b) .o IN| cos(y + B) 24
131 e IR s+ o) | yg gy <—33>
— 24
13.1d) e —|T|| cos(v)
e 13.5 -la Terre
13.1€) i IN]| cos(5)
136 oo mrousin(a) e,
131 F) oot |N]| sin(B) :
— — 187 - M L?
13.28) . 0o P=—|P|e 3
= 1
13.2b) ... IP||(~ sin() &> — cos(6) &) 13.8 oot EML2
13:2.) o TNy | qg9 2 MR
5
13.2d)....... T =T (- & + sin(v) &

) I cos(y) & + sin(y) &) 13.10a) . ..o —éFsinozcosoz‘
13.2¢) ... B[ (cos(8+ ) & +sin(0+a) &) | 1310 b) ... 0]
13.216) .. | Rl[(cos(e) &7 + sin(a) 5) 13.11a) o ng cosae,
13.2 g) IN[[(=sin(B +7) e + cos(8 +7) &)

13.11b) .o fmg(f — —cosa) e,
13.2h) ... IN](cos(B) e + sin(B3) &3)
——— 1 13.110) e - (e . ) >
13.38) eeeinieineinn IB|| || cos(8 + o) & ) " coma)e
—> a _, —
13.3b) it —||T|sin(v) &2 13.12a). oo 5 X taey
13.3¢) i INl[cos(Y +B) €] 1812 b) . oovee %e_x’—i— ge_y’
-7
18.48) . 0o (14) 13.12¢) o | P(—sina ey — cosaey)|
-7
13.12d) ..o ’F(—cosa(?)?—&—sinae—y')‘
7 .
13.4b) . <14> 13.12€) oo aF(S“;O‘ + Cosa) &
7
13.40) oo 13.120) . ap(- 52+ ) &
13.4d) . oo 3P _6F
1312 8) oo S
&) 3F + 2P
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Corrigés

13.1a) On calcule B - & = | P|| x ||&3]| x cos(x + 0) = —|| P|| cosb.

[
w
w

&
o
=
Q
2,
e}
g
@
e
>
=
Il

i

)

8
>

e

=
2

=
_l’_
L
S
_l’_
2.
=B

=
Jr

L

&
I

L

=

B

Yy
@

S

_|_

&

i)
>

o
_l’_
o)

1 6 2x4-3x%x5 -7
13.4a) Oncalcule (2| A 5] =[3x6—-1x4]=|14|.
3 4 1x5-2x6 -7

6 1 1 7 1 TX3—-T7TX2 7
13.4b) Oncalcule |5 ]+ (|2 [Al2]=(7T|A|2]=[7Tx1-Tx3]=|-14].
4 3 3 7 3 Tx2-7Tx1 7
B.

. . . —> - —> . N - —>
On aurait aussi pu voir que, comme on a A A A = 0, cela revient &4 BA A = —

hl S~——

13.4 ¢) On a déja calculé ANAB et il suffit de prendre la premiere coordonnée pour avoir le produit scalaire sur
€2, qui vaut alors —7.

N 6 1 5x0—4x0 0
13.4d) On calcule d’abord BAe, =[5 A[0]=[|4x1-6x0])=[ 4 |,dou:
4 0 6x0—-5x1 -5

1 0
Z.(EAE;)_<2>.<4>_1x0+2x4+3x(5)_815_7.
3 -5

N
On retrouve le méme résultat que précédemment, ce qui correspond éu_l)a propriégé du produit mixte : si_@', bet?T
sont trois vecteurs de R?, alors on a les permutations circulaires @ - (b AC)=b - (CAT)=7C- (T A D).

~—

/6 0 5x(—1)—4x1 -9
13.4e) On calcule d’'abord BAC=|5]A|l 1 |=[4%x0-6x(=1)| = 6 ].On calcule ensuite :
4 -1 6x1—-5x0 6

1 -9 2Xx6—-3x%x6 —6
ANBAC) = <2>/\<6> :<3><(—9)—1><6>:<—33>.
3 6 1x6—2x (—9) 24
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1 0
13.4 f)  On calcule séparément A.C= <2> . < 1 ) =1x0+2x14+3x(=1)=—-1let:
—1

1 6
A-B=|2] [5)|=1x6+2x5+3x4=28.
3 4
(A-OVB-(A-B)C=(-1)x|[5]|-28x|1]|=[-33).
4 -1 24

On retrouve le méme résultat que précédemment, ce qui correspond a la propriété du double produit vectoriel : si
- 7 — . 3 — 7 >\ _ (> > e - 7\ =
@, b et € sont trois vecteurs de R, alorsona ¢ A(bAC)=(ad-C)b—(a-b)7C.

On a alors :

13.5 Commencons par tout remettre dans les bonnes unités pour pouvoir calculer le produit m X r X v, qui
correspond au moment cinétique puisque le rayon vecteur est bien perpendiculaire a la vitesse pour une orbite
circulaire.

Masse en kg Distance en m  Vitesse en m - s™'  Moment cinétique en kg - m?.s7?
Mercure | 3 x 10%* 6 x 10" 5 x 10* 3x6x5x10°" =9x10%
Vénus 5 x 10%* 1,1 x 10 3,5 x 10* 5% 1,1 x 10% x % ~ 2 x 10%°
Terre 6 x 10** 1,5 x 10 3 x 10* 6 x g x 3% 10% = 2,7 x 10*°
Mars 6 x 10** 2,3 x 10" 2,4 x 10* < 6 x 10%® x g X g ~ 3,7 x 10%

C’est bien la Terre qui gagne finalement le concours du plus grand moment cinétique.

ol
|

13.6 Le vecteur vitesse s’écrit dans la base (e, eg) comme U = v(cosae, +sinaeg). Le produit vectoriel
——
avec OM s’écrit alors :

[
OMAmMY =ré, Amv(cosae, +sinaeg) = mrusinae, A &.

13.7 On calcule :

T T3 T 12
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2 R 5
R
13.9 On calcule les trois intégrales indépendamment. On a bien sir / dy =27 et / r* dr = ——. Reste

0 Jo
I'intégrale sur 6 qui peut se résoudre avec un changement de variable en u = cos 6 (qui donne du = —sin @ df) :

™ T -1 371
/ sin® 0 d@z/ sin 6 (1 — cos® ) d@z/ —(1—v?) du= |:u—u:| zé.
0 0 1 3],

Finalement, on obtient In =

13.10 a) D’une part, on commence par déterminer l'expression du vecteur F dans la base (é2,€y). On a ici, en
—_>

notant F' la norme du vecteur : F' = F(cosae, — sinaéy).

D’autre part, en notant M le point d’action de 1_5’), on a OM = /sinaé,. On peut alors calculer :
Mo(F)=OMAF = sinaé, A F(cosaes —sinag,) = (Fsinacosa (—e2).

L
13.11 a) Dans cette configuration, le bras de levier vaut 3 cos « et le point fait tourner dans le sens trigonomé-
—_— - L —
trique autour de A, de sorte que M (P) = mg cosae,.

13.11 b) Cette fois-ci, le poids fait tourner dans le sens horaire autour de O avec un bras de levier complémentaire

L
du précédent de ¢ — 3 cosa, d’ou le résultat.

13.12 g) Pour qu’il y ait équilibre, la somme des deux moments doit s’annuler. Les deux étant suivant ez, on doit

sin « cosa  sina
aF( 5 +cosoz)+aP(— 5 + 3 )—0.

En divisant par acos a, il vient :
Ftana+F £+Ptana
2 2 3

=0.

On obtient donc :
§—F 3P-6F
§+§ T 3F+42P°
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Fiche n° 14. Champ électrique

Réponses
14.1 a) ............................... \/a2+y2 14.5 g) ......................... (:U+a)2—|—y2
14.1b) B = -
[+ 2 145h) ... Vr2+2ax+a
14.1 ¢) Yy 145 1) i, /72 + 2ar cos(f) + a2
LC) ———
s 14.5 ) ! q
7 - B) o a8
14.1d) .ol ﬁ( ae; + yey)
vas+y 1 ( 1
q
4meo r2 — 2ar cos() + a?
14.2 oo (©) 14.5 k) \/_ | )
— 2+ 2ar cos(8) + a?
143 8) o vr
— 1 ¢ 2a
14.3 D) oo —€, 14.6 2) - oo oo Y O el
) - 2) dmeg T r
14.3C) i
1 s(6
14.3 d) e_’ 14.6 b) .......................... &b()
Bd) M dme, 12
14.48) oo ) 1 gaf/ 1,
14.6C) . oveeee 3 50
TEQ T
TAAD) oo Vo 0
1 gqa
14.6 d) v L
2 2
T4 €)oo aVo dmeg 1
m
1 g¢q 2
14.6€) ..., - 1+ —
14.4 d) Vo K dmeq v n( 2)
.................................. o 1
q —> —>
14.7a)........ — (sin(20)e, — 2 cos(20)eq
TAA ©) oo 'U(;) ) irey 20 20
14T D) oo - 8 ]
14.5a) 0 ciiii (z —a)® + y2 o @
5 —1
145 D)oo g T ©) o 27 107V ‘
1 qa — . —
14.5¢) oo 2 ez t+az| 1488 Tneg 3 (2c0s(0)er + sin(0)¢))
14.5d). oo 0
) reos®) ] 148 D) e 4#%55
TEY A
14.5€) ..o, V72 = 2ar cos(f) + a2
148 C) oo 34-10'Van |
1
14.56) .o d :
dmeg /r? — 2ar cos(f) + a? 14.98) oo 5 Eod
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1 8
14.9D) i —FEud 14.10b) .. 571'R3p0
2 16 .
14.9C) it —Eod|  14.100¢C) ..o —R?
) 3r " ) p o
14.9d). .. 1400 8) oo
8 4
1490 8) oo §7T33p0 14.11b) oo gwRQh
14.11 ¢) S R2
Al ) —
15
Corrigés
14.1 a) Dans le triangle rectangle OAB, on a BA = y/a? + y2.
. _a a
14.1 b) Dans le triangle rectangle OAB, on a cos(«) BA 7m.
i i S
14.1 ¢) Dans le triangle rectangle OAB, on a sin(«a) = BA \/m.
14.1 d) La composante suivant e, correspond au produit scalaire :
F,=F &= ||FH cos(a+ ) = —||FH cos(a).

De méme, la composante suivant &, correspond 4 :

F, = I—%-e_y’z Hf”cos(—% +a) = HFHSina.
Ainsi, on a :
- a — Y
Fo=—|Fll—— et F,=|Fll—F——-
® a2+y2 v a2+y2

Finalement, on a :

14.2 Une force attractive a une valeur négative, la charge qui attire le plus est donc la charge avec la force

négative la plus importante en valeur absolue, soit la réponse @ En effet, on a :

2,00C 5 -2 —3,0-1073C _
FIC=—>"% _195.10°Cm - 30070 e gt om 2
@ F/ (4,00 10-3 m)? © F/e (200 - 10~6 m)? 75107 Cm
—5,0-10% _ 1 _
(b)F/C:L(LC:—3,1.104Cm2 (@ F/ :%—2,5.10301112
..................... (O 4m)7 T (200007 I) T
14.3a) On a qoq1 = q2 et qoge = q2 donc fl/o = —Fye, + Fye, et F‘)Q/O = Fye, + Fye,. Ainsi, la somme des

deux forces est F = 2F,e,.
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14.3b) On a qgq1 = ¢ et gogz = —¢° donc F)l/() = —Fye, + Fye, et F)Q/o = —Fye, — Fye,. Ainsi, la somme
des deux forces est @ = —2F.¢e..

14.3c) On a qoq1 = —q2 et gogz2 = q2 donc Fl/o = Fye; — Fye, et Fg/o = F,e; + Fye,. Ainsi, la somme des
deux forces est ' = 2F,e..

14.3d) On aqq = —2¢% et gog2 = —2¢° donc 1.51/0 = F.e, — Fye, et ﬁg/o = —F,e, — Fye,. Ainsi, la somme
des deux forces est F = —2F,¢,.

14.4 a) Comme Vj est homogene & un potentiel électrique, ’argument entre parentheses doit étre sans dimension,

ce qui est le cas dans ’expression :

Donc, on a :

1 ofa\ 1 a\ _ [qWo
2 (2) 7@V et donc ”(2) “Vom
14.4¢) Ona
U(g) _ JaVo _ [2¢V% 1 [2qVo v(a)
2/ Vom \V 4m 2 m 2

14.5 ¢) En utilisant Pexpression de r* en fonction de z,y, on a :

BM:\/(m—a)Q—i—yZ:\/x2—|—y2—2a1’+a2:\/7"2—2ax—|—a2.
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14.5 ¢)

En utilisant I’expression de x en fonction de r, 8, on peut écrire :

BM = \/7“2 —2az +a® = \/7‘2 — 2ar cos(0) + a?.

14.5 f)  En utilisant les expressions de V;(M) et de BM en fonction de r,a, 6, on a :
1 @ 1 q
Vi(M) = = = .
dmeg BM  4meg \/7"2 — 2ar cos(0) + a2
14.5 g) Dans le triangle zCM, on a CM = 1/ (z 4 a)® + 32
14.5 h) En utilisant ’expression de r? en fonction de =z, Yy, 0on a :
CM =/(z+a)* +y2 = \/x2+y2+2ax+a2 = \/r2+2am+a2.
14.5 i) En utilisant I'expression de x en fonction de r, 6, on a CM = \/r2 + 2azx +a? = \/r2 + 2ar cos(0) + a?.
14.5 j)  En utilisant les expressions de V2(M) et CM en fonction de 7,a,6, on a :
1 @ 1 q
Va(M) = —_— = .
4meo CM 4meg \/r2 + 2ar cos() + a?
14.5 k) En utilisant les expressions de Vi (M) et V2(M), on trouve :
VM) = VA(M) + Va(M) = g : :
= 1 2 = - .
dmeo \/r2 — 2ar cos(0) + a? \/’/‘2 + 2ar cos(0) + a?
14.6 a) A Pordre 1, on a (1+2)* ~ 1+ azx. Ainsi, on a V(g> ~ ! g(1 - 4—a> _ ! g(1 — z—a)
T deg T 2r dmeg 7 r
14.6 b) A Tordre 1, ona (14 z)* ~ 1+ az. Ainsi, on a :
a 1 ¢q a a 1 gacos(9)
- =~ 1+ — 0)—(1-— 0 = ——2
V(r) Aeg T ( + 2r c0s(6) ( 2r cos( ))> 4eg r2
14.6 ¢) A Pordre 2, on a cos(f) ~ 1 — 102 Ainsi, on a V() ~ L %( — l92)
) ’ - 27 ’ ~ 4reg 12 2
AT . a 1 qa 1 gqa
14.6 d) A lordre 1, on a In(1 + z) = z. Ainsi, on a V(f) ~ =— = =.
r Ameg T T 4meq 72
14.6 ¢) A lordre1,ona (14 z)* ~ 1+ az. Ainsi, on a :
a 1 g [(1+2% 41 1 q. [2+2% 1 g r2
Vi-) = =1 - = =1 - = ZIn(1+ = |.
(7‘) ey n 1+¥_ deg n % dmeg n( +a2)
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14.7 a) On calcule :

§<M):6( 1 qsin<29>>e—;18< L q(?@))a

or \ 4reg r r 00\ 4reg r

_ 1 . 0 (1\_ 1 Osin(20)_,
= _47T50q<sm(29) o (T>er + 2 90 eg>

— L9 (sin@0)Er — 2c0s(20)2).

14.7 b) Pour M(r = 279 = 7T>, le champ est F(M) = Treo 7(%)2 (sin(2m)e; — 2cos(2m)eq) = p——
14.7¢c) Ona:
- 8 ¢ 8 6,0-10""'C 5y -1
EM)|| = = = =2,7-1 . .
Al dmeg a? 4w x 8,85-10712C.V-Lm~! (4,0.10-3 m)2 ,7-10°V.m
14.8 a) On calcule :
= 0 1 gacos(f)\_ 10 1 gqacos(d)
EM) == B e - -2 gacos’y)
(M) or <47T80 r2 € r 00\ 4reg r2 ©o
_ om0 (1N, 1 09cos(d)_,
T T dme <CO§(Q) or (7“2 )er + r3 00 69)
1 gqa — .
o T—S( os(f)e, + sin(6)eq)
14.8 b) Pour M(r =a,0 = 7>, le champ est :
Zan L gqa T\ . (T\) _ 1 g,
(M) = dmeg ad (2COS< )6T +Sm(2)69> " 4dmeg a2
14.8¢c) Ona
—11
IEo)| = — % = ! 60-1077C 44 10"V,

Ameg a?  4m x 8,85-10-2C.V-'m~! (4,0 10-3 m)

d 2
T d T 1
= —_ = = — (1 - = —
1498 0navio)= [“E(1-2) a0 -5(1-5)] = Jrua
d d
T 2d 3mx 2
14.9c) OnaV(0)= ; Eosm(?a)d EO[—3—WC (73)}0 37E0d
.................................... Y
14.9 d) OnaV(O):/ EO(17e*’”/d)dx—Eo[x} on{fde*I/d} = Eode ™!
0 0 0
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14.10 a) On calcule :

27 T R
Q= / / / 2p07° sin(6) dr df dg
0 o Jo
2w T R 27 T 7,3 R
:2po/ dga/ sin(0) d@/ r?dr = 2po {gp} X [fcos(e)} X [—}
0 0 0 0 0 3 0

3 3
= 2po(2m — 0)(— COS7T+COSO)<]§ — g) =2po X 2T X 2 X % = -mR’po.

14.10 b) On calcule :

27 R 4
—2/ dQO/ bln@)dg/ % /)07“2d7":2p0><27r><2></0 %dr

R
- 121" (1RS 10\ 8 4
8”0”{5}22]0 =5 (5R2 5 R? )p°5”R po-

14.10 ¢) On calcule :

27 2m 1
Qz?/ sm( ) odgo/ sin (6 d0/ — r2dr:2po>< [—2cos§} X 2 X gRS
0 0

4 1
= gRS(—Qcowr—i— 2cos 0)po = gRS(Z +2)po = EGR%O.

14.11 a) On calcule :

Q= / / / 3rdrd0dz—3/ dz/ d0/ rdr—3 >< {GKW X [g}:
=3(h— 0)(27‘(—0)(};2—0) 37 R’h.

h 27 R r 3 RT4
Q=2 dz d9/ (—) rdr:2><h><27r/ —dr
0 0 o \R o R

R
17° 1R 10 4 .,
=drh|z—| =drh( % — = | = =7Rh.
i [55:6]0 i <5Rd 5R3> 5"

hrz\2 1 (123 " 013"
Q—Z/O (ﬁ) dz/ sm d@/ = rdr-?ng 32 0{—2cos§}0

2 210 10 2 5 1 8
:ER (323h2>(2cos7r+2c050)—5R XghX4:ﬁR h.

