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Fiche no 1. Conversions

Réponses

1.1 a) . . . . . . . . . . . . . 1 · 10−1 m

1.1 b) . . . . . . . . . . . . . 2,5 · 103 m

1.1 c) . . . . . . . . . . . . . 3 · 10−3 m

1.1 d) . . . . . . . . . . . 7,2 · 10−9 m

1.1 e) . . . . . . . . . . . 5,2 · 10−12 m

1.1 f) . . . . . . . . . . . 1,3 · 10−14 m

1.2 a) . . . . . . . . . . . . 1,50 · 105 m

1.2 b) . . . . . . . . . . . . 7 · 10−13 m

1.2 c) . . . . . . . . . . . . . . . . . 2,34 m

1.2 d) . . . . . . . . . . 1,20 · 10−7 m

1.2 e) . . . . . . . . . . . . 2,3 · 10−4 m

1.2 f) . . . . . . . . . . . 4,1 · 10−10 m

1.3 a) . . . . . . . . . . . 7,3 · 106 m/s

1.3 b) . . . . . . . . . 2,6 · 107 km/h

1.4 . . . . . . . . . . . . . . . . . . . 2,4 MJ

1.5 . . . . . . . . . . . . . . 5,5 · 10−2 Ω

1.6 a) . . . . . . . . . . . 1,99 · 106 Rg

1.6 b) . . . . . . . . . . . 1,99 · 103 Qg

1.6 c) . . . . . . . . . . . 1,90 · 103 Rg

1.6 d). . . . . . . . . . . . . . . . 1,90 Qg

1.6 e) . . . . . . . . . . . . . . . . 5,97 Rg

1.6 f) . . . . . . . . . . 5,97 · 10−3 Qg

1.6 g) . . . . . . . . . . . . 1,67 · 103 rg

1.6 h) . . . . . . . . . . . 1,67 · 106 qg

1.6 i) . . . . . . . . . . . 9,10 · 10−1 rg

1.6 j) . . . . . . . . . . . . 9,10 · 102 qg

1.7 a) . . . . . . . . . . . . . . . . . . 250 g

1.7 b) . . . . . . . . . . . . . . . . . . 200 g

1.7 c) . . . . . . . . . . . . . . . . . . 125 g

1.7 d) . . . . . . . . . . . . . . . . . . . . 5 g

1.8 a). . . . . . . . . . . . . . . . . . . 10 %

1.8 b) . . . . . . . . . . . . . . . . . . 0,7 %

1.8 c) . . . . . . . . . . . . . . . . . . . 50 %

1.8 d). . . . . . . . . . . . . . . . . . . . 5 %

1.8 e). . . . . . . . . . . . . . . . . . 180 %

1.8 f) . . . . . . . . . . . . . . . . . . 0,5 %

1.9 . . . . . . . . . . . . . . . . . . . . 5,2 %

1.10 a) . . . . . . 1,03 × 103 TWh

1.10 b). . . . . . . . . . . . . 722 TWh

1.10 c) . . . . . . . . . . . . . 406 TWh

1.10 d). . . . . . . . . . . . . 113 TWh

1.10 e) . . . . . . . . . . . . . . 64 TWh

1.10 f) . . . . . . . . . . . . . . 62 TWh

1.10 g) . . . . . . . . . . . . . . 41 TWh

1.10 h). . . . . . . . . . . . . 134 TWh

1.11 . . . . . . . . . . . . . . . . . . . . . l’or

1.12 a) . . . . . . . . . . . 1 · 10−10 m

1.12 b) . . . . 0,000 000 000 1 m

1.13 a). . . . . . . . . . 4,43 · 1016 m

1.13 b) . . . . . . . . 4,33 · 1013 km

1.14 a) . . . . . . . . . . . . 10 000 m2

1.14 b) . . . . . . . . . . . . . 0,01 km2

1.14 c) . . . . . . . . . 6,72 · 1011 m2

1.14 d) . . . . . . . . . . 6,72 · 107 ha

1.14 e) . . . . . . . . . . 5,89 · 108 m2

1.14 f) . . . . . . . . . . 5,89 · 104 ha

1.15 a) . . . . . . . . . . . . . . . . . . . oui

1.15 b). . . . . . . . . . . . . . . . . . . oui

1.16 a) . . . . . . . . . 1 · 103 kg/m3

1.16 b) . . . . . . . . . . . 625 kg/m3

1.17 a) . . . . . . . . . . . . . . . . . . 7,87

1.17 b) . . . . . . 1,6 × 103 kg/m3

1.18 . . . . . . . . . La boule en or
1.19 . . . . . . . . . . . . . . . . . . . . non

1.20 . . . . . . . . . . . . . . La voiture

1.21 a) . . . . . . . . . . . . . . 30 dm/s

1.21 b) . . . 1 année-lumière/an

1.22 a) . . . . . . . 0,017 tour/min

1.22 b) . . . . . . . . . 0,001 7 rad/s

1.22 c) . . 1,90 · 10−6 tour/min

1.22 d). . . . . . 1,99 · 10−7 rad/s
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Corrigés

1.3 a) Il faut bien penser à garder le bon nombre de chiffres significatifs (deux ici car les données en possèdent
également deux) :

v =
√

2× 1,6 · 10−19 C× 150 V
9,1 · 10−31 kg = 7,3 · 106 m/s.

.......................................................................................................................................................
1.3 b) On v = 7,3 · 106 m/s = 7,3 · 103 km/s = 7,3 · 103 × 3 600 km/h = 2,6 · 107 km/h.
.......................................................................................................................................................
1.4 On a 1 Ws = 1 J donc 1 Wh = 3 600 J donc 1 kWh = 3,6 · 106 J.

Ainsi, on trouve T = 0,67 kWh = 2,4 · 106 J = 2,4 MJ.
.......................................................................................................................................................

1.5 On calcule R = 10 m
59 · 106 S/m× 3,1 · 10−6 m2 = 5,5 · 10−2 Ω.

.......................................................................................................................................................
1.11 Pour comparer ces abondances et trouver la plus petite, on peut les convertir dans la même unité, par

exemple en ppm :

Silicium Or Hydrogène Fer Oxygène Cuivre
2,75 · 105 ppm 1 · 10−3 ppm 1,4 · 103 ppm 5,0 · 104 ppm 4,6 · 105 ppm 50 ppm

.......................................................................................................................................................
1.13 a) Une année lumière est la distance que parcourt la lumière en une année. Elle vaut donc :

1 an× 365,25 jours/an× 24 h/jour× 3 600 s/h× 3,00 · 108 m/s = 9,47 · 1015 m.

La distance entre Alpha du centaure et la Terre est donc 4,7× 9,47 · 1015 m = 4,4 · 1016 m.
.......................................................................................................................................................
1.14 a) On a 1 ha = 100 m× 100 m = 1× 104 m2.
.......................................................................................................................................................
1.14 b) On a 1 ha = 0,1 km× 0,1 km = 0,01 km2.
.......................................................................................................................................................
1.14 c) On a 672 051 km2 = 672 051 · 1× 106 m2 = 6,72 · 1011 m2.
.......................................................................................................................................................
1.14 d) On a 672 051 km2 = 672 051 · 1× 102 ha = 6,72 · 107 ha.
.......................................................................................................................................................
1.14 e) On a 589 km2 = 589× 1× 106 m2 = 5,89 · 108 m2.
.......................................................................................................................................................
1.14 f) On a 589 km2 = 589× 1× 102 ha = 589 · 102 ha = 5,89 · 104 ha.
.......................................................................................................................................................
1.15 a) On peut convertir : 2,5 · 10−4 m3 = 250 mL.
.......................................................................................................................................................
1.15 b) On peut convertir : 7,5 · 10−2 m3 = 75 L.
.......................................................................................................................................................
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1.16 b) La masse volumique de la farine est 0,25 g
0,4 cL = 0,625 kg/L = 625 kg/m3.

.......................................................................................................................................................
1.18 Le volume du cube est (10 cm)3 = 1 000 cm3. Sa masse est donc :

11,20 g/cm3 × 1 000 cm3 = 11,20 · 103 g = 11,2 kg.

Le volume de la boule est 4
3π(15 cm)3 = 14 · 103 cm3 = 1,4 · 10−2 m3. Sa masse est alors :

19 300 kg/m3 × 1,4 · 10−2 m3 = 270 kg.

.......................................................................................................................................................