78 Fiche n° 14. Champ électrique



Fiche n° 15. Particule dans un champ électromagnétique

Réponses
15.1a)......... 6,3 x 10" eV 15.6a).............. 15.9b) ... ® et ()
151Db)..........o.LL. 1,55eV 156Db)......... quB cos(a)e; 15.9C) evneenneeniii, @
15.1¢)......... 50 x 10717 - s(a)en
°) X 15.6¢). | 1P (frosigl‘z‘()f)%,) 15.9d) oo nqU
. Yy
15.1.d). 15.90) .o
15.2 oo fau| 19 7a) [0] T
— 15.10a)............ —TAB
15.7b) ... E
15.32) i () ) =y m
3v2 15.10b) ...l ey
153D eeeeeeiini @] 158.7¢)........ V2 5.10 b)
: |
15100 [R50
15.48) i s d gEv
o A 2 15.10d)....... Rieg — RO*e;
15.4Db) ...l —+C
muv
15.82a) . ............. VBT 15100). o
15.4¢)nnn.... —BIn(r) +C q |a1B
mug m
_ 15.8b) ..., 3— _m
15.4d). .o yay + O ) V3 oE 15.10 f).oeeennnn. .. 2 s
15.5a) . ceeiiiin... qFe,
158 ) g 15.11a)....... q(E — v B)e,
15.5b) ooiiinn. —
159a)............... 1,5MV 15.11b)............. v = —
15.5 ¢) aB(cos(8)ey 8
) —sin(f)e,
Corrigés
15.1a) OnaleV=16x10""Jdonc1J=1/1,6x10" eV =6,3x10"%eV.
15.1b) Ona248x 10 ?J=248x10""Jx6,3x10"®eV/J =1,556V.
15.1¢c) Ona3leV=31eVx16x10""J/eV=>50x10"1J.
15.1 d) On peut comparer les énergies en €V : Eyiolet = 3,1V > 1,55€V = Erouge
15.2 Onalerg=1g- em?® - s72=107% x (1072)2kg m?-sT2=1x10""1J.

Avec ¢ = 3,00 x 103 m - s7*, la masse de kaon peut s’écrire, en kg :

7,90 x 10711 J
(3,00 x 10°m -s7")

Mkaon =

5 = 8,78 x 107 * kg.
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Comme 16V =1,6 x 107 J, on a :

6 —19
o = L0 X L6 XA070T g goomye
(3,00 x 10°m -s7")

C’est donc la particule tau la plus massique.

15.3 a) Le champ est d’autant plus intense en norme que les équipotentielles sont proches : pour un méme

déplacement EZ, la variation du potentiel électrique est plus importante.

15.3 b) Le champ électrique est orienté dans le sens des potentiels décroissants et orthogonal aux équipotentielles.
Le champ est donc orienté vers le haut a droite.

o
3

15.7 a) La puissance est P = F-7= q§~ U = qEwv, avec v, la composante de la vitesse suivant e, (v, =
On a donc Pa = 0.

2
. qFEv
15.7 d) De méme, on calcule Pp = — cos(f>qEv =—=
2 2 q 2 muo
15.8 a) Comme to est 'instant ol la norme de la vitesse est double, on a 4vy = v+ (—to) , donc to = V3 o
q
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15.8 ¢c) A linstant t = tg = t1, la vitesse peut s’écrire :

2 2

T = woes + V3uoe, = 2uo (16_;+ \/ge—y’) = 2ug (cos(g)e_;+ sin(g)e_;).

1 2 2 2
15.9¢e¢) Déja, on a: nqU > Em(—) = n > . Comme [mc = 5, on en déduit qu’il faut au
q q
moins 5 condensateurs.

15.10 a) Les forces s’appliquant & la particule sont le poids et la force de Lorentz, mais on néglige le poids. Par
ailleurs, il n’y a pas de champ électrique, donc ma@ = q¥ A Bdonad=19nB.
m

15.10 e) On résout la question et on représente la situation.

En utilisant le principe fondamental de la dynamique et en projetant sur N
les axes e, et €5 : e Er
~R6* = LRBé
R m
RO = 0. oB
2
En utilisant le fait que R§* = % et RO = vg, on obtient, d’apres la premiére
2
ligne, _% _ ngo. Ainsi, on trouve R = Y%, Comme ¢ < 0, on a
R m qB
|gl = —q et on a donc R = mo To
lq|B
2TR mvp 1 m

15.10 f) Le périmeétre du cercle parcouru vaut L = 27R et donc T' = =2 — =2T——.
vo g1 B vo lg| B

15.11 a) L’expression générale de la force de Lorentz est FL= q(ﬁ + T A g), soit ici :

P = q(Eéey + voex A Bey) = q(E — voB)e,.

15.11 b) Pour que le mouvement soit rectiligne uniforme, il faut que le vecteur accélération soit nul. D’apres le

principe fondamental de la dynamique, il faut donc que la force exercée soit nulle, soit q(E —voB)e, = 0 = v = 5
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Fiche n° 16. Champ magnétique

Réponses
16.1a) oo 16.10 D).t O
16.1b) ..o oui
16.10 C) vttt ()
16.2 oo (@
16.1012) .o (©
16,3 8) .o oot __ ol
2md tan(a) 16.11b) .o ©
16.3 D). 20,8 pT
T N T
1604 oo © Rtz
b L
T o 16.12b) ... —_—
16.5 o §BOR ) (m)g
tola D+a/2 ol
16.62) oo 1 16.12C)onieii e
2) o n(D—a/2 ) 42 R
2 5/3 _
166 D) «vveeee Qmula 16.12d) .. R\/25/3 —1
2D )
1613 8) .o
166 C) vt ®
16.7 a) ......... ’B()(l + COS(a))e_g:—‘r By sin(a)e_y" 16.13 b) .................................... @
16.7b) ..o Bov/2(1 + cos(w)) wonl 2+ £
16.7 ) 34,6 mT * YR+ ()
L ,0m 16.14 .
a ! i)
16.8 8). ..ot
2) cos(0) R?+ (2 - %)2
16.8b) . ..o ’ —sin(f)e, + Cos(G)e_y" 1604 D)oo f}g’;ﬂ[ﬁ
16.8¢C) v ’ —sin(0)e, — cos(@)e_y" i
1 VARZ + 2
16.8d). ... —2By sin(f)e; 16.14¢C) oo 147+ &
2 VRZ 412
y
16.8€)....ooiii > 1614 d). ..o
16.86) oo COSh(E)
1615 8) .o By 0
16.9 8) . ov et h(f)
a) @ cos 5
16.9 D) ..o B
6.9 b) ® 16.15b) oo EEO) ~ 1
0
16.1008) .ot (©
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16.15C) e BO) 9107 Bo +efi"%t(“05 (6 VAQH—1-4)
By 16.16 ¢) ..
wor +usin(—Q\/4Q2—1 t))
16.16a) ..........ccoe.... r2+?+ 5=0

Bol(1-— ef%ot cos ( 4Q?% — )
16.16 ) ( ( Q

2
16.16 b) ... (Q) (1—4Q%) ’ a +ﬁsm(Q 4Q% — ))

1616 C) .o 16,17 oo (1,-1,1)

16.3 a) A DI’équilibre, la boussole s’oriente dans la direction du champ résultant §(O) = By + Bni(0). On a
Br . ol
lors t = —,dou By = ————.
alors tan(«) B, dou Bu Srdtan(a)

16.3 b) On calcule :

-7 . AL -7 -
4rx107"T-m-A"' x1,2A 10 TmA X12Affx12x10‘

Bu = — — = - =208x107°T
2w x 2 x 107“m X tan(30°) 1x10™ mxﬁ
16.4 Au lieu d’exprimer le flux de B & travers la demi- sphere, il est plus simple de le calculer sur le disque

qui s’appuie, comme la demi-sphere, sur la meme circonférence de rayon R (on utilise ici le fait que B est un champ
vectoriel & flux conservatif). Sur le disque, on a ds = dSe,. Ainsi ¢ = B X Sdisque = Br R

16.5 On calcule
R
4
b= / /B e2dr x rdf = By x [ R? —QWR } ngfBo.
r=0 6=0
16.6 a) On calcule :
a D+a/2
ol _, wol [ " dr  pola D+a/2
dSes = =—— [ d — = In{f ———— ).
0= // o 0014860 = 5 [ dex / r T 2n "\ D—a/2
cadre 0 D—a/2

2D 2D
s pla®
en ¢ avec |e| < 1 donne alors : In(1 +¢) & +e. D’ou ¢ ~ .
27D
16.6 c¢) Sile cadre est situé dans un plan perpendiculaire & (Oz), on a dS=dSéeet B-dS =0 : le flux est nul

16.7 a) Le champ résultant en O s'écrit : B(O) = By + Ba, soit B(O) = Bo(1 + cos(a))ez + Bo sin(a)é,.
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16.8 b) L’angle orienté 6, entre I'horizontale (Ozx) et la demi-droite [O1D) se retrouve entre la verticale (Oy) et

la perpendiculaire & [01D), c’est-a-dire la direction du vecteur e7. On a donc €7 = —sin(6)e, + cos()e,.

16.8 ¢) Si on note B 'angle que fait €3 avec la verticale descendante (—Oy), on a 3 + g —0= g, donc 8 =
On a donc €3 = —sin(f)e, — cos(f)e,.
16.8 d) Le champ résultant en D s’écrit Biot = Bo (e‘f + 55). En utilisant les résultats précédents, on trouve

Biot = —2Bgsin(0)e,.

e pol y
Ainsi, By = — 102
1nst1, tot T (l2 +y27
@ +y*)+yx2 _ y*—a
(e +9%)? (@ +9?)
I llim f(y) =0 et, pour |y| = a, qui donne |f(:ta)’ =5 c’est le maximum recherché.
y|—oo a

€. Par conséquent, on a f(y) = —

16.8 f) On calcule f'(y) = 5 La fonction f' s’annule pour |y| — oo, qui renvoie

16.9 a) Le plan (M, &, e.) est un plan de symétrie qui laisse M invariant ainsi que la distribution des courants
car, si N > 1, chaque fil aura son symétrique, le courant circulant dans le méme sens dans les deux fils symétriques.

16.9 b) Le vecteur B , vecteur axial, est perpendiculaire a tout plan de symétrie de ses sources, donc B (M) est
dirigé selon &j.

16.10 a) Dans une symétrie par rapport au plan (zOy), les fils restent inchangés mais les courants sont inversés :

c’est donc un plan d’antisymétrie.

Dans une symétrie par rapport au plan (yOz), on permute les fils de gauche et de droite, les courants circulant
dans le sens inverse de la situation initiale : il s’agit, ici encore, d’un plan d’antisymétrie.

Seul, le plan (zOz) laisse les fils inchangés ainsi que les sens des courants : ¢’est donc bien un plan de symétrie pour
la distribution des courants.

16.10 b) Pour le point A sur 'axe (Ozx), le plan (xOy) est un plan de symétrie pour la distribution des courants
et lais_s)e A invariant. Le vecteur champ magnétique, vecteur axial, est perpendiculaire a tout plan de symétrie, donc
on a B(A) L (z0Oz). Donc, B(A) est parallele & (Oy).

16.10 c) Pour le point D sur 'axe (Oy), les plans (zOy) et (yOz) sont des plans d’antisymétrie pour la distribution
des courants et laissent D invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan
d’antisymétrie, donc Biot € (xOy) N (yOz), soit Biot est parallele a (Oy).
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16.11 a) Tout plan qui contient le point M et 'axe (Oz) est plan d’antisymétrie pour la distribution des courants

-
et laisse M invariant. Le vecteur B(M), vecteur axial, est contenu dans tous ces plans d’antisymétrie. Par conséquent,
B(M) est colinéaire a (Oz).

16.11 b) Le plan (M, é,,€,) est un plan d’antisymétrie pour la distribution des courants et laisse le point N

invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan d’antisymétrie, donc on a
=1 — —
B(N) € (M, e, e2).

16.12 ¢) Remplagons z par R dans I’expression de Baxe. On trouve By = pol (R) pol R pol
. plag p p axe- 1= R R (\/ﬁ)?’ 4\/§R
1
16.12 d) On cherche z tel que Baxe(z) = §Bl, c’est-a-dire tel que :
I 3 1 pol ’ 1

Kol R 3=z Ho donc, apres simplifications, tel que Riw = —.

2R (VRZ+22)° 24V2R (R? 422" 42
Elevons & la puissance 2 /3 chaque terme de 1’égalité. On obtient :

2
R o_ 1t _ 1 dot (2”°R* = R® + 2.

R+ (43 (2P @)

Finalement, on trouve z = Ry/25/3 — 1.

16.13 a) Tout plan qui contient axe (Oz) est plan d’antisymétrie pour la distribution des courants & condition
de considérer que le symétrique de chaque spire par rapport a un plan qui contient (Oz) se superpose a la spire de
départ, ce qui n’est possible qu’en négligeant 1’hélicité de ’enroulement.

16.13 b) En négligeant I’hélicité de 'enroulement des spires, tout plan qui contient (Oz) est un plan d’antisymétrie

pour la distribution des courants et laisse le Dpoint M invariant. Le vecteur champ magnétique, vecteur axial, est
contenu dans tout plan d’antisymétrie, donc B(M) est dirigé selon é;.

16.14 b) Au point O, on & &max = T — Amin. Or cos(m — Amin) = — €0S(Amin), ce qui donne en O :

/2

N

cos(amin) =
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16.14 ¢) Remarquons déja que la fonction B(z) est une fonction paire de z. On aura donc B<f§) =B (+7).

z B(=5) _

- 1
\/mjw. AlnSl, on a B(O) = 5 \/W .

l
En z = 3 on a amax = —, donc cos(amax) = 0 et cos(amin) =

E) + Dexp(—f). La fonction B(z) étant

16.15 a) La solution de I’équation différentielle s’écrit B(z) = Cexp((s 5

paire, on a C' = D. D’ou B(z) = ZCcosh(g).

La condition aux limites en z = e permet d’exprimer la constante C' par continuité de B (forcément continu car

cosh(g)
défini en volume) : on trouve C' = . Ainsi, on a B(z) = Bo——2<--

B(0) _ 1 .1

(
By cosh(1/10)

BO) 1

~9x107°.

16.16 e) Les racines de I’équation caractéristique sont —;—5 + i%\ﬂlQ? —1.

Donc, la solution générale de I’équation sans second membre associée & (x) est :

ef%t()\cos (ﬂ\/ZLQ2 —1- t) + psin (;%\/4(22 —1- t))

2Q
Donc, la solution générale de I’équation (x) est By + e 70! (A cos (%\/4622 —-1- t) + psin (%\/4622 -1 t))
s e e eps e e ’ 7BO
16.16 f) La condition initiale B(0) = 0 donne A = —Bjy. La condition initiale B'(0) = 0 donne p = o
-1

16.17 Ona [up] = [ea -m? - 'Y] =Q> M. [n]".

La constante de Planck h est homogene au produit d’une énergie par un temps (la fréquence est homogene a l'inverse
d’un temps). De plus, une énergie est homogeéne au produit d’une masse par une vitesse au carré. Nous obtenons

72 o ArBty 12y
M-L . Ainsi, ona[ug]:%.

donc : [h] =

Q- L*

Le magnéton de Bohr s’exprime en A - m?. Tl est donc homogene & [ug] = [I] - [S] = T

Finalement, en comparant les équations obtenues, on obtient « =1, = —1 et v = 1.
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Fiche n°17. Induction

Réponses
17.08)
17.1b) i
17.0C) oo
17.0d)
17.28) i @ et @
17.2 D) e Oui
17.2C) i Non
178 8) it [0]
17.3 D)0 [0]
17.30C) et [0]
17.3d) e
17.3€) i Bac
17.48) oo —Ba?
174 D) i [0]
Ba?
17.4 C) .................................... T
Ba?
17.4d) oo il
7.4 d) ;
Ba?
1704 €) e =
Ba?
17.40) e
17.58) oo
17.5 D)t [0]
175 C) oottt [0]
17.5 ).t [0]
17.5€) i Ba?
17.58) . Ba(b — a)
17.6 oot ®)

177 8) et
177 D) i
17.7C) oo
177 d) et
17.7€) oot
177 6) oo
17.8a) oo ’Le flux diminue‘
17.8D) oo ’Le flux ne varie pas‘
17.8¢C) e, ’ Le flux diminue ‘
17.8d) e
1728 €) ettt
178 ) oot
17.9a). oo ’ By Sow sin(wt + ¢) ‘
3 —t/T
17.9 b) ........................... 305076
T
17.9¢). it ’ —8BySow cos(wt) sin®(wt) ‘
17.9d)......... ’ —BoSow|2 cos(4wt) + cos(2wt)] ‘
17.0008) .00
I1Bd
17.20D) oo — T+ v
2
mo
1720 C) e 0
°) 21Bd
1700 8) . oo
3, 1,
17.01b) oo IaB(\fez + ey>
2 2
1
1701 ¢) o I B( Vi, a;)
2 2
1700 d) e
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17.02€) i 17.13¢C) v —%mg sin 0

1712 €)oo —Ia*Be; 5B
5 1713 d) .o arctan( ! )

LT.12.8)correeeeee oo e

Corrigés

17.1 a) Le flux du champ magnétique a travers une spire est 1 = BS = 7R?B. Le flux total & travers la bobine
est donc : S
TR°N~* .
Vot = N1 = 'uoﬁl‘
On retrouve 'expression de I'inductance L de la bobine en fonction de ses caractéristiques géométriques :

pomRZN?

thot:L'L'<:>L: f

Si on double le courant, on double donc le flux.

17.1 b) En doublant la longueur du solénoide, en gardant les spires jointives et le fil de méme épaisseur, on

double alors la longueur £ et le nombre de spires N : on double alors le flux.

17.1 ¢) Le fil est deux fois plus épais mais de méme longueur : on a toujours N spires mais réparties sur une
longueur 2¢ au lieu de ¢. Le flux propre est donc divisé par deux.

17.1 d) Si on double le rayon des spires en gardant la longueur de fil identique, le nombre de spires dans la
bobine diminue. En effet, en notant £ la longueur du fil, on trouve : g = 2nNR = 27N'(2R) <= N’ = N/2en
notant N’ le nouveau nombre de spires. La longueur de la bobine est également divisée par 2.

Le flux total devient alors : , , -
, uom(2R)°(N/2)” . pom RN
= =92 = 20tot.
Ptot (f/?) ? 7 ? Ptot

Le flux total est donc multiplié par deux.

17.2 a) D’apres la régle de la main droite, le pouce étant dans le sens du courant, en enroulant la main on trouve

que le champ magnétique sort de la feuille au niveau des circuits. De plus, en enroulant la main droite dans le sens
de l'orientation de chaque circuit, on peut déterminer le sens du vecteur surface par le sens du pouce, ainsi les spires
A et B ont un vecteur surface vers la feuille et les spires C et D ont un vecteur surface qui sort de la feuille. Comme

le flux est donné par ¢(§) = // B-ds , celui-ci sera négatif si le vecteur surface et le vecteur champ magnétique
s

présentent des sens opposés.
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17.2 b) On rappelle que le flux du champ magnétique a travers une surface orientée S vaut ¢(§) = /] B-dS.
s

Sans tenir compte de orientation des surfaces, le flux sera d’autant plus important dans le circuit que celui-ci est
proche du fil car le champ magnétique produit par un fil infini est une fonction décroissante de la distance au fil.
On a donc |¢a| > |¢B|.

17.3 a) On oriente toutes les surfaces vers I'extérieur du volume. Ainsi, pour la surface AA'B'B, le vecteur normal
s’écrit gAA/B/B = —abe,. On rappelle que le flux du champ magnétique & travers une surface est : ¢ = // B-ds.
s

Le flux a travers la surface ABC est nul car la surface est orthogonale au champ magnétique.
17.3 b) Le flux & travers la surface A'C’'B’ est nul car la surface est orthogonale au champ magnétique.

17.3 ¢) Le flux & travers la surface AA'B'B est nul car la surface est orthogonale au champ magnétique.

17.3d) Le flux au travers de ACC'A’ vaut —Bac.

17.3 ¢) Le flux au travers de BB'C'C vaut Bac car le champ magnétique est & flux conservatif : la somme des
flux sortant d’une surface fermée est nulle.

17.4 a) Le flux sortant de la surface ABCD vaut —Ba® car le champ est uniforme sur cette surface.

17.4 ¢) Comme le champ magnétique est & flux conservatif, le flux total sortant est nul. De plus, par symétrie,

2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent BTG.

17.4 d) Comme le champ magnétique est a flux conservatif, le flux total sortant est nul. De plus, par symétrie,

2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent

17.4 e) Comme le champ magnétique est & flux conservatif, le flux total sortant est nul. De plus, par symétrie,

2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent BTCL.

17.4 f) Comme le champ magnétique est a flux conservatif, le flux total sortant est nul. De plus, par symétrie,

B 2
les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent a
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17.5b) Le flux du champ magnétique est nul sur la surface BAA'B’ car B est inclus dans ce plan.

17.5 f)  En exploitant la conservation du flux magnétique, on en déduit donc que le flux sortant de la surface
CBB'C’ vaut Bab — Ba® = Ba(b — a).

17.6 Avec un courant positif, le champ magnétique produit par la boucle externe est sortant de la feuille.
Comme le courant augmente, le flux également. Le champ magnétique induit par les effets inductifs est opposé aux
causes qui lui ont donné naissance : il sera rentrant dans la feuille. Le courant est donc dans le sens horaire.

17.7 a) Rappelons que, pour un aimant droit, le champ sort par le Nord : les lignes de champ sont orientées du
Nord vers le Sud.

La premiere étape consiste a déterminer le sens de variation du champ magnétique _vu par la spire au cours du
déplacement. gn déduit alors de la loi de Lenz le sens du champ magnétique induit Binq4, qui tend a atténuer les
variations de B. On détermine ensuite par la régle de la main droite le sens réel du courant dans la spire. Enfin,
par comparaison entre le sens réel du courant et le sens ¢ > 0 indiqué sur la figure, on en déduit le signe de 1.

Le champ magnétique créé par 'aimant droit est orienté vers la gauche au niveau de la spire. Il augmente dans la
spire avec le déplacement de 'aimant. Le champ induit va s’opposer a cette augmentation : il sera orienté vers la
droite. On a donc i, > 0.

17.7 b) La physique est identique a la situation précédente, seule change la convention sur le sens positif du
courant : on en déduit immédiatement 7, < 0.

17.7 ¢) Le champ magnétique est orienté vers la droite au niveau de la spire. Il diminue avec le déplacement de
l’aimant. Le champ induit va s’opposer a cette variation : il sera orienté vers la droite également. Ainsi, on a i. > 0.

17.7 d) Les variations de champ vues par la spire sont les mémes qu’a la question a), le sens réel du courant
induit est donc le méme. Comme le sens choisi positif du courant est opposé, alors iq < 0.

17.7 e¢) Les variations de champ vues par la spire sont les mémes qu’a la question c), le sens réel du courant

induit est donc le méme. Comme le sens choisi positif du courant est opposé, alors i. < 0.

17.7 f)  Le déplacement de la spire renforce leffet du déplacement de l'aimant. Cette fois, le champ vu par la

spire diminue au cours du mouvement, le champ induit a donc tendance a le renforcer. On a donc iy < 0.

17.8 a) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal. Dans la configuration finale, le flux du champ magnétique dans la spire est
nul. Le flux diminue donc.
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17.8 b) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens opposé

au champ magnétique : le flux est minimal.
La configuration finale est identique a la configuration initiale : le flux est le méme.

17.8 c) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal.

La configuration finale est similaire a la configuration initiale mais le flux est moins grand car le nombre de lignes
de champ interceptées est inférieur. Le flux diminue donc.

17.8 d) Le courant circulant dans la spire va produire un champ magnétique tel qu’il s’oppose a la diminution

du flux : le courant sera donc positif. On a 44y > 0.
17.8 ¢) Il n’y a pas de variation de flux, donc pas d’induction : on a i) = 0.

17.8 f) Le courant circulant dans la spire va produire un champ magnétique afin de compenser la diminution

du flux : le courant sera donc positif. On a i(¢y > 0.

By S,
17.9d) De méme, on commence par linéariser Pexpression. On a ®; = —=2[sin(4wt) + sin(2wt)]. Puis, on
dérive et on trouve : e4 = —BoSow(2 cos(4wt) + cos(2wt)].
............................................................. _)N—>_>_)N
17.10 a) La force de Laplace se calcule par F' = Id¢ A B, soit F = —Idze; A —Be, = —IBde,
M M

17.10 b) La force de Laplace est constante. Par application du principe fondamental de la dynamique en projection

—>
sur €, on a :
du(t)
dt

m = —IBd.

IBd
En intégrant (avec la condition initiale), on trouve v(t) = ———¢ + vo.
m

17.10 c) Par application du théoréme de 1’énergie cinétique entre le point = 0 et le point d’arrét x = D, on a :

1 ~z:D_> N x=D

AE,=0— Emvg = / F.dt= / —IBde; - dzeg = —IBdD.
=0 =0

mvg

2IBd’

On en déduit : D =

17.11 a) 1l s’agit de calculer le produit vectoriel sur chaque segment, le vecteur dl étant le long du segment.

Chaque force de Laplace s’exerce au milieu de chaque segment et la régle de la main droite indique qu’elle est
orthogonale au segment dirigé vers l'extérieur du triangle. Le triangle est équilatéral et comporte donc trois angles
de 60°, ce qui améne aux projections sur e, et &,. Dot les résultats.
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17.11 d) Le champ magnétique étant uniforme, la résultante des forces de Laplace sur le circuit fermé est nulle :

17.12 h) Dans ce cas, les forces de Laplace sont nulles sur les segments BC et DA ((TZ et B sont colinéaires). Les
seules forces sont alors :

17.13 a) Dans la base cylindrique telle que €, = ex, le moment magnétique est porté par €; et sa norme est
m = 1S = iab.

17.18 b) Par définition, le couple magnétique se calcule par T =M A B. Le calcul du produit vectoriel améne a
l._‘> = iabB cos #e;. Comme &, = ex, la projection sur I’axe A donne donc I'x = iabB cos 0.

17.18 ¢) Dans la base cylindrique, le poids s’exprime P= mg(cos Oe,; — sinfeg). On considére qu’il s’applique au

barycentre des masses du cadre, soit en son plein centre que ’on notera G. Son moment par rapport a 'axe A se
— ey — — N =N a .
calcule par M (P) = (OG A P) -ea avec O un point sur I'axe A. D’ott, Ma(P) = (a/2er A P) "€A = —5mgsin 0.

17.13 d) A Déquilibre, la somme des moments des forces par rapport & laxe A est nulle. Ainsi, on a :
Ta + Ma(P) =0.

2ibB 2ibB
D’otlt tabB cos feq — gmg sin feq = 0, ce qui amene a isoler tan fcq = Z—, soit finalement 6.4 = arctan (Z>
mg mg
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Fiche n° 18. Gaz parfaits

Réponses

3

' 18.6 D). o (@) 3 >
AxPyrd + 1

18.1¢)evnnnnn... 6.8 x 10%L 18.11 b)... | & °r3;T bmyr
0

- 18.7a) oo -
1822).........
8.22) 588 - mo BT ] 18124)....... 18,2g - mol~!
2 18.7b) ..o non
18.2b)......... 1,8 x 107 bar 18.12b).............. 4,79 %

-1
18.8 ). 18.132)....... 30,6g - mol
v P 18.13b).............. 65,6 %

Ma
185Db) ...t 1,24 bar 18.10 ..................
) 1,24 bar] T
Corrigés
moo, .. m _ RT .
18.1a) Omna PV =nRT avec n = A Ainsi, on a V = Vi X R Notez que l'on peut laisser les masses en g

. . . -1
si ’on exprime la masse molaire en g - mol™ .

LKL -1
Ainsi, ona V= — 1008 8314J K77 -mol™ x298,15K

40g-mol ! 1 x 10° Pa
. 71 . 71 q -
18.1b) OnaV = 28 BAMIK - mol x28IK _ o) 8100 m® = 251,
2 x 16 g - mol 1 x 10° Pa
12 147 - K~ -mol™! x 298,15K
18.1¢) OnaV = 00g x 83147 mol X 298,15K _ ) 676 m® = 6,8 x 10° L.

(12 4+ 2 x 16)g - mol ™+ 1 x 10° Pa

18.2 b) Si tout le butane était a ’état gazeux dans la bouteille et en admettant qu’il se comporte comme un

gaz parfait, la pression qui y régnerait serait de :

p_nRT _m RT _ 13x 10°g  8,314J-K ' -mol ™' x 293,15 K

= X =179 x 10° Pa = 1,8 x 10? bar,
V MV 58g-mol! 30,6 x 10~ % m® & ar

et la bouteille exploserait... Heureusement qu’une grande partie est a 1’état liquide!
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18.2 ¢) En considérant le butane comme gaz parfait, on a :

nRT mRT  13x10%g  8314J-K~!.-mol™! x 293,15K 3
V=—"" =_"""- = — X = =5,bm”.
P M P 58 g - mol 1 x 10° Pa
: . V. RT
18.3 a) Le volume molaire est le volume occupé par une mole de gaz : c’est Vin = — = 5
n

En exprimant la pression en pascals et la température en kelvins, on obtient :

~8,314J-K ™' -mol ! x 298,15K
- 1,00 x 10° Pa

=248 x 10 °m® - mol™ = 24,8L - mol .

_8,314J-K™'-mol™! x (273,15 4+ 50)K

Vﬂ] 5
2,00 x 10° Pa

=134x10"°m® - mol™ = 13,4L - mol~".

Remarquez que le volume molaire ne dépend pas de la nature du gaz mais seulement des conditions de pression et
de température.

18.4 D’apres la loi des gaz parfaits : AV = nRT1 et P,V = nRT5, ce qui donne a volume constant :
P 2,3bar e
=T 20 (273,15 4+ 20)K x 5.0bar 337K =64°C.

18.5 a) A température constante, le produit PV reste constant, d’ot :

P
PVi=PVs avec Voa=12V, dou P»= —12 = 1,0 bar.

1, ’
18.5b) A volume constant, le quotient P/T reste constant, d’ou :
PP T 303,15
02 o Po= P 2219 '’ =~ — 1,24 bar.
LT, SO TRTONE T X993 ys T P

18.6 a) La loi des gaz parfaits permet d’exprimer P en fonction de T : P = @T = C" x T, car nR/V est

constant. On prévoit donc une relation linéaire dont la courbe représentative est une droite passant par ’origine.

T te
18.6 b) En vertu de la loi des gaz parfaits, on a P = niT = (‘j/ , car nRT est fixé. On prévoit donc une relation
inverse dont la courbe représentative est une hyperbole.
18.7 a) Par définition, la masse volumique vaut :
- m _ nM MP
P=V =BT = Ry
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18.7 b) Assimilons la vapeur d’eau & un gaz parfait. On a alors :

—37. . -1 5
_ 18 x 107" kg _rlnol i<11,013 x 10” Pa _ O,588kg-m73.
8,314J-K™" -mol™" x 373,15 K

Ce résultat est en désaccord avec la mesure.
Au voisinage d’un changement d’état (comme ici, ot 'eau est & ’état de vapeur saturante), le modeéle du gaz parfait

n’est pas valide.

P
La masse volumique d’un gaz parfait s’écrit p = AT On a donc ici :

_MP o MPy
L= R, P2 = R,

T, P.
18.8 b) Le méme raisonnement méne a p2 = p1 172 _
TP

On fera attention au fait que, dans un rapport de températures, celles-ci sont a exprimer en kelvins

377p1.

P
18.9 a) D’apres la loi des gaz parfaits, on a n1 = PiT et no = R2 , d’ou la relation P
18.9 b) Appliquons la loi des gaz parfaits dans chaque compartiment. On a :

P'Vi =nmiRT et P'Vo=noRT,

dont on déduit Vao/Vi = na/n1.

Par ailleurs, la conservation du volume total donne :
2V:V1+V2:V1(1+@>.
ni

Ainsi, il découle :
2V 2V 2P
Vi = - - V.
! 1+n2/n1 1+P2/P1 P+ P

m _ PM

nRT  mRT done _m
P=YV = R

V= = —
P MP
Ainsi, sous la méme pression et la méme température, on a :

_pa _ PMy _ My

4
18.11 b) La pression de l'air intérieure vaut P = Py + 2 La loi des gaz parfaits donne alors
r

3 2
4:) X %m“o’ =nRTy dou n= W
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18.12 a) La masse molaire du mélange est la moyenne pondérée des masses molaires : M = Z xi M.

Ceci donne ici :

M = (0,813 x 16 4+ 0,029 x 30 4 0,004 x 44 4 0,002 x 58 + 0,143 X 28) gmol ' =18,2g-mol ™"
18.12 b) Faisons un bilan avec une mole de mélange :

e le mélange a une masse totale m = 18,2g;
e ce mélange contient 0,029 mol d’éthane, soit mc,us = 0,029 x 30 = 0,87 g.

On en déduit que le titre massique vaut :

WoyHg = MeyHg /M = 4,79 %.

18.13 a) Le mélange étant considéré parfait, on peut appliquer la loi des gaz parfaits :

PV =nRT dou p= % - %.

On en déduit la masse molaire :

pRT  1kg -m ®x8314J-K ' mol ™' x 373,15K
P 1,013 x 10° Pa

= 30,6 x 10 *kg - mol ™.

18.13 b) La masse molaire du mélange est la moyenne pondérée des masses molaires. Si on note z la fraction
molaire en dioxygene et y celle en diazote, on a M = zMo, + yMn,, avec x +y = 1. On en déduit :

M — My,  30,626g-mol ' —28g-mol "
- Mo, — My,  32g-mol™' —28g-mol™*

= 65,6 %.

18.14 Calculons la pression partielle en vapeur d’eau : elle vaut Piu,0 = 60 %psas = 1,90 X 10° Pa.

3 N . .
Dans un volume de 400 m~, cela correspond & une quantité de matiere :

Pu,oV 1,90 x 10% Pa x 400 m®

_ — 307 mol.
RT  8314J-K '-mol ' x 208,15K e

NHy0 =

Ceci représente une masse m = ng,0 X Mu,0 = 18 X 1073 kg - mol ™! x 307 mol = 5,5kg.

18.15 b) La pression partielle d’une espéce dépend de sa quantité de matiere, de sa température et du volume

total. En effet :
(Z n) x RT
’I’LiRT

P:%:ZH avec P; = v

2

Puisque ces quantités n’ont pas changé pour I'espece B, sa pression partielle est restée la méme.
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Fiche n° 19. Premier principe

Réponses
19:18) . oieiet e
19.1b) . oo
19.1C) ettt
192 8) oot
19.2D) oot
193 oot
19.4a) oo ] — Po(Viinal — Vinitial) \
19.4b)............. —(Po Pl)(‘;ﬁ“"“ = Vinitial)
V.
19.58) oo —nRT, 1n<VZ>
08 b) PV, — 2.
19.6a). ..., ’76J "K' mol™! ‘
19.6b)............ ’ 18 x 10 3 keal - K=* - mol ™! ‘
19.7a) oo me(Ty —T5)
197 D) oo
198 8) oo V"_Rl
19.8b) oot 6,2 x 102 ]
19.8 C) eveee e :ihl
19.8d) coveeeee e
199 8) . oe e Cv(Ty — Th)
19.9b)............. g(Tﬁ ~ T+ B(Ty - Ty)

D
19.9C) ciniiiieii i Z(Tf‘1 —Th
1910 oo —268KkJ
n2a /1 1
1911 oo T - =
ey <Vf V)
19.128) 0o T, + %
1912 D) oo T, e%
1/3
19.12¢) oo (Tf" + 33)
19.138) .0 nRT, 1n<{”)
R
19.13b) . oo Vn_ 1Ty = T0)
1918 €) uiiiii it [0]
19.048) oo Wi — Qs
19.14Db) oo Q1 — Qo
19.14C) oo Wi — Qs
19.15 . 42J - K1
C
19.168) oot -
19.16b) ... ‘Ta +(Ty—T,)e ¢
19.07 oo ()
T T
1918 ) v %
19.18 b) mTh + moTh @
A8Db) ... P TN
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Corrigés

19.1a) OnaW =—(15x10°Pa)(3x 10 °m® —5x 10~>m?) = 300J.

19.1b) Ona Py =50mbar =50 x 10> bar = (50 x 10%) x 10° Pa = 50 x 10° Pa.
OnaV;=2cL=2x10"7"L=(2x10"%) x10°m® =2 x 10 " m’.
OnaVy=120mL =120 x 10 °L = (120 x 10*) x 10 °m® = 12 x 10 > m®.
OnaW =—(50x10°Pa) x (12x 10°m® =2 x 10"°m®) = —0,5J.

19.1¢) OnaV;=20cm®=20x10"°m® et V; = 10cm® = 10 x 107° m®.
Ona W = —(150 x 10°Pa) x (10 x 10"°m® — 20 x 10 °m®) = 150J.

19.2 a) Le volume ne variant pas, on a dV = 0. Le travail des forces de pression s’écrit W = 7/ Pexy dV.
Vinitial
Il est donc nul.