1.19 On a 2 mg
1 · 103 mm3 = 2 · 10−3 g

1 · 10−3 L = 2 g/L.
.......................................................................................................................................................
1.20 On a 110 km/h = 30 m/s.
.......................................................................................................................................................
1.21 a) On résume les calculs dans le tableau suivant :

20 km/h 10 m/s 1 année-lumière/an 22 mm/ns 30 dm/s 60 cm/ms
5,56 m/s 10 m/s 3,00 · 108 m/s 2,2 · 107 m/s 3,0 m/s 600 m/s

.......................................................................................................................................................
1.21 b) Voir les vitesses indiquées dans le corrigé précédent.
.......................................................................................................................................................
1.22 a) On a 1 tour/60 min = 0,017 tour/min.
.......................................................................................................................................................
1.22 b) On a 1 tour/60 min = 2π rad/3 600 s = 0,001 7 rad/s.
.......................................................................................................................................................
1.22 c) On a 1 tour/1 an = 1 tour/(1 an× 365,25 j/an× 24 h/j× 60 min/h) = 1,90 · 10−6 tour/min.
.......................................................................................................................................................
1.22 d) On a 1 tour/1 an = 2π rad/(1 an× 365,25 j/an× 24 h/j× 60 min/h× 60 s/min) = 1,99 · 10−7 rad/s.
.......................................................................................................................................................
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Fiche no 2. Signaux

Réponses

2.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − sin(α)

2.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − sin(α)

2.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cos(α)

2.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cos(α)

2.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 cos(2t)

2.2 b) . . . −2 sin(t+ 4) cos(t+ 4) = − sin(2t+ 8)

2.2 c) . . . . . . . . . . . . . . . . cos2(t) − sin2(t) = cos(2t)

2.3 a) . . . . . . . 2A cos
(
ω1 − ω2

2 t

)
cos
(
ω1 + ω2

2 t

)

2.3 b) . . . . . . . 2A sin
(
ω2 − ω1

2 t

)
sin
(
ω1 + ω2

2 t

)
2.4 . . . . . . . . . A sin(φ) cos(ωt) +A cos(φ) sin(ωt)

2.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 2

2.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 4

2.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 3

2.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Courbe 1

2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

2.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5 V

2.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2 rad

2.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 s

2.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,5 Hz

2.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π rad · s−1

2.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . En retard

2.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . φ < 0

2.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −2π
3 rad

2.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u3(t)

2.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u1(t)

2.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u2(t)

2.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

2.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0√
2

2.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5 V

2.11 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

3 V

2.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0
2

2.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U0√
2

2.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,7 km

2.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,7 µs

2.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 km/h

2.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6 s

2.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 cm

2.15 c) . . . . . . . . . . . . . . . . . 2 sin(3,9t− 13x+ 0,3π)
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Corrigés

2.1 a)

En utilisant le cercle trigonométrique, on voit directement que :

sin(α+ π) = − sin(α).

Remarquons qu’on peut également utiliser les formules trigonométriques :

sin(α+ π) = sin(α) cos(π) + sin(π) cos(α) = − sin(α).

α
α + π

sin(α)

sin(α + π)

.......................................................................................................................................................
2.1 b)

On a cos
(
α+ π

2

)
= − sin(α).

sin(α)

cos(α + π/2)

.......................................................................................................................................................
2.1 c)

On a sin
(
α+ π

2

)
= cos(α).

cos(α)

sin(α + π/2)

.......................................................................................................................................................
2.1 d)

On a sin
(
π

2 − α
)

= cos(α).

cos(α)

sin(π/2 − α)

.......................................................................................................................................................
2.3 a) On somme les formules trigonométriques :{

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

pour obtenir cos(a+ b) + cos(a− b) = 2 cos(a) cos(b).

On a : {
a+ b = ω1t

a− b = ω2t
⇐⇒

a = ω1 + ω2

2 t

b = ω1 − ω2

2 t.

On en déduit :
A cos(ω1t) +A cos(ω2t) = 2A cos

(
ω1 + ω2

2 t
)

cos
(
ω1 − ω2

2 t
)
.

Ainsi, C = 2A, Ω = ω1 + ω2

2 et ω = ω1 − ω2

2 conviennent.
.......................................................................................................................................................
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2.3 b) On somme les formules trigonométriques :{
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

pour obtenir cos(a− b)− cos(a+ b) = 2 sin(a) sin(b).