19.2 b) Le travail des forces de pression s’écrit :

Viinal
W= 7/ Poq dV = —Pm/

Vinitial Vinitial

Vénal
dV = 7cht(Vﬁnal - ‘/initial)~

Nous pouvons donc faire application numérique : W = —1 x 10° Pa x (2 x 107°m® — 1 x 107 m®) = —100J.
19.3 Le systéme A a regu du milieu extérieur un travail W, = 50 W x 30s = 1500 J.

Le systéme B a re¢u du milieu extérieur un travail W, = 400 W x 5s = 2000 J.

Le systéeme B a donc recu la plus grande quantité d’énergie.

19.4 a) Le travail correspond a l'opposé de l'aire sous la courbe, et donc a 'opposé de laire du rectangle :

W = _PO(Vﬁnal - ‘/initial)-

19.4 b) On décompose aire sous la courbe en un rectangle et en un triangle :

(P2 - Pl)(vﬁnal - ‘/initial)> _ _(PQ + Pl)(vﬁnal - ‘/initial)

W = — (Pl(vﬁnal - Vvinitial) +

19.5 a) Le systéme est un gaz parfait, nous avons donc PV = nRT. De plus, la température reste constante et
Vi 1

vaut Tp. Le travail s’écrit alors : W = —nRT) / v
Vi

v
dV = —nRTp 1n(7{‘).

7

19.5 b) La transformation étant polytropique, on a alors PV;F = Pfok = PV*. Le travail s’exprime alors :

Vi Pk P,V;F 1 1 PyVy — PV
W:—/ Vk av — _ iV _ _ By Vi
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19.6 a) Par définition, on a ¢ = % = n%. Et donc Cr, = Mu,0 X c=76J - K~ ' mol™!.

. 71 . 71
19.6 b) Ona Cp = % =18 x 10 % keal - K™% - mol .

1 o
aura une capamte

19.7 a) La masse m d’eau liquide de capacité thermique massique ¢ = 4,2kJ - K™t -kg™
thermique C' = me. Ainsi, on a AU = me(Ty — T;).

19.7 b) Notons que la température doit étre exprimée en kelvins. Ici, on a T; = 293K et Ty = 303 K. Nous
obtenons donc AT = 10K. Ainsi, on a AU =100 x 10 % kg x 42kJ - K™' - kg™ x 10K = 4,2kJ.

19.8 a) On commence par exprimer la capacité thermique & volume constant Cy du gaz parfait, a partir de la

C R
relation de Mayer C'p — Cv = nR et du rapport des capacités thermiques v = C—P. On obtient Cy = " 1
\% Y —

19.8 b) La grandeur Cy étant constante, la variation d’énergie interne d’un gaz parfait peut étre écrite :

nR

AU =CyAT =Cv(Ty - T;) =

7 (Tr = Ti).

1mol x 8,314J- K~ -mol™! x 30K
1,4—1

=6,2 x 10°J.

On passe alors a 'application numérique : on a AU =

19.8 ¢) On commence par exprimer la capacité thermique & volume constant Cp du gaz parfait, a partir de la

C R
relation de Mayer Cp — Cyv = nR et du rapport des capacités thermiques v = C—P. On obtient Cp = Yy
v Y

-1

AH = CpAT = Cp(Ty —T)) = :}EVI (Ty - Ty).

1 mol 14J-K ' - mol ' x 14
mol x 8,314 J Mol X L% 30K =8,7 x 102 J.

On passe alors a 'application numérique : on a AH =

14-1
19.9 a) On a AU = CvAT = Cv(Tf — TL)
A
19.9b) Ona AU = §(Tf2 —Ti°) + B(Ty — Ty).
_D 4 4
19.9c¢c) OmnaAU = Z(Tf —T:%).
19.10 Pour cette transformation, nous avons une masse m; = 800 g d’eau qui est transformée de 1’état liquide

a l’état solide, et qui subit donc une solidification (transformation inverse d’une fusion).

La variation d’enthalpie s’exprime : AH = —my; X Lgus = 0,800 kg x —335kJ - kg™ = —268kJ.

Cv
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19.12 a) On aalors C(Ty — T;) = Q, et donc Ty = T; + %

T
19.12 b) On a alors Aln(%) =Q, et donc Ty = Tie”.

7

3 3 ) 1/3
19.12 ¢) On a alors B<T§ — 72; ) =Q, et donc Ty = (Ti3 + @> .

19.13 a) Le systéme est un gaz parfait, et nous avons donc PV = nRT, avec T la température qui est constante
et qui vaut donc T;. L’expression du travail est donc :

Vi
W= —nRTi/ WV R 1n(ﬁ).
v v v

D’apres la premiéere loi de Joule, pour un gaz parfait, la variation d’énergie interne s’écrit AU = C, AT = 0.
V.
On obtient finalement : Q = —W = nRT; 1n(7f).

i

Ve
19.13 b) Pour une transformation isochore, le travail est nul : W = —/ PdV =0.
Vi

On obtient alors : Q = AU = fyni%l

(Ty — Ty).

=lQ

19.16 b) On obtient T'= T, + (To —Ta)e” © en sommant solutions particuliére et homogene, et en appliquant la
condition initiale T'(0) = Tp.
19.17 La température initiale est Ty, donc la courbe doit commencer en T,. Les courbes @ et @ sont donc

exclues. La courbe @ correspond & une exponentielle croissante et ne convient donc pas. La réponse est @

T T:
19.18 a) On trouve Teq = mily +mals
m1 + me
T T:
19.18 b) On trouve Teq = mily + mals Q .
m1 + ma (m1 + ma)c
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Fiche n° 20. Second principe et machines thermiques

Réponses
20,1 .. —94.8J]  20.9¢) ... Non
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-
20014 8) (a)
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v 2014 D). n=33%
2
Y —Qc
207 d) = 20,15 8) ..o
) Ty 2) CcoP
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Fiche n° 20. Second principe et machines thermiques 101



Corrigés

20.1 Le premier principe donne AU = W 4 Q donc @ = AU — W. De plus, la premiére loi de Joule donne :
AU = Cv AT =Cv(Ty — Ty).

Finalement, on a Q = Cv (T — Ti) — W = 1,04 - K" x (298 K — 293K) — 100J = —94,8 J.

20.2 On effectue un bilan d’énergie a I’aide du premier principe. La variation élémentaire d’énergie interne

du liquide est :
T
dU = mec x dT  soit, en puissance, P = d—U = mcd—,
dt dt
mc AT

ou P est la puissance de chauffe apportée. En supposant cette puissance constante, il vient At = o

On a donc :
Ateaw  Ceau  4180J-K™'-kg™!

Athuile  Chuile  2000J - K1 kg™?

Ainsi, ’huile chauffe plus de deux fois plus vite que 'eau.

=209 > 1.

20.3 a) Par définition, on a H = U + PV. Ainsi, on a dH = dU + PdV + V dP. On en déduit :
dH =T7TdS — PdV+PdV +VdP =TdS+ VdP.

20.3 b) Le gaz parfait suit la premiére loi de Joule : son énergie interne ne dépend que de la température. Ainsi,

pour une transformation isotherme, on a dU = 0.

0=TdS—-PdV.

On en déduit T'dS = PdV. Ainsi, grace a I’équation d’état PV = nRT, on en déduit :

P dv

20.6 a) Utilisons la relation AS = 0 qui fait intervenir les volumes et les températures. On a :

o) o) o ) )
AS—O—W_lln(Ti)—I—ann(Vi done = |In( 7 ) + (v = DIn(3F)] =0.

En utilisant les propriétés de la fonction logarithme, on obtient :

BT IR AT
AS_’y—lln[(Ti)<Vi ’

T y-1
On en déduit Tf <ﬁ> =1, c’est-a-dire TfoAY*1 =T, Vi L.

K3
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20.6 b) On procede de la méme maniére & partir de Uexpression qui fait intervenir les températures et les

pressions. On a :
nRy Tf) _ (Pf) nR |: (Tf) . _ (Pf)]
AS = o1 1n<—i nRIn P)= 0= po— ~y1n T (vy=DIn(—=-)|.

7

En utilisant les propriétés de la fonction logarithme, on obtient :

nR Tf R Pf)177
1 — — =0.
v—1 n|:<Ti) (Pi 0

On aboutit & :

20.6 ¢) Utilisons I'expression qui fait intervenir les pressions et les volumes. On a :

nR Py nRy (Vf) nR [ (Pf) (Vf)}
AS=0= In(—= )+ In(—=) = In({ =) +yIn(—=)|.
S=0 ﬂ/iln( 2) 77111 - po— n ) ~v1In 2

el (F)GE) -0

P V7 s .
(?J:)(vf) =1 Cclest-a-dire PfVy" = BV,

En simplifiant, on trouve :

Finalement, on aboutit a :

20.7a) Ona PV" = C*. Avec léquation d’état du gaz parfait, on obtient :

g‘/v =C%* etdonc TV !=

C e
nR

V e T _Ti_ Ty

- =555
On en déduit : T (130°C + 273)
°C +
pp=tp = ey
T=T (120°C + 273)

20.8b) OnadH =TdS+ VdP. Ainsi, on a :

En intégrant cette relation, on obtient :
- Tf _ Pf . E Tf) _ (Pf)
AS =Cp ln(—T) ann(—) = 2ann(—T nRIn( == ).

Ty Py 3 jf)
= = — = = 1 ppe— .
Comme PV =nRT, on a T, 2 et donc AS 2nR n( T,

L’application numérique donne AS = 0,31J - K.
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~ 1,00mol x 8,314J - K~ ! -mol ! 1n(550K
- 1,4—1 500 K

209b) L i inci Yécrit : AU = W .
) e premier principe s’écri < +Q

) =1,98J-K %

Le gaz étant supposé parfait, la premiere loi de Joule s’applique : on a AU = C, AT.

R
De plus, sa capacité thermique satisfait la relation de Mayer : on a C, — C, = nR donc C, = Ll par définition
v —

C
du coefficient adiabatique v = C—p.
v
Par conséquent, ’entropie échangée s’exprime :
nR
g _ AU _ 35T —T)
T Ty Ty '

L’application numérique donne :

. 71 . 71
1,00mol><8,13i4_JlK mol (550K — 500K)

Se = =1,89J - K%

20.9 ¢) Le second principe s’écrit AS = S. + S.. L’entropie créée au cours de la transformation étudiée vaut

Se=AS—-S,=198] - K '-18J - K '=0,09J-K " Puisque S. > 0, on peut conclure que la transformation
n’est pas réversible.

20.10 La détente étant isoénergétique, on a AU =0 = W + Q. Comme il s’agit d’une détente dans le vide, on
a W =0 et ainsi Q = 0 : cette détente brutale et rapide est adiabatique. Le second principe s’écrit :
Q
AS = = +5..
To *
~—
=0
De plus, la détente du gaz parfait étant isoénergétique, on a T; = T¢ (en utilisant la premiere loi de Joule). Ainsi,
V
on peut écrire AS =nR 1n<7f). Finalement, on a S. = nR1n(2).
i

20.11 a) L’expression comporte trois termes : la variation d’enthalpie liée au changement de température de

I’eau a I’état liquide, la variation d’enthalpie liée a la vaporisation de I’eau et enfin la variation d’enthalpie liée au
changement de température de ’eau a I’état gazeux. Le premier terme décrit la variation de température de ’eau
a Pétat liquide, qui est chauffée de T> a Ty (car la différence T7 — T> correspond au bilan entre I’état final et ’état
initial), autrement dit de 7> = T; (température initiale) & T3 = Ty (changement d’état). Le résultat est cohérent
car To — T; > 0 : la variation d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.

20.11 ¢) Le troisiéme terme décrit la variation de température de 1'eau & ’état gazeux, qui est chauffée de Ty

a Ty (car la différence T3 — Ty correspond au bilan entre ’état final et 1’état initial), autrement dit de Ty = Tp
(changement d’état) & T3 = Ty (température finale). Le résultat est cohérent car Ty — Ty > 0 et donc la variation
d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
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20.11 e) De maniere analogue & ’expression de la variation d’enthalpie fournie par ’énoncé, la variation d’entropie
s’exprime en trois termes. Apres intégration entre 1’état initial et ’état final, on obtient :

B To AvapHo Tf )
AS = mceau ln( Ti) +m T, + Mcp,vapeur ln(T0 .
L’application numérique donne :
_ -1 -1 373K> 2257 kJkg ™!
AS =1,00kg x 4180J - K kg Xln(7353K + 1,00 kg x 3K
1 1 393 K)
+1,00kg x 2010J - K kg ><1n<373K

=6390J-K 1.

20.12 ¢) Les phases condensées sont de volume constant donc W = 0, et le systéme est supposé isolé donc Q = 0.

L’application du premier principe au systéme donne AU = 0. L’additivité de I’énergie interne permet d’écrire :
AU = AU, + AU, = 0.
On a donc :
mlcl(Tf — T1) + mQCQ(Tf — Tz) = 0.

On isole Ty pour obtenir :
~ miciTi + macaTh

mici + mace

=
|

T
20.12 ¢) Pour une phase condensée, on a Cy = Cp = Cy, et dU = dH = mcdT. Ainsi, on a dS = chd .

Par additivité de I’entropie, puis par intégration, on peut écrire que la variation d’entropie du systéeme est :

AS =AS1 +ASs =micy ln(%) —+ mac2 ln(%)

1 2

L’application numérique donne AS = 7,54J - K.

20.12 f) Appliquons le second principe sur le systéme formé par ’ensemble des deux solides. On a :

é
AS = TeQXt + S. =S,
N c 1as 0Q R sz .
ou l'entropie d’échange Ted = 0 car le systéme est isolé; il n’échange donc pas de transfert thermique avec

Pextérieur.

Par conséquent, 'entropie créée vaut Se = AS = 7,49J - K~ ' > 0. Cette valeur est strictement positive : ainsi, la
transformation est irréversible.
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?/If' Ainsi, on a Qr = W x COP.

20.13 a) L’efficacité d’une machine frigorifique (ou COP) est : COP =

20.13 b) L’application numérique donne Qr = 20,4 MJ.
Attention : pour une machine frigorifique, on a Qr > 0, Qc < 0 et W > 0.

20.13 ¢) Sur un cycle, on a AU =W + Q¢ + Qr = 0. Donc, Qe = —W — Qr.
L’application numérique donne Q¢ =—37,4 MJ.

20.14 a) Le premier principe sur le cycle donne AU =W + Q¢ + QF = 0. Ainsi, on a Qr = —-W — Qc.
Attention : il faut bien identifier que, pour un moteur, W = —500J et Q¢ = 1500 J.

L’application numérique donne Qr = —1000J.

20.14 b) L’efficacité du moteur est n = EQ—W, avec ici W = —500J et Q¢ = 1500J. On arrive & n = 33 %.
c

Il est important d’identifier le signe des transferts ici.

20.15 a) L’efficacité d’une pompe & chaleur (ou COP) est : COP = —Qc Ainsi, W = —Qc
w COP
, L - _ —Qc _ —(=3GJ) _
20.15 b) L’application numérique donne W = coP 3 =1GJ.

20.15 d) La pompe utilise une énergie W = 1 GJ par semaine, soit 1 X 109/(3,6 X 106) kWh. En multipliant par

le cotit de 17 centimes d’euro du kilowatt-heure et en considérant la moitié des 52 semaines annuelles, on obtient
un colt annuel de :

9
% x 0,17 euro x 5—22 = 1228euros = 1,2 x 10° euros

(en prenant le bon nombre de chiffres significatifs).

T
20.16 a) Le rendement de Carnot d’un moteur cyclique ditherme est donné par n =1 — T—F Apres avoir converti

les températures en kelvins en ajoutant 273,15, on trouve n = 33 %.

20.16 b) Pour un moteur, on a n = ZQ—W Or, sur un cycle, on a AU =W 4+ Q¢ + Qr = 0. Ainsi, on a :
c
4 nQr
= — t d = .
U or et donc -

20.16 ¢) Il faut identifier que, pour un moteur, on a Qr < 0, soit ici Qr = —600J.
0,33 x (—600J)
1-0,33

Si on considére que n =1/3, on trouve W = —300J.

L’application numérique donne : W = = —295].
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20.16 d) Le moteur fournit 295 J par cycle & un régime de 2 000 cycles par minute. La puissance P est donc

p_ 2957 x2 OOOC}fcles ‘min~! 9 833 W.
60s - min—!
En utilisant que 1cv = 736 W, on obtient P = 13,4 cv.

St on considére que W = —300J, on trouve P = 13,5¢v.

20.17 a) Pour un gaz parfait, on a ’équation d’état PV = nRT, ainsi V = nkT

P
On dérive par rapport & P a T constant. On obtient :
<6—V) _ it et donc = _l(@l) _ nkT
oP)r P2 Xr==y\ap); =~ VP2
En utilisant de nouveau l'équation d’état PV = nRT, il vient alors xr = %

RT
20.17 b) Pour un gaz parfait, on a ’équation d’état PV = nRT, ainsi V = nP
On dérive par rapport & T' & P constant. On obtient :

(8—‘/) —@ et donc «@ ! (8V) nk
or/)p P P

“v\er/), PV’
En utilisant de nouveau ’équation d’état PV = nRT, il vient alors o = !

20.17 ¢) On utilise I’équation d’état PV = nRT pour isoler la variable & dériver. Apres calcul, on obtient :

() _mk Iy Vo (9B) _nAT
BT p_P7 BP V_TLR 8V T_ VZ.

On arrive alors a Y = —1.
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Fiche n° 21. Statique des fluides

Réponses

212 D) e 2112 D) e
2118 L @ 2118a)....iinnnn ] [psh — pe(h —x)]S'g \
214 @]  2113Db). h<”l ps)
Pe
215 8) .t + pgz
) 21.13C) i (pe — ps)Shyg
21.5b) .. po+ pg(H — h — z3)
’ ‘ 2104 8) e (a)
21.5¢C) i, ’pg(H — zgsin(a)) + po ‘ -
1 —
2160) T D) e 3 S(hh2 ?)
) e —(e; — €
\/i Yy
Ps
216 D) o 21.14¢) o h (1 -1 pe>
21,6 C) e (V3@ +&) | 2L15a). ®
21T Q) oo M| 2LI8b). ()
21T D) oo © 2115 C) tet e (©
21T ) @@ FIOA)
7 21.16b)........... By?e, + 2Bxye, + 2Ce**€;
217 ) Phih
Pe$ B A 43,6 ¢ - mol *
2L.8a) i 21.17Dh) o 148g-m™>
S
218 D) Po + pg(H + gh) 2117 €)oot (©
219 8) ot 2107 d) .o
21.9 D) o IN
9b) > 2118 8) et j—p _ W
219 C) oot Z Fmax
—22/2Zmax
21,00 .o ®)| 21I8D) poe”*/
2101 8) .o [0] 2119a)............... poe” “9*/P0
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A/ _paz 1
21.19b) .o pot (e =1) | 2m21a). 5PILh?
2119 ¢) . Po —agz + bcg(l - e””) 21.21h) . éng}f'
21.2008) ov e | play — g2) +po | 1

21,21 €)oo 3h
21.20 D) vt =2y

g
Corrigés

21.1 a) Par définition, on a 1Pa=1N - m 2. Ainsi, on a :

750 kPa = 750 x 10° Pa = 750 x 10° N - m ™2 = 750 x 10®> x N x (100cm) > = 75N - cm ™ 2.

21.1 b) En effet, par définition, on a 1bar = 1 x 10° Pa.

=
21.2 a) La force de pression s’écrit F' = //p 7 dS, oul 7 est le vecteur unitaire normal & ’élément de surface
et dirigé vers I'intérieur du solide. Ici 7 est vertical car la surface est un disque horizontal. Enfin, la pression étant
uniforme sur la base du cylindre, on a :

F=pS®, soit F=pr(d/2)®=6x10°x x (0,01)2=1,9 x 10>N.
21.2 b) Le volume de gaz ne variant pas, la pression reste la méme.
21.3 La formule @ n’est pas homogene car py est une pression et z une longueur. La formule @ n’est pas
homogene car po (1 —e Zx:ax) est une pression et z une longueur. La formule @ n’est pas homogene car (entre
autres) I’expression 1 — z — 2% nest pas homogene, puisque z est une longueur et 2% une aire.

21.4 Dans un liquide incompressible en équilibre dans le champ de pesanteur uniforme ¢, la pression suit la
loi p(M) = po + pg X ha, ol hm est la profondeur du point M depuis la surface libre soumise & une pression po.

Ici, le point M se situe & une profondeur hv = ho — z. Donc, on a p(M) = po + pg(ho — 2).

21.5 a) L’équation fondamentale de la statique des fluides est gradp = pg. On projette cette égalité suivant
laxe (O121) :

. =PI d’olt apres intégration p(z1) = pgz1 + Ci.
Z1

A Vinterface air/eau, on a p(z1 = 0) = py = C1. Ainsi, on a p(z1) = po + pgz1.
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21.5 b) Suivant 'axe (O222), on a (;17:0 = —pg. Doty p(z2) = —pgz2 + Cs. A l'interface air/eau, on a :
2

p(z2 = H —h) =po = —pg(H — h) + C2.

Donc, on a Co = po + pg(H — h). Finalement, on trouve p(z2) = po + pg(H — h — 22).

21.5 ¢) Suivant 'axe (Osz3), on a :

dp

.= sina ce qui donne p(z3) = —pgsinazz + Cs.
z3

Au fond de I'eau, on a p(zs = 0) = po + pgH = Cs. Par conséquent, on a p(z3) = pg(H — z3 sin a) + po.

On pouvait aussi plus simplement reprendre la formule de la question b) et noter que zz = (22 + h)/sin(a), ce qui
donne le méme résultat.

21.6 a) La force pressante est toujours normale & la surface de 'objet et orientée vers celui-ci.

1 — —>
ﬁ(ez - €y).

On trouve ainsi : ua =

21.6 b) La force pressante est toujours normale & la surface de ’objet et orientée vers celui-ci.
On trouve ainsi : ug = —é,.

21.7 a) Le point A est sous une hauteur h d’huile de masse volumique pn par rapport a la surface. La pression

en A vaut donc : pa = Patm + pngh. Le volume Vi, d’huile occupe la hauteur h dans le tube de section s telle que :
Vi = sh. On obtient ainsi pA = Patm + phg—h.
s

21.7 b) Le point B est sous une hauteur d; d’eau de masse volumique p. par rapport & A, la pression en B vaut

donc : pg = pa + pegdi.

PC = Patm + peng-

De plus, les points B et C sont a la méme altitude dans le méme fluide donc pg = pc.

Va
Patm + phg? + pegdl = Patm + peng-

1l en découle : dy — dy = 22V
pes

21.8 a) La pression qui régne dans un liquide incompressible s’écrit p(M) = po + pgh, ot hy est la profondeur
du point M depuis la surface libre soumise & une pression po. Ainsi, au fond du récipient, on a p = po + pgH.
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21.8 b) En plongeant le solide dans le liquide, on modifie la hauteur de liquide. Notons H' cette nouvelle hauteur.
On obtient H' en traduisant 'additivité des volumes :

SH +sh=SH' soit H = H+ %h.

Finalement, la pression au fond du récipient vaut :

S
p:po+ng/:po+pg(H+§h)-

-0 2 2 _ _ _
HHHzgpsavonxwasg:§ x25x10°kg-em™® x 7 x (10cm)® x 9,8m -s72 = 51N,

2
21.9¢) Ona Hﬁ” = Meau X § = Peau X Vimmergs X g aveC Vimmergs = gTrth avec h = 4a. Finalement, on trouve :

HﬁH = %peau X 7rasg = g x 1,0 X 1073 kg - em ™3 x 7 x (10(:1(11)3 X 9,8m - s 2 =82N.

21.10 En notant P le poids du solide et i la poussée d’Archimede qui s’exerce sur lui, la condition d’équilibre

assure ]_5+ o=0.Par projection sur ’axe vertical, on obtient msg —mrg = 0, avec my, la masse de fluide déplacé
par le glagon. En faisant apparaitre les masses volumiques, I’équation mgs = my, devient psVs = pr.Vimm :

21.11 a) La pression ne dépend que de z, par conséquent les forces de pression qui s’exercent sur les faces latérales
verticales se compensent. Aussi a-t-on R, = 0.

21.11 ¢) Rappelons que la pression vérifie la loi p(z) = po + pgz avec po la pression qui régne a la surface
libre. Faisons un bilan des forces qui agissent sur les faces horizontales du cube._)La face du dessus ressent la force

]?1 = (po + pgzl)a2 e, alors que la face du dessous subit une force pressante F» = —(po + pgzg)a2 €,. Ainsi, la
résultante verticale des forces pressantes vaut :

R.=(F +F) & = —pga’ (s — 21) = —pga”.

21.11 d) On trouve donc R = fpga3 €,. L’immersion du solide déplace un volume a® de liquide, qui a pour masse
m = pa3 et poids 135 = pa3 g = pa3g €.. Ainsi on trouve E= fﬁd} conformément au principe d’Archimede.

—

21.12 a) Avant immersion, on a ?—i— P= 6, ot P est le poids du solide. Aprés, ona T’ + P +1I = 6: ot I est
la poussée d’Archimeéde. On en déduit :

\

—>

H=7-7 soit |[I||=|T -7 =10N—8N=2N.
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21.12 b) On a vu que le poids vaut P = 10N et la poussée d’Archimeéde IT =2N. Or, on a :

P=pVg et II=pVg avec ps masse Volum%que du solide
pe masse volumique de l'eau.

. P
Le rapport de ces deux relations donne immédiatement la densité du solide : d = Ps _ o= 5.
Pe

21.13 a) Le poids du bloc solide vaut P = psSh . La poussée d’Archimede est I'opposée du poids de liquide
déplacé, a savoir o= —peS(h — x) g. Ainsi, la résultante des forces vaut R= [psh — pe(h — w)] Sq.

21.13 ¢) La résultante des forces vaut maintenant E=P+T+F. En faisant = = 0 dans I’expression obtenue a

la question a), on trouve : . .
R = (psh — peh)S G + F.
i

La condition d’équilibre B =0 donne alors F = (peh — psh)S g, d’on ||FH = |(peh — psh)S|g = (pe — ps)Shg.

21.14 a) La proposition @ est homogene car ps/pe est sans dimension et h est homogeéne a une longueur.
La formule @ n’est pas homogene a cause de la racine cubique.
La formule @ n’est pas homogeéne non plus car on ajoute une longueur (h) & une masse volumique (ps).

Enfin, la proposition @ n’est pas homogene car le produit d’'une masse volumique par une longueur ne peut pas
donner une longueur.

1
21.14 b) Le volume immergé s’écrit Vimm = gS'(h — ), ott S est laire de la base du volume conique immergé.

Si I’on note r’ le rayon de cette base, on a :

S’ "\’ h—xz\?

Eh (r) N ( h ) ’
otl la derniére égalité utilise les relations de Thalés (r est le rayon de la base de I'iceberg et 7 celui du céne immergé).
On en déduit :

S(h —x)?
Rz

1
‘/immzf
3

= - 1 . N
21.14 ¢) Le poids du cone vaut P =my, avec m = §Shps et S laire de la base du cone.

Quant a la poussée d’Archimede, on a o= —mag, ol mq désigne la masse de liquide déplacé par I'immersion
A 18(h—x)? L= 18(h—z)?® O T
du céne. On a mgq = peVimm = ngc, d’ou II = ngpcg. La condition d’équilibre IT + P = 0
donne : s
1 1 (h - l’) > - y o/ Ps
§Shps—gSTpe =0 dou :zr:h(l— g o)
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21.15 a) La masse mp peut se décomposer en notant miiq la masse de la partie liquide et mgiacon celle des glagons :

mB = Miliq + Mglagon = pe(‘/tot - ‘/un) + Mglagon
en notant pe la masse volumique de l’eau, Viot le volume total du verre (égal & celui du verre A) et Vim le volume
immergé des glacons.
Par ailleurs, ’équilibre mécanique des glagons donne d’apres le PFD : mgiacon = peVim. Ainsi, mp = peViot = ma.

21.15 b) Le polystyréne étant moins dense que la glace, il est aussi moins dense que l'eau. Par conséquent, les

boules flottent. Ayant la méme masse que les glacons, les boules de polystyréne présenteront un volume immergé
identique a la situation précédente. La hauteur sera donc identique.

21.15 ¢) Le fer est plus dense que ’eau, donc les boules coulent. On note Vip1 et Vipo respectivement les volumes

submergés avec les glagons et avec les boules de fer. On a les relations :
Vib1 = Viig + Vim et Vabz = Viig + Vre.

De plus, comme les boules de fer sont de méme masse que les glagons : Mglagon = PeVim = MrFe = pre Vre, €n notant
Pe

pre la masse volumique du fer et Vi leur volume. Ainsi : Ve = Vim. Ainsi, on a :
PFe
Pe
‘/sb2:‘/liq+ < )‘/11’1'17
PFe
avec 2< < 1. Ainsi, Vipa < Vipr : le niveau diminue.
PFe

21.16 b) On a:

9(Baxy® + Ce??)
Ox

O(Bxy® 4 Ce*?)

= By?,
Jy

= 2Bxy et

2z —>

Par conséquent, grad(p) = By°e, + 2Bzye, + 2Ce** 2.

21.17 a) La masse molaire d’'un mélange s’obtient en effectuant la moyenne pondérée des masses molaires :

M = 0,96M (CO2) + 0,02M (Ar) + 0,02M (N2)
=0,96 x 44g - mol " + 0,02 X 40g - mol ™' + 0,02 x 28g - mol ™! = 43,6 - mol .

21.17 b) En partant de ’équation d’état des gaz parfaits, on a :

_ _m pM _m _

pV =nRT = MRT donc Ty P

6 x 10° Pa x 43,6 x 10" kg - mol™'
8314J-K~!'-mol~! x 213,15 K

L’application numérique donne : p =
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21.17 ¢) On remplace p par son expression trouvée précédemment et on obtient alors une équation différentielle

du premier ordre :
dp _ _ Mg
Az~ M7 TRr

Ainsi, on a :

8,314J - K~ -mol™! x 213,15K

21.17 d) On calcule H = 520 =5 — — — = 55km
43,6 x 1072 kg -mol™ " x 3,72m - s
21.18 a) En effet, on a dp = w, ce qui donne I’équation différentielle dp =— 2p
dz dz dz Zmax

21.18 b) Il s’agit d’une équation différentielle linéaire du type y’ + ay = 0.
La solution s’écrit p(z) = A efzz/z‘“a", avec A une constante d’intégration que ’on détermine a ’aide de la contrainte
p(z = 0) = po. On trouve p(z) = pg e 27/ max,

dp _ Op

21.19 a) La projection de 'équation de la statique sur les axes (Oz) et (Oy) donne el i 0. Le champ de
z  Jy
pression ne dépend donc que de z. La projection selon (Oz) donne alors :
dp _ __ag
i P9 = 20 p-

Par conséquent, on aboutit a I’équation différentielle :

d
£+%p:0.
dz = po

C’est une équation différentielle linéaire du premier ordre dont les solutions s’écrivent p(z) = Cre™92/P0,
On détermine la constante d’intégration C; a l'aide des conditions aux limites :

—agz/po

p(z=0)=po=C1 dou p(z)=poe

21.19 b) Pour les mémes raisons que précédemment, le champ de pression ne dépend que de z. La projection de

Iéquation de la statique suivant (Oz) donne :

dp

P bgp = —ag + bgpo.
z

C’est une équation différentielle linéaire du premiére ordre avec un second membre constant. Les solutions de
, . N —b . . . . 5N
I'équation homogene se mettent sous la forme pn(z) = Cae™ "%, et il est facile de trouver une solution particuliere
a

b

constante : ppart = po — —. La solution générale s’écrit donc :

bax a
P(2) = pn(2) + ppart = Cae bg +po — b

II ne nous reste plus qu’a déterminer C2 a ’aide de la condition aux limites :

p(z=10) =po=Cs+po— % d'ou p(z) =po+ %(eibgz -1).
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21.19 ¢) A nouveau, le champ de pression ne dépend que de z. La projection de I’équation de la statique suivant

(Oz) donne :
g—z = —ag + bge™

On obtient p(z) en cherchant la primitive de —ag + bge %/, A savoir : p(z) = —agz — bege /¢ + Cs.

z/c.

La condition p(0) = po impose beg + Cs = po, soit Cs = po — beg. Finalement, on trouve :

p(z) = po — agz + bcg(1 _ e—Z/c)_

21.20 a) Projetons I’équation de la statique sur les trois axes cartésiens. On trouve :

9 _

@ =0 @ = pa et = —pg.
0z

ox oy
La premiere relation implique que le champ de pression ne dépend que de y et z.

Intégrons la deuxiéme relation :

Op
5y P donc  p(y,z) = pay + f(z).
Dérivons cette derniere relation par rapport a z : a—p = f'(2). Par identification avec la troisiéme projection, on
z

trouve :

f'(z) =—pg donc f(z)=—pgz+C.
Le champ de pression se met sous la forme p(y, z) = pay — pgz + C. Déterminons la constante d’intégration C' a
I’aide de la condition aux limites :

21.20 b) La surface libre est ’ensemble des points du liquide soumis & une pression po :

a
p(y,z) = play — gz) + po =po donne z = S

Il s’agit de I’équation d’un plan incliné d’un angle o = arctan (a/g).

21.21 a) On calcule
Fp = //p(Z) dydz = //pg(h —z)dydz
L h 2,'2 h
:pg/ dy/(h—z)dz :ng[hz— —]
0 0 2 1o
2

h 1
= pgL(h* — —) = ZpgLh®.
pgL( 5) = 5P9

21.21 b) On calcule
My = //z p(z)dydz = //pg(hz —2%)dydz
L h 2 31h
:pg/ dy/(hz—zz)dZZng[hi— i]
0 0 2 3o
N

= pgL(— — =) = =ZpgLh®.
pg(2 3) 6pgh
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Fiche n° 22. Fondamentaux de la chimie des solutions

Réponses
22.18) i 22.11 b) C1Vi + CaVa
T O L W
22.1b) . 1,1 x 10%2 L

nx M

22.3C) i 2213 b) ..o 32g-L7!

22,4 22,14 8) i
225 8) . 2204 ).
22.5b) ... ’ [H50%] = 10" "mol - L™ ‘ 22,15 ). .
22.5C) o\ PHy — 2| 2245 b).. o
22.62). ... (0)=285¢t ()=580]  22.15C)..uiiiiiiiiieiii

22.6b).... | (@) = HoA, () = HA™ et (0) = A 22,16 8). ...
2216 D) ..o 0,128 mol
228 T )

22,6 €) . A%
2217 D) 1,33
22T 8) oo [15]
2217 €)oo
D2TB) ot
22,18 8) ..t D
22.8 8) .ttt 90g-L7*
2218 b))
22.8 D) .o 0,26 mol - L =* ) @
2208 C) i (©
22.98) i (©
. v 22.198) . it 1,19kg
T Vi+ Vs, 2219 D). 0,44 kg
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Corrigés

22.1 a) Par définition, on a :

m _ bg
M 12x12g-mol ' +22x1g-mol~! 411 x 16g- mol

L’application numérique donne n = 18 x 10~ mol.

N =nxNs=18 x 10"*mol x 6,02 x 10** mol ™.

L’application numérique donne N = 1,1 x 10?2,

22.2 ¢) Par définition, on a :

N =nx N4 =51,8mol x 6,02 x 10** mol™*.

L’application numérique donne N = 3,12 X 10%.

22.3 a) Déja, 24,0cL d’eau pesent 240 g, la quantité de matiére correspondante est donc :

240 g

= W = 1373 mol.

Il reste & calculer No = n x N4 = 13,3mol x 6,02 x 10*®* mol™* = 8,01 x 10**.

~ 240cL  240x107'L  240x10*m’®
1,37 x10%m® 1,37 x10¥%m® 1,37 x 10" m®

=1,75 x 1072,

22.3 ¢) Les Ny molécules d’eau se retrouveront dans 'ensemble du volume Viot, on considére donc qu’on préléve

un volume V' = 24 cL dans le volume total. Ainsi, le rapport des volumes nous donnera la proportion N de molécules
d’eau prélevées par rapport a Np.

Ainsi, le nombre N de molécules d’eau initiales présentes dans le verre a la fin est :

N = No x R=8x10* x 1,75 x 10722 = 1 400.

3 3 m 178g -1 A
22.4 On rappelle q:e lem” =1mL et 1dm™ =1L. On a pcy = V= 0% 1071 =8900g - L™ ". De méme,
on calcule pr. = % =8000g - Lt
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22.6 ¢) Par lecture du diagramme de prédominance, il s’agit directement de ’espéce HA™.

22.6 d) Commengcons par calculer le pH de la solution. Il vaut pH = —log,,(1,0 x 1072) = 2. Une lecture du
diagramme de prédominance montre que ’espéce HoA prédomine.

Le produit ionique de I'eau est défini par a(Hz0") x a(HO™) = K., ainsi il vient pH = — log,, ((;;5_))
a
1x 107

Donc, on a pH = —log,, (10105
,0 %

) = 9. Une lecture du diagramme de prédominance a pH = 9 montre que

N 2— .
I’espéce A~ prédomine.