On a : {
a− b = ω1t

a+ b = ω2t
⇐⇒

a = ω1 + ω2

2 t

b = ω2 − ω1

2 t.

On en déduit A cos(ω1t)−A cos(ω2t) = 2A sin
(
ω2 − ω1

2 t
)

sin
(
ω1 + ω2

2 t
)

.
.......................................................................................................................................................
2.4 On utilise la formule trigonométrique : sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

On a A sin(ωt+ φ) = A[sin(ωt) cos(φ) + cos(ωt) sin(φ)] = A sin(φ) cos(ωt) +A cos(φ) sin(ωt).
Ainsi, B = A sin(φ) et C = A cos(φ) conviennent.
.......................................................................................................................................................
2.5 a) On a sin(0) = 0. La courbe 2 est la seule courbe passant par le point (0, 0) et est donc la seule courbe

compatible. On vérifie aussi que la courbe 2 est comprise dans l’intervalle [−1, 1] et que sa période est égale à 2π.
.......................................................................................................................................................
2.5 b) On a cos(0) = 1, ce qui est cohérent avec les courbes 1, 3 et 4. Ce n’est donc pas suffisant pour déterminer

quelle courbe correspond à la fonction cosinus. Mais on sait de plus que cos(x) ∈ [−1, 1], ce qui correspond à la
courbe 4. On vérifie également que la courbe 4 a une période égale à 2π.
.......................................................................................................................................................
2.5 c) On a 1 + sin(0) = 1 et 1 + sin(x) ∈ [0, 2]. Cela correspond à la courbe 3. On vérifie également que la

courbe 3 a une période égale à 2π.
.......................................................................................................................................................
2.5 d) On a cos2(0) = 1 et cos2(x) ∈ [0, 1]. Cela correspond à la courbe 1. C’est aussi la seule courbe qui a une

période égale à π.
.......................................................................................................................................................
2.6 On peut mettre A sin(ωt + φ) sous la forme B cos(ωt) + C sin(ωt) avec B = A sin(φ) et C = A cos(φ).

On a donc ici : {
A sin(φ) = 1
A cos(φ) = 1.

En faisant le rapport des deux équations, on obtient sin(φ)
cos(φ) = tan(φ) = 1, ce qui correspond à φ = π

4 .

On utilise alors la première équation : A sin
(
π

4

)
= A√

2
= 1. Donc, A =

√
2.

Finalement, cos(ωt) + sin(ωt) =
√

2 sin(ωt+ π/4), ce qui correspond à la réponse c .
.......................................................................................................................................................
2.7 b) On lit graphiquement u(0) = 0 = U0 cos(φ). Donc, cos(φ) = 0. Donc, φ = π

2 .
.......................................................................................................................................................

2.7 d) On a mesuré, à la question précédente, T = 2 s. D’où f = 1
T

= 0,5 Hz.
.......................................................................................................................................................
2.7 e) On a déterminé f = 0,5 Hz à la question précédente, d’où ω = 2πf = π rad · s−1.
.......................................................................................................................................................
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2.8 a) Le signal u1(t) atteint son premier maximum avant u2(t). Le signal u2(t) est donc en retard sur u1(t).
.......................................................................................................................................................

2.8 c) On lit graphiquement le retard τ = −1 s de u2(t) sur u1(t). On en déduit φ = ωτ = −2π
3 rad.

.......................................................................................................................................................

2.9 c) Le signal u1(t) a pour période T1 = 300 µs. Le signal u2(t) a pour période T2 = 1
f2

= 125 µs. Enfin, le

signal u3(t) a pour période T3 = 2π
ω3

= 628 µs. On classe donc les trois signaux par ordre croissant de période :
T2 < T1 < T3 puis, par identification : u3(t)←→ Voie A ; u1(t)←→ Voie B ; u2(t)←→ Voie C.
.......................................................................................................................................................

2.10 a) Par définition, on a Umoy = 1
T

ˆ T

0
u(t) dt. On calcule donc :

Umoy = 1
T

ˆ T

0
U0 cos

(2π
T
t
)

dt = U0

T
× T

2π

[
sin
(2π
T
t
)]T

0
= U0

2π (0− 0) = 0.

.......................................................................................................................................................

2.10 b) Par définition, on a Ueff =
√

1
T

ˆ T

0
u(t)2 dt. On calcule donc : Ueff

2 = 1
T

ˆ T

0
U2

0 cos2
(2π
T
t
)

dt.