3x6g
20 x 1072L

22.8 b) Une analyse dimensionnelle permet de retrouver que C' = C—m = 907g_1
M 344g-mol

22.8 a) La concentration en masse est donnée par Cp, = Ng - L%

=0,26mol - L',

. 2 5N . -1 5N g
22.9 a) Une concentration en quantité de matiére s’exprime en mol-L™ ", seule la derniére proposition est

homogene (mais fausse).

22.9 b) La concentration de ces ions dans le mélange est donnée par le rapport de la quantité de matiere sur le
Cl Vl
Vi+Va

volume total, soit [F63+]i =

22.10 a) La masse m1 de caféine est m; = C1 x V1 =0,7¢g- L'x100x1073L = 0,07g. La concentration en
mi 0,07g

masse dans la solution finale de volume V = V; 4+ Vo = 250mL est donc : Cf = — = ————=— =10,28g" L™t
|4 250 x 107° L

22.10 b) La masse ma de sucre est mo = Ca X Vo = 40g - L' x150x 107°L = 6g. La concentration en masse
dans la solution finale de volume V = V; 4+ Vo = 250mL est donc : Cy = m2 _ 67g73 =24g-L7".
\%4 250 x 107° L

. ez 5N . —1 . N
22.11 a) Une concentration en quantité de matiére s’exprime en mol - L™ ", aucune de ces relations n’est homogeéne,
elles ne peuvent donc pas étre correctes.
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22.11 b) Lors du mélange, la quantité de matiére se conserve. La quantité de matiére totale en sucre est
n=mn1 +ne =C1V1 + C2Va.

Le volume total du mélange est V' = Vi + V52 (en négligeant la contraction des volumes). La concentration en

. N . CiVi 4+ Ca Vs
quantité de matieére du mélange en sucre est donc C' = n_GintCalh

Vo O Vi+W
M
22.12a) OnaC, = & = 2220
%
. - n X a . \4
22.12 b) En partant de la relation précédente C,, = Vo v il vient Cy, x V. =n x M puis =n

22.12¢) On a Cp = % et Cpy, = M x C, ainsi % = M x C. Soit alors m = C' x M x V. Finalement, on a

22.13 a) Lors d’une dilution, la quantité de matiére prélevée a la solution meére est conservée dans la solution
fille. Ainsi, on a CV; = CyV} et donc :

_ CfVy  20g-L7' x 100 x 107° L

Vi
C 80g L7t

L’application numérique donne V; = 25 mL.

22.13 b) La méme démarche donne Cr,V,, = Cf V%, soit :

 CmVim  40g-L7'x20x 107°L
vy 250 x 1073 L, ’

Cy

L’application numérique donne Cy = 3,2g - L™t

22.15 a) Onan:C’xV:C—mxV:&gilx%OxlO_stzmnol.
M 138 g - mol

10g
78 g - mol ™!

22.16 a) La quantité de matiere de fluorure de calcium que 'on a dissoute est n = = 0,128 mol.

22.16 ¢) Une entité CaF3 libére deux ions F~. Ainsi, en solution, on retrouve ngy— = 0,256 mol. Cela représente

une masse mp— = 0,256 mol X 19g - mol ™! = 4,86g.
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22.17 a) La masse maximale que ’'on peut dissoudre dans ce volume est :

Mmax =5 XV =330g-L ' x20x 10 °L=6,6g.

Sur les 10 g introduits, il reste donc 3,4 g non dissous.

22.17 b) La masse volumique de la solution tient compte de la masse du soluté et du solvant (on ne tient pas
6,6g+20g
20 x 107* L

compte de la masse non dissoute). Ainsi p = =1,33kg - L™'. La densité est donc d = 1,33.

22.17 ¢) Comme la densité réelle augmente & masse constante, il s’agit d’une diminution de volume. On parle
d’effet de contraction de volume lors d’une dissolution.

22.18 b) La courbe @ car elle présente une densité plus faible que 1’eau et peut se retrouver liquide a 230°C
d’apres les températures d’ébullition de ’huile et de I’éthanol dans le tableau.

22.18 ¢) L’eau se vaporise a 100°C sous pression atmosphérique, cela se confirme par larrét de la courbe de

densité du liquide sur le graphe.

22.19 ¢) La quantité de matiére d’acide chlorhydrique pur contenu dans ce litre de solution est :

3
DA
M 36,5g-mol

Ainsi, la concentration en quantité de matiére de ce litre de solution est C' = 12mol - L.

22.20 Prenons 1L de solution. Cette solution contient n = 18 mol d’acide pur. Soit une masse en acide
Macide =1 X M = 18mol x 98g - mol™! = 1764g = 1,764kg. Ce litre de solution présente une densité d = 1,84,
donc il pese 1,84 kg. Ainsi, le titre massique vaut :

22.21 La masse de la solution est m = p x V = 0,789 x 1kg-L™" x 10000L = 7890kg. Elle contient 95,4 %
d’éthanol pur, soit une masse :
meton = 0,954 x 7890kg = 7527,06 kg.

Cela représente une quantité de matiere :

_om 7527,06 kg
T M 46,07 x 10~ 3 kg - mol !

= 163 383 mol = 163 kmol.
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Fiche n° 23. Fondamentaux de la chimie en phase gazeuse

Réponses
031 RT L 23.120)............. 0,21 bar
P 23.9a).......... T Z PV
0= 23.13a).............
23.22a)........ 12,51 - mol ! 5
: 23.9b) ... 23.13b) ... ... n—¢ Z
23.2b)........ 24,9L - mol™~ NN 1 2n
- 23.9¢)......... ( )PO ¢
23.2¢)....nnn. 495 L - mol - 2 23.13¢)............. ﬁpi
-1
23.2 d) ........ 2479L - mol 23.9 d) ............ NnORTO
Vo (n—¢)
23.3 (© 23.13d)..onn dn '
23.10a)........... 151 mmol
3(n—¢)
23.4a). ... ®)|  23.10Db)............... 0,788]  23.13¢e).......... pr—
23.10¢C). ..o 0,21
23.4b)..i © © 92 pgra ©
23.10d) ........... -213 mbar
23.4C) ... @ (213 mber | 23.154) ... [0]
23.10€)......oenann 8 mmol 23.15 b)
284d). @] 23108, 0,162 oo
23.15¢C). ...
23.5 ®)| 23.10g)........... 164 mbar| Q
23.6a).......... 0,078g L1  23:10h) P (P)?
23.11a).........eunnn. -faux 23.16a)......... NHs
23.6b)........ 24,81 - mol ™! ) P, P
23.11b) ..
- mol— 1 P°)5
23.6¢c) .o 23.11¢) . ..o 23.16b)............ 713(4 ]3
Hy* O2
23.6d). .o 2311 d) .
COg)(P°)3
23.7a) RT 23.16¢)........ [CO=)(P7)
) RT|  2312a)............ c) Ponn, PE.C?
23.7b).. | RT +bP — vi " %z; 23.12b) ... 0,78 bar oo
— - 23.16 d)......... e Tl
23.7C) i [0] 28.12¢) oo 2 x 10 7 bar Poo,C
238 @ 23.12d)......... 9 x 10" bar 23.17 . @
23.12¢€)........ 6 x 1073 bar
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Corrigés

s . Lo v RT . . . . . .
23.1 Par définition, le volume molaire s’écrit V;,, = —, soit V,,, = —— par identification avec I’équation d’état
n

des gaz parfait (PV = nRT). Le volume molaire est indépendant de la nature chimique du gaz : il ne dépend que
des conditions de température et de pression.

RT

23.2 a) Pour un gaz parfait, on a V,, = N Ici, P = 1,00 x 10°Pa et T = 150K. L’application numérique
1J-K™ ' -mol™" x 150K -
donne : V,,, = 8,317 100 Higs P x 150 =12,5L-mol™" en considérant le bon nombre de chiffres significatifs.
,00 x a

T
23.2 b) Pour un gaz parfait, on a V;,, = R— Ici, P = 1,00 x 10°Pa et T = 300K. Par rapport au cas a),

la pression est inchangée et la température est doublée : le volume molaire est donc doublé. On peut le vérifier
~831J-K ' -mol! x 300K
B 1,00 x 10° Pa

par I’application numérique : Vi, =249L- mol ™! en considérant le bon nombre de

chiffres significatifs.

T
23.2 ¢) Pour un gaz parfait, on a V,,, = R? Ici, P = 5,000 x 10° Pa et T = 298 K. L’application numérique
8,31J- K ' mol' x 208K
donne : V,,, = 3
5,000 x 10° Pa

T
23.2d) Pour un gaz parfait, on a V;, = R? Ici, P = 5,00 x 10*Pa et T = 150 K. Par rapport au cas a), la
pression est divisée par deux et la température est inchangée : le volume molaire est donc doublé, comme dans

831J-K™'-mol™! x 150K
le cas b). On peut le vérifier par application numérique : V,, = = mo. X

= 495L - mol ! en considérant le bon nombre de chiffres significatifs.

=249L- mol™! en

5,00 x 10" Pa
considérant le bon nombre de chiffres significatifs.
23.3 On note V;, le volume molaire du gaz sous ces conditions. La masse de gaz est :
\%
m=nxM=—M
Vin
en exprimant n via la définition du volume molaire, & savoir V;,, = —. Ainsi, la masse est proportionnelle au produit

MYV la valeur V,,, ne dépendant pas de la nature chimique du gaz.

En convertissant les volumes en litres (par exemple), les applications numériques donnent une masse de 20/V;,
pour Uhélium, 24/V;, pour le dioxygene (avec M(O2) = 2M(0O)), 28/V;, pour le diazote (avec M (N2) = 2M(N))
et 20/V;, pour le dihydrogene (avec M (Hz) = 2M (H)) : la réponse @ est la bonne.

23.4 a) Cette loi stipule que, & pression et quantité de matiére fixées, le rapport volume/température est constant,

c’est-a-dire que le volume est une fonction linéaire de la température. La représentation graphique V = f(T) est
donc une droite : c’est la réponse @

23.4b) Cette loi stipule que, & pression et température fixées, le rapport volume/quantité de matiére (appelé
volume molaire) est constant, c’est-a-dire que le volume est une fonction linéaire de la quantité de matiere. La
représentation graphique V = f(n) est donc une droite : c’est la réponse @
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23.4 ¢) Cette loi stipule que, & volume et quantité de matiére fixés, le rapport pression/température est constant,
c’est-a-dire que la pression est une fonction linéaire de la température. La représentation graphique P = f(T') est
donc une droite : c’est la réponse @

23.4 d) Cette loi stipule que, & température et quantité de matiére fixées, le produit pression X volume est

constant, c’est-a-dire que la pression est une fonction inverse du volume. La représentation graphique P = f(V) est
donc une branche d’hyperbole : c’est la réponse @

23.5 L’équation d’état d’un gaz parfait est PV = nRT.

Ainsi, si I'on fait subir une transformation isotherme (7 est une constante) & une quantité de matiére donnée (n
est une constante) d’un gaz parfait, alors le produit PV est identique a chaque instant de la transformation. Dans
notre cas, en notant P; la pression du gaz dans la bouteille, V; le volume du gaz contenu dans la bouteille, P> la
pression du gaz respiré (égale a la pression atmosphérique, soit 1bar) et V2 le volume de gaz que le plongeur peut

; 1
respirer, on a P1Vi = P>V5 ou encore Vo = FVL
2

L’application numérique donne :
vy = 200bar ot — 94001
1 bar
Une bouteille de 12 L remplie d’air comprimé a 200 bar contient donc ’équivalent de 2400 L d’air a la pression

atmosphérique.

23.6 a) Par définition, ona p = —.

Sachant que m = 0,70mg et V = 0,009 0L, l’application numérique donne p = 0,078 g - L™

. RT _ . 5 .
23.6 b) Pour un gaz parfait, on a V;, = e Ici, on a P = 1,00 x 10° Pa et 7' = 298 K. Finalement, on trouve
Vi = 0,0248m® - mol ' = 24,8 L - mol .
m
%

23.6 ¢) Omnsait que p=—,V,, = % et M =m/n. On en déduit M = p x V;, = 24,8 X 0,078 ~ 2g - mol ™ ".
23.6d) On a trouvé M ~ 2g- mol™'. Sachant quon a M(H) = 1g- mol ™! et que le corps simple formé par
Ihydrogene est le dihydrogeéne Ha, on déduit que M (Hz) ~2g- mol™". On en conclut que le gaz formé est Ha.

v
23.7 a) En identifiant V;, = — dans I’équation d’état d’un gaz parfait, on obtient PV, = RT.
n

v
23.7 b) En identifiant V,,, = — dans ’équation d’état de van der Waals et en développant le produit, on obtient
n

a , ab
Vi | VE

PV, = RT 4+ bP —

23.7 ¢) En identifiant les deux expressions obtenues précédemment, on constate qu’elles sont identiques si, et

seulement si, a = b = 0.
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23.8 Intuitivement, il semble que la pression totale doit étre supérieure & chacune des pressions des bouteilles
individuelles. En modélisant tous les gaz comme des gaz parfaits, la pression correspond exactement a la somme

des pressions des différentes bouteilles. En effet, pour chaque bouteille, n; = iTi, avec Vi =Vo =V =V, =V

(toutes les bouteilles sont de méme volume). Aprés mélange, la bouteille finale contient une quantité de matiere
n = ZZ n;, donc la pression totale s’exprime Piot = ZZ P; (loi de Dalton). On remarque que la pression des gaz
dans chaque bouteille correspond a la pression partielle dans le mélange obtenu.

23.9 a) Les gaz étant parfaits, chaque contenant initial vérifie ’équation d’état des gaz parfaits, c’est-a-dire que

PV . .
k’E Une fois ensemble des contenants transvasé dans le

le contenant k£ contient une quantité de matiere ny =
flacon, ce dernier contient une quantité de matiére n = Zk nk. Le mélange obtenu se comportant a priori lui aussi

RT: RT; n
comme un gaz parfait, on a P = nto 0 Zk b . En injectant I’expression de ny, il vient P = — Z P V.
Vo Vo Vo

N
k=0
L & v
23.9 ¢) En partant de l'expression P = A Z Pi Vi, obtenue précédemment, on obtient P = POVE Z k.
k=0 k=0
N(N+1
On reconnait la somme des entiers naturels de 1 & N. Ainsi, on a P = %Pg.
1« RTy ~~,  NnoRT,
‘2 . Nolilo Nolilo
23.9d) E tant de P = — P, Vi, (obt d t btient P = 1=
) n partant de 0 Z %V (obtenu précédemment), on obtien A Z Vo
k=0 k=0
23.10 a) On a Nty = 119 mmol + 24 mmol = 151 mmol.
ins N 11 1 A Lz N
23.10 b) On a zins(N2) = s (N2) — H9mmol’_ 0,788. Sachant que la méme quantité de matiere totale est

Ntot 151 mmol
inspirée et expirée et que la quantité de diazote est inchangée, on retrouve naturellement la fraction molaire du

mélange expiré.

nins(N2) _ 32 mmol

= = 0,21. On peut aussi considérer la quantité totale : on trouve
Ntot 151 mmol

23.10 ¢) On a zins(02) =
2(02) =1 — 0,788 = 0,212.

23.10 d) On a Pins(O2) = Zins(02) X prot = 0,212 x 1013 mbar = 213 mbar. On peut aussi considérer la pression
totale : on a Po, = 1013 mbar — 800 mbar = 213 mbar.

23.10 f) On a Zexp(CO2) = Ttor — Texp(N2) — Texp(02) = 1 — 0,788 — 0,050 = 0,162.
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23.10 h) On a Pexp(CO2) = Zexp(CO2) X pror = 0,050 x 1 013 mbar = 51 mbar. On peut aussi considérer la pression
totale : on a Pco, = 1013 mbar — 800 mbar — 162 mbar = 51 mbar.

23.11 a) Si les pressions partielles sont égales, alors les quantités de matiére sont égales d’apres la loi de Dalton :

la proposition est fausse.

23.11 b) Si les fractions molaires sont égales, alors les quantités de matiére sont égales, par définition de la fraction

molaire : la proposition est fausse.

23.11 ¢) Les gaz étant différents, ils n’ont pas la méme masse molaire ; donc, si leurs quantités de matiére sont

égales, leurs masses ne peuvent pas ’étre : la proposition est vraie.

23.11 d) Si les volumes sont identiques, alors les quantités de matiére sont identiques, par définition du volume

molaire : la proposition est fausse.

9 x 10° Pa
x 2 —1
1013 x 10° Pa - bar

=9 x 10" bar, avec le bon nombre de chiffres significatifs.

23.13 a) On a not (t) = nny () + ny (B) + nnug (8) = (n— €(1)) + (3n — 36(¢)) + 2£(t) = 4n — 2€(t).

La quantité de matiére totale dépend de l'avancement. La réaction ayant lieu dans un volume constant et la
température étant constante, la pression dépendra elle aussi de ’avancement si ’on considere des gaz parfaits.

RT
23.13 b) On sait que Piot(t) = ngot, gaze11,{(75)7 avec V le volume et T la température du systéme (constantes).

Pour I’état initial, on a P; = 4n——. Pour un état intermédiaire quelconque, étant donné la réponse a la question

L RT 4n-—2 2n —

précédente, on a Piot(t) = (4n — 2€) X v = n4n §P¢ = n2n £P¢.
M NH (t) 2£ 2§ 2n — £ f
.1 P = Pio = 327 Py Pio = % = P;.
23.13 C) On a NH3 ITNH3 Lt t( ) Tror t t(t) dn— 2§ t t(t) dn — 25 om omn
nn, (t) n—§& 2n—¢ n—¢&

23.1 P, = Pio = 2P, P P;

3.13 d) OH a I'Ny TN,y Lt t(t) Tt t t(t) I — 2£ B an
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i, (1) _ 3n-3¢ _3n-3m—€, _ 3(n—¢)
Ntot Prot(t) = In — 2¢ Prot(t) = in — 2 2n Pi= in

Les résultats obtenus sont cohérents car on remarque que la loi de Dalton est vérifiée : Pioy = P, + Pny, + PNuj-

23.13 ¢) On a P, = s, Pt = P

P.
23.14 L’activité a d’un gaz s’exprime a = P—l ol P; est la pression partielle du gaz ¢ dans le mélange et P° la

. L0 . . . . n a2
pression de référence (1 bar). Pour un gaz parfait, cette pression partielle s’exprime P; = avec n; la quantité

de matiere du gaz ¢ dans le mélange, T' la température du mélange et V' le volume total du mélange. Si ’on ajoute
20 moles de dioxygéne alors n; triple : la pression P; et donc lactivité sont triplées (la réponse @ est exclue). Si
I'on agrandit I'enceinte 4 4m® alors V est doublée : I'activité est divisée de moitié (la réponse b est exclue). Si 'on
double la température alors I'activité double, & condition de considérer la température absolue, qui s’exprime en
kelvins. Ici la température est de 25 °C, soit 298 K, dont le double vaut 596 K, soit 323 °C (la réponse @ est exclue,
la réponse @ est correcte).