Pour calculer cette intégrale, il faut linéariser le cosinus au carré. Pour cela, on peut utiliser les formules trigono-
métriques :

cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 donc cos2(x) = 1 + cos(2x)
2 .

D’où :

Ueff
2 = U2

0
T

ˆ T

0

(
1
2 +

cos
(4π
T
t
)

2

)
dt = U2

0
2

(
1
T

ˆ T

0
dt
)

+ U2
0

2T

ˆ T

0
cos
(4π
T
t
)

dt︸ ︷︷ ︸
=0

= U2
0

2 .

Ainsi, Ueff = U0√
2

.
.......................................................................................................................................................
2.11 a) On lit graphiquement que la période est T = 4 s et que, sur une période, le signal prend les valeurs :

u(t) =
∣∣∣∣3 V si 0 s < t ⩽ 1 s
1 V si 1 s < t ⩽ 4 s.

On calcule donc :
Umoy = 1

4

( ˆ 1

0
3 dt+

ˆ 4

1
1 dt
)

= 1
4(3 + 3) = 6

4 = 1,5 V.

.......................................................................................................................................................
2.11 b) On a toujours T = 4 s et :

u(t) =
∣∣∣∣3 V si 0 s < t ⩽ 1 s
1 V si 1 s < t ⩽ 4 s.

On calcule donc :

Ueff
2 = 1

4

( ˆ 1

0
9 dt+

ˆ 4

1
1 dt
)

= 1
4(9 + 3) = 12

4 = 3 V2.

Donc, Ueff =
√

3 V.
.......................................................................................................................................................
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2.12 a) On calcule :

Umoy = 1
T

(ˆ T/2

0
U0 dt+

ˆ T

T/2
0 dt
)

= U0

2 .

.......................................................................................................................................................
2.12 b) On calcule :

Ueff
2 = 1

T

(ˆ T/2

0
U2

0 dt+
ˆ T

T/2
0 dt
)

= U0
2

2 .

Ainsi, Ueff = U0√
2

.
.......................................................................................................................................................
2.13 a) Le délai entre l’éclair et le tonnerre est dû à la durée nécessaire pour que le son se propage entre l’endroit

où l’onde sonore a été émise et l’endroit où se tient l’observateur. On a donc :

d = cs ×∆t = 1,7 km.

On garde uniquement deux chiffres significatifs car ∆t est donné avec deux chiffres significatifs.
.......................................................................................................................................................

2.13 b) On a τ = d

c
= 5,7 µs.

.......................................................................................................................................................
2.13 c) La durée τ est très inférieure à la précision de la mesure de 0,5 s, on peut donc considérer que la

propagation de la lumière est instantanée.
.......................................................................................................................................................
2.14 On lit graphiquement que la vague a avancé de 300 m en 1 minute, donc sa célérité est :

c = 300
60 = 5 m · s−1 = 18 km/h.

.......................................................................................................................................................

2.15 a) Le sinus étant 2π périodique, la période est T = 2π
3,9 = 1,6 s.

.......................................................................................................................................................
2.15 b) On a λ = cT = 48 cm.
.......................................................................................................................................................
2.15 c) Compte tenu de la vitesse de propagation, on trouve :

s(x, t) = s
(

0, t− x

c

)
= 2 sin

(
3, 9
(
t− x

0, 30

)
+ 0, 3π

)
= 2 sin(3,9t− 13x+ 0,3π).

.......................................................................................................................................................
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Fiche no 3. Étude des circuits électriques I