23.15a) Ona Qi = . La grandeur P° n’apparait pas, elle est & la puissance 0. On constate que le résultat

,,.L32

simplifié est bien sans dimension, conformément & la définition d’un quotient de réaction.

4 2 2
P
23.15b) Ona Q2 = %702 La grandeur P° est & la puissance —2. On constate que le résultat simplifié
ngning,, (P°)

est bien sans dimension, conformément a la définition d’un quotient de réaction.

5,2 2 0)2
ning: ¢ (P°)
nin3 (C°)? P2
simplifié est bien sans dimension, conformément a la définition d’un quotient de réaction.

23.15¢) On a Q3 = . La grandeur P° est & la puissance +2. On constate que le résultat

3 2 Yo
ny ch P
23.15d) Ona =
) @ nineet 3 P°
est bien sans dimension, conformément a la définition d’un quotient de réaction.

. La grandeur P° est & la puissance —1. On constate que le résultat simplifié

23.16 a) L’activité d’un gaz parfait dans un mélange vaut le rapport de sa pression partielle sur la pression de

» X . : P P, (P°)* _ Pluy [ o2
référence, le tout a la puissance de son coefficient stoechiométrique : on trouve Q = P, PSQ (P2~ P, PI?{)Z (P°)".
1(Po)4po B (PO)5

PiPo, P Po,

23.16 b) L’activité d’un corps pur en phase condensée vaut 1, donc ap,oq) = 1 : ainsi, Q =

23.16 c) L’activité d’un solvant vaut 1, donc am,o@) = 1; l'activité d’un soluté en solution vaut le rapport de sa

concentration dans la solution sur la concentration de référence a la puissance son coefficient stoechiométrique : on
1 x [CO2]P°(P°)?  [COLJ(P°)?

trouve () = = .
Q COPCH4PC2)2 PCH4P32 Ce
H P°
23.16 d) L’activité d’un solvant vaut 1, donc amg,o@) =1 : on trouve Q = %.
23.17 On est a 1’équilibre donc le quotient de réaction vaut la constante d’équilibre.
~a(CO23aq))  [CO2aq)l/C°  [COz0aq)] P° 7,0g- L7t 1,00 bar

= 0,050.

= = = X
a(COqg)) P(COqyg))/P°  P(COgz)) C°  44g-mol™' x 3,0bar = 1,00mol-L™*
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Fiche n° 24. Réactions chimiques

Réponses
DAL Q) o 12CO + 0, =2C0, |
2L D) e 2 Agh + Cu=2Ag + Cu®t |
24.1C) oo [2NO + 2 CO = Nj + 2 CO, |
241 ) S2027 + 217 =2807 + 1
DAL €)oo 2CsHis + 250, = 16 COz + 18 Hy0 |
24T 0) oo MnO; +8H* +5Fe** = 5Fe?* + Mn?* + 4H,0|
242 A) . e ny —&

243 (@)
O (o)
D45 8) e 0(NH )eq X a(H20)eq
a(NH} )oq X a(HO ™ )eq
+

A5 D) aNHa)eq x a{H30)eq
a(NH] )eq X a(H20)eq
a(HO )eq x a(H307T)eq

245 C)

¢) a(H,0)2,

o_ Ka
245 ) K=
24,5 ) L 10475
246 A) .. (a)
246 D) (a)
2416 C) e )
2406 ) o (©)
2T ®)
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249 8) (a)
240 D) (a)
(C°(V1 + 2))?
DATO ) oo
» (Vi — &) % (CaVs— )
° 2
2410 D) oo 62—6(01V1+C2%)+0102‘/1V2— [C(V}{——i—VQ)] =0
DAL ) oo 21— K°) +£,K°(Ch + Co) — K°C1C, =0
2ATL D) e €24 6,(Cy+ K°C°) — K°C1C° =0
DAL €)oo | (K° 1) — £K°(ny + ) + K°niny = 0]
2400 d) oo 4K°¢? — §<4K°n + P V) +K°n?=0
RT
DAL €)oo |E(UK°P + P°) — €(4nK°P + nP°) + K°n®P = 0]
DAL A) oo 7,6 x 10 2mol - L' |
2AT2 D) o 3,6 10 2mol - L' |
DATB A) .o
2418 D) Lo
0 ) (a)
0 I B ) (a)
2404 C) oot (a)
D404 ) oo ()
NH

D415 Q) o pH = pK 4 + log;, ( [[NHE’;J
DALE D)o 8,9
DALO ) e 24 KACTE, — K4C1C° =0
DATO D) .o 88x 10 mol L' |
DALLE C) e 3.9
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Corrigés

24.1 a) On commence d’abord par équilibrer les atomes de carbone (un de chaque c6té). On a deux atomes
1
d’oxygene a droite, on doit donc en placer deux a gauche. Ce qui donne : CO + 3 02 = COa.

On préfére raisonner avec des coefficients stoechiométriques entiers, il suffit alors de multiplier les coefficients par
deux : 2C0O + O3 = 2COs.

24.1 b) Initialement, les charges ne sont pas équilibrées. Il faut mettre 2 Ag™ pour ajuster les charges. Enfin,
on équilibre Pélément Ag en mettant un coefficient 2 au produit Ag. On obtient 2 Ag™ + Cu = 2 Ag + Cu*".

24.1 ¢) On commence par équilibrer élément azote : 2 NO + CO = Ny + COs. Les carbones sont équilibrés
mais pas les atomes d’oxygeéne. On doit donc trouver x tel que :

2NO 4+ 2z CO = N3 + 2 COas.
En raisonnant sur 'atome d’oxygene, on trouve 2 + x = 2z, soit x = 2.

24.1 d) Commencons par équilibrer les atomes d’iode puis le soufre et enfin 'oxygéne. On arrive 4 :

S205” 4+ 217 =2S0; + .
On s’apercoit que les charges sont de facto ajustées. La réaction est équilibrée!

24.1 ¢) Commengons par ajuster les atomes d’hydrogene : CgHig + O2 = CO2 4+ 9H20. Poursuivons avec les
2
atomes de carbone : CgHis+ 02 = 8CO2+9 H20. Puis avec les atomes d’oxygene : CgHis + ?502 = 8CO0O32+9H->O0.

Terminons en multipliant tous les coefficients par deux : 2 CgHis + 2502 = 16 CO2 + 18 H2O.

Puis les atomes d’hydrogéne : MnO, + 8H' + Fe?T = Fe** + Mn®T + 4H,0.

Les éléments sont équilibrés. Comptons les charges : +9 & gauche et +5 & droite. Les charges ne sont donc pas
ajustées. Or, on n’a pas encore considéré le fer. Appelons = son coefficient :

MnOj + 8HT + zFe’t = 2z Fe®" + Mn®' 4+ 4H,0.

L’équilibre des charges donne 7 + 2z = 2 + 3z, d’ou « = 5.

n
24.2 a) Par définition, 'avancement est lié aux quantités de matiére des produits ou réactifs via & =

v
ou v; est le coefficient stoechiométrique algébrique du produit ou réactif. On obtient donc :
No) + 3Ha) = 2NHs(g
Etat initial ni na 0
Etat final ni —¢§ ng — 3& 2¢
24.3 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions

@ et @ Ensuite, par définition, I'activité des produits de la réaction doit se trouver au numérateur et celle des

réactifs au dénominateur. On garde donc l’expression @
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24.4 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
, @ et @ Ensuite, par définition, I'activité d’un solide seul dans sa phase vaut 1, ce qui exclut les propositions
e et @ On garde donc ’expression @

NH H
24.5 a) D’apres la loi d’action de masse, on a K° = Qeq = o _i’)eq x o QQ)QQ .
a(NH] Jeq x a(HO )cq

24.5 b) La constante d’acidité est la constante d’équilibre associée & la réaction entre I’acide du couple et 1'eau :

NHJ} 4+ H.O = NH3 + H30™.
_ a(NHg)eq X a(H30+)eq
a(NHJ )eq X a(H20)eq -

D’apres la loi d’action de masse, on a donc : K4

2 H,O = H;O" + HO ™.

H;0% HO™
D’apres la loi d’action de masse, on a donc K, = ¢(H507)eq x a(HO )eq.

a(H20)Zq
24.5 d) On a, d’apreés les questions précédentes :
_ a(NHs)eq x a(H30")eq o ko= a(HO )eq X a(H30M)eq
a(NH] )eq X a(H20)eq ‘ a(H20)3, '
K NHs)e H20). P °
Donc =2 = o f) a X o 2?) L. On en déduit donc que K° = =3
K.  a(NH] )eq X a(HO ™ )eq K.
o Ka 10797 4,75
24.5¢) Ona K =%, 1014 10

. [HF], x [CHsCOO™ |
24.6 a) A Détat initial, Q; = ! = (0 < K°. La réaction évolue donc dans le sens direct.
[CH3COOH], x [F_}

[HF], x [CH3COO |
~ [CHsCOOH], x [F~]

\ [HF], x [CH5COO~ ],
24.6 ¢) A DI'état initial, Q; = t =1 > K°. La réaction évolue donc dans le sens indirect.
[CH;COOH]; x [F~]

. [HF], x [CHsCOO~ ] . 16
24.6 d) A Détat initial, Q; = L =25x107°=10""" = K°.
[CH;COOH]; x [F~]

=0 < K°. La réaction évolue donc dans le sens direct.

k3

k3

Ainsi, le systéme est a ’équilibre et n’évolue pas.

24.7 On calcule, pour chaque réactif, le rapport entre sa quantité de matiere initiale et son nombre stoechio-
métrique. Le réactif pour lequel ce rapport est le plus faible est le réactif limitant.

34
On trouve @ = 3,0 x 10”2 mol et =2,0x 10”2 mol.

L’ion hydroxyde HO™ est donc le réactif limitant.

Remarque : on ne prend pas en compte les ions Na™ ni C1™ car ce sont des ions spectateurs et non des réactifs.
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24.8a) Ona % = % = 5,0 x 10" ?mol : les réactifs ont donc été introduits en proportions stoechiométriques.

Dans ce cas, il n’y a pas de réactif limitant (ou alors tous les réactifs sont limitants).

L’avancement maximal est alors max = 5,0 X 10~ %mol.

QC4H10(g) + 13 Oz(g) — SCOQ(g) —+ 10 HQO(g)
Etat initial n1 no 0 0

Etat final ny — 2€max ng — lggmax 8§max 10€max

Comme la réaction est totale, ’avancement atteint a 1’état final correspond a I’avancement maximal &max calculé a
la question précédente. On a donc n(CO2) s = 8&max = 4,0 X 10" *mol.

24.9 a) On calcule dans un premier temps les quantités de matiere initiales de tous les réactifs :

n(Agh)i=n1 =CxV =025mol-L™" x 20 x 107°L = 5,0 x 10 mol
m 0,254 ¢g
Mcu  63,5g-mol ™!

et n(Cu); =ng = =4,0x 10~ mol.

On calcule ensuite les rapports entre les quantités de matiére initiales et les nombres stoechiométriques :

Agt); _ i _
w =2,5% 10 ?mol < ”(Clj“) = 4,0 x 10~ mol.
Le réactif limitant est donc Ag™.
24.9 b) On dresse un tableau d’avancement pour cette réaction :
2Ag8 .y +  Cuy = Cu'fng +  2Ag,
Etat initial ny N2 0 0
Etat ﬁnal ny — 2£max ny — fmax gmax 2€max

La réaction est totale, donc ’avancement final est égal a ’avancement maximal.
ni

Le réactif limitant est 'ion argent (Ag"h), donc Pavancement final est Emayx = 5 = 2,5 mmol.

A Détat final, on a donc n(Cu)s = 4,0mmol — 2,5mmol = 1,5 mmol.

a(PhCOOH)eq X a(H20)eq
a(PhCOO ™ )eq X a(H30™)eq
seul dans sa phase, son activité vaut 1. Comme H3O est le solvant, son activité vaut 1. L’activité des espéces
aqueuses s’exprime en fonction de leur concentration et de C°.

24.10 a) D’aprés la loi d’action de masse, K° = . Comme PhCOOH est un solide

Avec les expressions du tableau d’avancement, on a alors :

o — 1x1 _ (C°(Vi + V)2
(&%) * (=95) ~ @GV - (@1 =0

24.10 b) A partir de la relation précédente, on déduit (C1Vi — &) x (CaVa — &) =

Aprés développement, on obtient :

£2 — ¢(C1Vi 4 CaVa) + CLC VA Vs —
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24.12 a) La résolution du polyndéme du second degré donne deux solutions :
£o1=76%x10""mol-L™" et £,2=52%x10""mol L',

L’avancement final ne peut pas étre supérieur & avancement maximal &y max = 1,0 X 107" mol - L™". On en déduit
donc que &, = 7,6 X 102 mol - L™

24.12 b) La résolution du polyndéme du second degré donne deux solutions :
€1 =36x102mol-L™' et &o2=-56x10*mol-L "

Il est indiqué que la réaction se déroule dans le sens direct, donc I’avancement doit étre positif. La solution &, 2 est
par conséquent impossible. On a donc &, = 3,6 X 10" mol - Lfl, qui est bien inférieur & 'avancement maximal.

24.18 a) Par définition, pH = —log,, (a(H30+)).

H +
En solution aqueuse diluée, 'activité de H3OT est a(H;0™) = [307?] L’expression précédente devient donc :
[H307] 5,0 x 1072 mol - L™*
p 0810 < o 0810 1,0 mol - L1 )

24.13 b) Les concentrations [HO ™| et [H3O7"] sont liées wia la constante d’autoprotolyse de I’eau :

_ [HO™] x [H50™] done [Hs0"] _ K.C°

Ke (Co)2 co o]

On a donc :

He —lo [H30F] _ o K.C°\ _ 1,0x 107 x 1,0mol - L1 "
pH = g10 Co = 210 [HO] = g10 1.0 x 10 2mol - L° =12.

24.14 a) Une solution & pH = 1,0 posséde une concentration en ions oxonium [HzO"] = 107"“mol - L ™", et une

solution & pH = 2,0 posséde une concentration en ions oxonium [H30+] =10"%mol - L.

24.14 ¢) Les concentrations [HO ] et [H30™] sont liées via la constante d’autoprotolyse de I’eau :

- + 02
=BG e 0= S
On a donc :

e pour la solution @, [H;0%] = 5,0 x 10 ¥ mol - L7,

e Pour la solution @, [H;0%] =1,25 x 10 mol - L™,
C’est donc la solution @ qui est la plus concentrée en ions oxonium.

24.14 d) Les concentrations [HO ™| et [H3O7"] sont liées via la constante d’autoprotolyse de I’eau :

HO™ H;0" K. - (C°)?
e = [HO7] x [H;07] ><0[2 207 donc [H;07] = 7(C: )
(C°) [HO™]
On a donc [H30T] = 1,0 x 10~ mol - L' pour la solution @
Quant a la solution de pH = 9,0 : sa concentration en ions oxonium est [H30+] =1,0x 107  mol - L.

C’est donc la solution @ qui est la plus concentrée en ions oxonium.
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24.15 a) La concentration en ions oxonium en solution est liée aux concentrations en NH} et en NH3 via la
constante d’acidité du couple (NHJ /NHs) :

NI x [100T] g, [Ha0T] _ KalNIL]]

Ka— -
4 [NHF] x C° Ce [NH;]

On retrouve ainsi la formule d’Henderson :

_ [HsO™] _ Ka[NH{]\ _ [NH;
pH = — 10g10< Co ) = —logy, <E\H_IS]> = pKa +log,, ( [NHI] >

24.15 b) Numériquement, on trouve :

[NHs] 1,0 x 10® mol - !
H=pKa+]1 =9,2+1 = 8.,9.
PR pRat ng([NHj] TOB10\ 50 % 10 P mol L

24.16 a) On écrit un tableau d’avancement pour cette réaction, ol &, représente 'avancement volumique :

] CH3COOH(q) + H204 = CH3COO,, + H30(,
Etat initial C1 exces 0 0
Etat final C1— & exces & &
avec C = % = 1,00 x 10 3 mol - L7L.

A I’équilibre, d’aprés la loi d’action de masse, on a :

O — Ky — ACH3COO0 )oq a(H30%)eq
= B AT T (CH3COOH ) eq X a(H20)eq

En solution aqueuse diluée, on remplace les activités par leurs expressions. On obtient :

_ [CH5CO0 Jeq X [H5OYeq

Ka [CHsCOOH]oq C°
Ensuite, on remplace les concentrations par leurs expressions trouvées dans le tableau d’avancement. Il vient :
KA:i donc 2+ KaC°¢, — KaCiC° = 0.
(Cl - gv)co ! ’

24.16 b) La résolution du polyndéme du second degré obtenu a la question précédente donne deux solutions :

o1 =12%x10""mol et &2 =—1,3x10"*mol.

Le quotient de réaction a Iinstant initial vaut Q; = 0 (il n’y a pas de produits a U'instant initial).
Ainsi, on a Q; < K4 : la réaction se produit dans le sens direct. L’avancement doit donc étre positif et on a &, = &y,1.

Ainsi, & Péquilibre, [CH;COOH] = C; — &, = 8,8 x 10 *mol - L.
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Fiche n° 25. Cinétique chimique

Réponses

251 8) et (a)
25.1 D) (@)
250 C) e (©
25.0d) (©
25.2 ) (a)
25.2 D) ()
25.2C) et 000
25.2d) (©
25.38) i Oui : 2
25.3 D) i Oui g
25.3 C) o\ Non
25.48) . i 5,0mmol - L™ - min~! ‘
254b).....o ’ 1,7mmol - L' - min~* ‘
25.4C) i ’3,3mmol-L_1 -min~? ‘
25.4d).....o ’1,7mmol-L_1 -min~* ‘
25.58) . i RT(In(A) — In(k))
25.55) oo

E,

25.6 ). ... In(A4) — T
25.6 D) i 1.8 x 10°kJ - mol ' |
25.6C) ... 53 % 10" L - mol ' -5 |

1d[A

25.7 Q) i —a%

25.7 D)o
257 C) e [A]o — akt
25.8 8) .o\ v = k[A]
25.8 D). [[AJo x exp(—akt)|
25.9 ) .t k[A)?
25.9 D) .. L4kt
[Alo
25.9C) i o [aA[]K]Okt
2510 8) ... %
25.10 D) .o h;(]j)
2510 C) ..t !
[Aoak
2511 ).ttt
2511 D) e 700 x 105! |
25,02 8) .o ()
2512 D) .. (@) et (0)
25,12 C) ettt M)
25,12 d) .o @
2513 8) i m=1
25.13b) ..., In (k x [Ha]g") +nln ([So)
25183 C) o n—1
2
25.13d)............. ]3,00 LY2. mol~ 2. min~! \
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Corrigés

25.1a) Clest @ car la vitesse volumique s’exprime en mol - L™ -7,

25.1 b) Clest @ car la vitesse volumique s’exprime en mol - L' .s7! et la concentration en mol - L.

Une analyse dimensionnelle sur v = k[A]® donne k en L? - mol % -s™".

25.2 a) Par définition, on a vierm(NHg) = +d[1§i{3] .
H
25.2 b) Par définition, on a vaisp(Hs2) = fd[d;].
1d[NH d[N 1d[H
25.2 ¢) Par définition, en utilisant les coefficients stoechiométriques, on a v = = [NHs] = [N,] =—= [H]

25.4 a) On utilise la tangente & la courbe & ¢ = O min et on calcule le coefficient directeur de la tangente.
La vitesse de disparition du réactif est égale a 'opposé du coefficient directeur de la tangente a la courbe.

On en déduit : vaisp(CLO™ )omin = 5,0mmol - L™" - min™".

25.4 b) On utilise la tangente & la courbe & ¢ = O min et on calcule le coefficient directeur de la tangente.
La vitesse de formation du produit est égale au coefficient directeur de la tangente & la courbe. On en déduit :

Vtorm (C€O3™ )omin = 1,7 mmol - L™ min™'.

25.4 ¢) On utilise la tangente & la courbe & ¢ = O min et on calcule le coefficient directeur de la tangente.
La vitesse de formation du produit est égale au coefficient directeur de la tangente & la courbe. On en déduit :
Vtorm (C€™ )omin = 3,3 mmol - L™' min~t.

1
25.4 d) Par définition, la vitesse de réaction est égale & v = ﬁvdisp/forn].
Vi

On en déduit ici que v(t = Omin) = %’Udisp(cgoi)()min = 1,7mmol - L~ ! min~t
E, P
25.5a) Onaln(k)=1In(A)— BT On en déduit : E, = RT(ln(A) - ln(k)).
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25.5b) Ona E, = RTi(In(A) —In(k)) et E, = RT>(In(A) — In(2k)). On en déduit :

1 1
E"‘(RT1 - RT2> = In(2),

—R1
puis E, = 11%711(12) L’application numérique donne : £, = 53kJ - mol .
T, T1
25.6a) Onak=Ax x(—ﬁ)dn In(k) = In(A) — L2
.6 a ak= exp| — 5= | donc = T

E.
25.6 b) Le coefficient directeur de la droite a est égal & a = —ﬁa. On en déduit donc que I’énergie d’activation
vaut F, = —a x R =1,8 X 102kJ - mol L.
25.6 ¢) L’ordonnée a lorigine de la droite b est égale & b = In(A). On en déduit donc le facteur de fréquence

vaut A = exp(b) = 5,3 x 10"' L -mol™" -s7".

25.7 b) Par définition de I'ordre d’une réaction, on a v = k[A]° = k.

[A] t
25.7 ¢) On a donc _LdlA] = k donc d[A] = —ak dt. 1l vient par intégration : / d[A] = —ak dt.
a dt [Alo t=0
(A ¢
Ainsi, on a [[A]} = —ak [t] 1o €@ qui donne [A] = [A]o — arkt.
[Alo -
25.8 a) Par définition de 'ordre d'une réaction, on a v = k[A]' = k[A]
[A] t
25.8 b) On a donc _1diA) = k[A] donc diaj = —akdt. Il vient par intégration : / diaj = fak/ dt.
o dt [A] al [A] =0

Ainsi, on a [ln[A]} L[:O = —ak M ;07 ce qui donne In ([A]) —In ([A]o) = —ak(t —0).

Finalement, on trouve [A] = [A]o X exp(—akt).

[A] t

25.9 b) On a donc ,l% = k[A]? donc 7?}&?2} = akdt. Il vient par intégration : /[A]O 7?‘5?2} = ak /t:o dt.
Ainsi [1}[1\] kHt i donne —— = I+ akt

insi, on a |—— =a , ce qui donne —— = —— + akt.

(Al (a3 t=0 (Al [Ao
1 [Alo

25. Al = = .

5.9¢) On a donc [A] L—Fakt TF alAlokt

[Alo

25.10 a) Lorsquet =t;/2,0na [A]t1/2 = % On a donc [Alo [Alo = —akty /2. On en déduit alors : 10 = %.
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[Alo _

25.10 b) At= t1/2, on a l'égalité 5= [Alo x exp(—ak X t1/2). En simplifiant de part et d’autre par [A]o, il
In(2)
ak

1
reste 3= exp(—akty/2), soit In(2) = ak X t1/2. On en déduit 'expression du temps de demi-réaction : ;o =

N 1 1
25.10 c) At =ty/9, on a égalité ——— = —— + a X k X t, soit —— = & X k X t1/2. On en déduit 'expression
[Al]o [Alo [Alo

In(2)

25.11 b) Pour lordre 1, on a 12 = %

. La moyenne des temps de demi-réaction obtenus est de 877s.

On en déduit que k = % =790x10"*s™ "

25.12 a) D’aprés 1’énoncé, les ions hydroxyde sont en large excés donc RBr est le réactif limitant de la transfor-
mation. On constate que, apres 70 minutes, la concentration en RBr est divisée par deux et que, aprés 140 minutes,
soit 2 x 70 minutes, la concentration est divisée par quatre. On en déduit que ¢,/2 = 70 min (réponse @)

25.12 b) L’ordre partiel par rapport & chacun des réactifs étant de 1, on peut écrire la vitesse v = k[RBr]' [HO™]".

La réponse @ est donc correcte. En outre, les ions hydroxyde sont en large excés par rapport au 1-bromo-2-
méthylpropane, donc on suppose leur concentration constante au cours de la transformation. Ainsi, on introduit
une constante de vitesse apparente kapp = E[HO ™ ]o; la vitesse peut donc s’écrire v = kapp[RBr] (réponse @)

25.12 ¢) L’ordre partiel par rapport & RBr valant 1, la concentration en RBr vérifie [RBr] = [RBr]o X exp(—kappt),
soit In([RBr]) = In([RBr]o) — kapp X t. Donc, le tracé de In ([RBr]) en fonction du temps devrait étre une droite de

coefficient directeur —ka.pp et d’ordonnée a l’origine In ([RBr}g). C’est la réponse @ qui est correcte.

25.12 d) On a kapp = k[HO o donc k = [;g’f} donc k= 1,0 x 10"' L -mol ™" - min~", ce qui correspond a (d).
0

25.13 a) Dans la série 1, [S]o est fixe. De plus, vy est doublée/triplée lorsque [Hz]o est doublée/triplée donc vo

est proportionnelle & [Ha|o. Ainsi, on a m = 1.
25.13 b) Onawvy =k x [S]o" x [Hz]o™ donc In(vg) = In (k X [Hz]om) +nxIn ([S}o). C’est bien une fonction affine
de coefficient directeur n et d’ordonnée a ’origine In (Ic X [Hg]om).

exp(—5,19)
1,86 x 10—3

25.13 d) Gréce a la valeur de 'ordonnée a l'origine, on trouve k = = 3,00 L2 mol™*/2. min~*.

Fiche n° 25. Cinétique chimique 137



Fiche n° 26. Chiffres significatifs et incertitudes

Réponses
26.18) . eee e
26.1D) . 1,9% 1073
26.1C) e
26.1 )i 1,600002 x 10° |

26.2 8) ..
26.2 D).
26.2C) i
26.2 ).t
26.3 ). ...
26.3 D) oo
26.3C) 1,0 x 1071

26.4 .. (© et ()

26.58) ... (19,10 +0,36) m |
26.5b) ... (0,90 +0,36) m |
26.50C) i (91,0 + 3,5) m?

26.5d). ...
26.6 o\ ] (59,0 % 1,4) mmol - L \

Corrigés
26.1 a)

26.78) . (1,191 +0,035) W |
26.7D) e (1,175 +0,050) W |
26.7 C) e (a)
26.8 ) .. ()
26.8 D) . (@)
26.8 C) .. @
26.9a)..... dﬂ“f))l(‘@)ﬂ(“;@f
26.9D) ... (74,4 +4,4) pmn |

26.10 8) ...\
26.10b) ...

26.10C) ..ot (4,93 +0,15) V
2611 o ] (25,017 + 0,092) cm‘
26.12 (a)
26.138). ... (1,780 +0,050) mm |
26.13 D) ... (2,49 +0,14) mm? |
26,14 8) ...\ )
26.14 D). ..o ()
26.14C) i (a)

Pour passer en écriture scientifique, on garde une puissance de 10 et un préfacteur compris entre 1

(inclus) et 10 (exclu). On rééerit alors 31,5 sous la forme 3,15 x 10",
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26.1b) On écrit 0,0019=1,9 x 10>,

26.2 a) C’est le nombre de chiffres de 0,39 qu’il faut regarder, il y a 2 chiffres & partir du premier non nul, le
nombre de chiffres significatifs est 2.

26.2 b) C’est le nombre de chiffres de 12,84 qu’il faut regarder, il y a 4 chiffres & partir du premier non nul, le

nombre de chiffres significatifs est 4.

26.2 ¢) C’est le nombre de chiffres de 12,250 qu’il faut regarder, il y a 5 chiffres & partir du premier non nul (il

faut prendre en compte le zéro final), le nombre de chiffres significatifs est 5.

26.2 d) Les zéros avant le premier chiffre non nul ne comptent pas dans le décompte des chiffres significatifs,

ceux apres si : le nombre de chiffres significatifs est 2.
26.3 a) Les deux données ont deux chiffres significatifs, on garde donc deux chiffres significatifs lors de la
multiplication : on a d = vt = 80km - h™" x 0,10h = 8,0 km.

26.3 b) 1l faut additionner la longueur et la largeur puis multiplier par deux. On a :

p=2x (6mm + 15cm) = 31,2cm.
Dans la somme, la précision est limitée par la longueur (précise au centimétre preés). Il faut donc arrondir au
centimetre pres : on écrit p = 31 cm.

26.3 ¢) Déja, ona Ry + R2 = 0,9k + 1002 = 1,0k, avec deux chiffres significatifs.

On calcule alors le gain par une division, en gardant le plus petit nombre de chiffres significatifs entre le numérateur
(trois chiffres significatifs) et le dénominateur (deux chiffres significatifs) :

Ry  100Q
Ri+ Ry 1,0kQ

=1,0x10"".
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26.4 L’incertitude-type est exprimée dans le résultat final avec deux chiffres significatifs, avec un arrondi par
valeur supérieure, ou au plus pres (les deux options sont acceptées). Le résultat numérique est ensuite arrondi au
niveau du dernier chiffre significatif de I'incertitude-type, donc ici au millimétre. On en déduit f’ = (120 & 33) mm
ou f' = (120 + 32) mm.

26.5a) Onaz=x+y=191m et u(z) =1/0,22 + 0,32 = 0,36 m. En arrondissant I'incertitude & deux chiffres,
on obtient (19,10 £+ 0,36) m.

26.5b) Onaz=x—y=09m et u(z) =+/0,22 40,32 = 0,36 m. En arrondissant 'incertitude a deux chiffres,
on obtient (0,90 £ 0,36) m.

Lorsque l’on soustrait deux grandeurs physiques proches, le résultat est en général moins précis que la donnée la
moins précise.

26.5¢c) Onaz=xzxy=91m"etu(z)=91x \/(0,2/10)2 +(0,3/9,1)2 = 3,51 m*. En arrondissant I'incertitude
a deux chiffres, on obtient (91,0 + 3,5) m>.

26.5d) Onaz=y/x=091etu(z)=091x \/(0,2/10)2 +(0,3/9,1)2 = 0,035 1. En arrondissant l'incertitude
a deux chiffres, on obtient (9,10 £ 0,35) %1071,

26.6 On commence par calculer le résultat avant de s’intéresser aux incertitudes :

__cp-Vp _ 100,0 mmol - L' -11,8mL = 59mmol - L™*
ca = Va 20mL B .

On propage 'incertitude pour ce produit de grandeurs indépendantes :

u(ca)  [{ u(cn) 2+ u(Va) 2+ u(Vs)\”
ca cB Va Ve ’
Numériquement, cela donne :

_ 2,0mmol - L~ \” 0,10mL \° 0,10mL \~
=59 1.7t it nflcncntnteliie —_— it ekl B
(ca) = 50 mmo \/(100,0mm01 - L1> * (20,00 mL> T\ T180mE

On obtient u(ca) = 1,4mmol - L', et finalement ¢4 = (59,0 + 1,4) mmol - L™ ".

26.7 a) On calcule la puissance : P =U x I =2,382V x 0,500 A = 1,191 W.

On applique ici la propagation des incertitudes & P = U x I en écrivant :

u(P) _ [ (u@)\", (u@)
P U I )"
Numériquement, cela donne :

2 2
0,050 V 0,010A\"
u(P) =1,202W x \/(27382\/) + <0,5OOA> = 0,035 W.

Finalement, on obtient P = (1,191 £ 0,035) W.
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26.7 b) On calcule la puissance : P = R X I’ =47Q x (0,500 A)2 =1,175W.

On applique ici la propagation des incertitudes a P = R x [ 2 Ona:

u(P) _ [(u®))* . (uD)
P R I '
Numériquement, cela donne :

0,14\ 2 0,010A)°
u(P) = 1,175w\/( 100) +4x <0,500A> — 0,059 W.

Finalement, on obtient P = (1,175 % 0,059) W.

26.7 ¢) Les mesures sont P = (1,191 £ 0,035) W et P = (1,175 £ 0,059) W. Les deux intervalles se recoupent :

les mesures sont compatibles.

26.8 a) L’épaisseur du tube est la différence entre le rayon extérieur du cylindre et le rayon intérieur. Le rayon
d

-5

étant la moitié du diametre, on trouve e =

SliN]

1 1
26.8 b) On applique la formule donnée dans les prérequis de cette section avec a = 5 et b= —5 On trouve :

u(e) = \/(;)2 w2(D) + (—%)2 w?(d) = % w2(D) + 2(d).

10,3 mm — 6,8 mm

26.8¢c) Onae=

1
3 = 1,75mm, et u(e) = 5\/(0,1 mm)? + (0,1 mm)? = 0,071 mm. Finalement,
on a donc e = (1,750 £+ 0,071) mm.

26.9 a) On a, pour ce produit de grandeurs indépendantes :

ud) _ (v (uD\ | (o)
Lz—¢(x>*<zj>+(z)-

d:22:2>< 632,8nm X 3m

7 S lmm = 74,447 pm.

Le nombre de chiffres conservés ici n’est pas significatif, juste assez grand pour pouvoir étre ajusté ensuite. On
calcule ensuite numériquement I’incertitude :

2 2 2
0,10 nm 10 x 1073 m 0,30 cm
— 74,44 9,10 nm 10> 10 "m ] — 4 4um.
u(d) = 74,447 nm x \/(632,8nm> +( 3,000m ) + ( 5,lcm> Aum

Finalement, on obtient d = (74,4 + 4,4) pm.

26.10 a) On peut faire le calcul a l'aide d’un tableur (fonction MOYENNE() souvent), d’une calculatrice ou de
10
Python (fonction mean() de la bibliothéque numpy par exemple). On obtient m = Z U; =4,9295V.

=1
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26.10 b) Le calcul est fait par une fonction prédéfinie du tableur (ECARTYPE() souvent), de la calculatrice ou

de Python (fonction std() de la bibliothéque numpy par exemple). On obtient oy = 0,472 042429825493V, soit
0,472V en gardant trois chiffres significatifs.

26.10 ¢) On obtient alors u(m) = = 0,149V, que 'on arrondit en gardant deux chiffres significatifs.

L’incertitude-type sur la valeur moyenne est donc finalement u(m) = 0,15V.

11 faut exprimer la moyenne au centiéme de volt, ce qui donne le résultat suivant : m = (4,93 £ 0,15) V. Cette valeur
moyenne est la meilleure estimation de la « valeur vraie » que 'on peut faire & partir de cette série de mesures
répétées.

26.11 On calcule une valeur moyenne de 25,017 cm et un écart-type des mesures de 0,301 cm, ce qui donne une
incertitude-type sur la valeur moyenne de 0,087 cm.

L’incertitude-type est, avec deux chiffres significatifs, au centiéme de millimetre, il faut donc garder les chiffres
jusqu’a cette décimale : on obtient (25,017 &+ 0,087) cm.

u(R)

Pour n = 5, on obtient g & 0,44 %.

La réduction de I'incertitude vient du fait que les incertitudes sur les composants sont indépendantes les unes des

autres. On retrouve ici le facteur « 7 » qui permet de passer de 'incertitude sur une mesure (une résistance) a
n

celle sur la moyenne d’une série de n mesures (les n résistances en série).

26.13 a) Le zéro de I’échelle mobile est entre 1,7mm et 1,8 mm. Il y a 20 graduations dans ’échelle mobile, le

N . . , 1 mm
pied a coulisse a donc une précision affichée de

= 0,05 mm. La graduation qui est alignée avec une graduation

fixe est la 16° de ’échelle mobile, on lit donc :
d=1,7mm + 16 x 0,05 mm = 1,78 mm.

Le résultat de la mesure est alors d = (1,780 + 0,050) mm, puisque, conventionnellement, les incertitudes sont
données avec deux chiffres significatifs.

26.13 b) La section droite est un disque de diamétre d. Sa mesure vaut donc s = 7(d/2)?. Numériquement, on

obtient :
(1,78 mm
s=nX | ——

2
La section étant reliée au diametre par une fonction puissance, on a :

2
) = 2,488 5 mm®.

u(s) u(d) 0,05 mm
s d x 1,78 mm 56%

Finalement, on obtient u(s) = 0,14 mm? et le résultat s’écrit s = (2,49 £ 0,14) mm”>.
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26.14 a) On compare une valeur & une valeur de référence. On vérifie que U'incertitude de la valeur tabulée est
trés inférieure a celle de la mesure. En effet, I'inégalité

(0,69m-s™")? =048m” s> « (2,3m-s"")?=5,3m> s>

est bien vérifiée (il y a plus d’un facteur 10 entre les deux valeurs).
492m st

2,3m-s ! =21>2

On peut donc utiliser la formule simplifiée : on a z =

Ainsi, les deux valeurs sont incompatibles.
26.14 b) On compare deux valeurs avec la méme incertitude, on doit appliquer la formule compléte, mais qui se
simplifie un peu puisque les incertitudes sont les mémes. On trouve :

0,2°C

z=—"" " =924>2
V2 x 0,060 °C

Ainsi, les deux valeurs sont incompatibles.
26.14 ¢) On compare une valeur & une valeur de référence exacte : on a z =

donné, les deux valeurs sont compatibles.
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