Réponses

3.1 . . . . . . . . . . . . . . . . . . . . . . b

3.2 . . . . . . . . . . . . . . . . 2,5 · 1017

3.3 a) . . . . . . . . . . . . . . . . . . . . . 2i

3.3 b) . . . . . . . . . . . . . . . . . . . . . . i

3.3 c) . . . . . . . . . . . . . . . . . . . . . . 0

3.4 a) . . . . . . . . . . . . . . . . . 80 mA

3.4 b) . . . . . . . . . . . . . . . . . 30 mA

3.4 c) . . . . . . . . . . . . . . −350 mA

3.5 a) . . . . . . . . . . . . . . . . E − U1

3.5 b) . . . . . . . . . . . . . . . . U1 − E

3.5 c) . . . . . . . . . . . . . . . . E − U1

3.6 a) . . . . . . . . . . . . . . . . . . . . 1 V

3.6 b) . . . . . . . . . . . . . . . . . . −6 V

3.6 c) . . . . . . . . . . . . . . . . . . . . 7 V

3.7 a) . . . . . . . . . . . . . . . . . −u/R

3.7 b) . . . . . . . . . . . . . . . . . . u/2R

3.7 c) . . . . . . . . . . . . . . . . . . u/3R

3.8 a) . . . . . . . . . . . . . . . . . . . . 5
6R

3.8 b) . . . . . . . . . . . . . . . . . . . . . R

5

3.8 c). . . . . . . . . . . . . . . . . . . . . R

N

3.8 d) . . . . . . . . . . . R

(
1 − a2

3 − a2

)
3.9 a) . . . . . . . . . . . . . . . . . . . 1 kΩ

3.9 b). . . . . . . . . . . . . . . . . . . 1 kΩ

3.9 c) . . . . . . . . . . . . . . . . . . . 1 kΩ

3.10 . . . . . . . . . . . . 4R(R+R′)
2R+R′

3.11 a) . . . . . . . . . . . . . . . . . . . 2R

3.11 b) . . . . . . . . . . . . . . . . . . . . R

3.11 c) . . . . . . . . . . . . . . . . . . . . . 0

3.12 a) . . . . . . . . . . . . . . . . . . . I0
3

3.12 b) . . . . . . . . . . . R2
R1 +R2

I0

3.13 a) . . . . . . . . . . . 1
4Ri+Ri1

3.13 b) . . . . . . . . . 13
4 Ri− 3Ri1

3.14 a) . . . . . . . . . . . . . . . . . . . E

R

3.14 b) . . . . . . . . . . . . . . . . . . 3E
4R

3.15 a) . . ER1
R1 +R2 +R3 +R4

3.15 b) . . E(R2 +R3)
R1 +R2 +R3 +R4

3.15 c) . . −ER4
R1 +R2 +R3 +R4

3.16 a) . . . . . . . . . . . . . . . . . . . . . 2

3.16 b). . . . . . . . . . . . . . . . . . . . . 3

3.17 a) . . . . . . . . . . . . . . . . . . 3
4R

3.17 b) . . . . . . . . . . . . . . . . . . 3
4E

3.17 c) . . . . . . . . . . . . . . . . . . −E

4

3.18 a) . . . . . . . . . . . . . . . . . . 3E
8R

3.18 b) . . . . . . . . . . . . . . . . . . E

4R

3.18 c) . . . . . . . . . . . . . . . . . − E

8R

Corrigés

3.1 Calculons le nombre d’électrons transférés pendant une seconde :
• 5 000 électrons durant 1 ms correspond à 5 · 106 s−1 ;
• 0,2 mol d’électrons durant 1 an correspond à

0,2 mol× 6,0 · 1023 mol−1/
(
365 jour · an−1 × 24 h · jour−1 × 3 600 s · h−1) = 3,8 · 1015 s−1 ;

• 20 milliards d’électrons durant 1 min correspond à 20× 109 min−1

60 min/h−1 = 3,3 · 108 s−1.

Par conséquent, c’est le courant b qui donne la plus grande intensité.
.......................................................................................................................................................
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3.2 La quantité de charge transférée vaut q = I×∆t = 4× 10−3 A×10 s = 40 mC. Cette quantité de charge
correspond à un nombre d’électrons N = q/e = 40× 10−3 C/1,6× 10−19 C = 2,5 · 1017 électrons.
.......................................................................................................................................................
3.5 a) La loi des mailles donne la relation : U + U1 − E = 0, soit U = E − U1.
.......................................................................................................................................................
3.5 b) Les points A et C sont au même potentiel, ainsi que les points B et D. Par conséquent, la tension
UAB = UCD = −UDC = −U . Donc, UAB = U1 − E.
.......................................................................................................................................................
3.5 c) D est au même potentiel que B de sorte que UDA = UBA = −UAB. On trouve donc UDA = E − U1.
.......................................................................................................................................................
3.6 a) Dans la maille triangulaire, on a 6 = U1 + 5, soit U1 = 1 V.
.......................................................................................................................................................
3.6 b) Dans la grande maille rectangulaire, la loi des mailles donne 12 + U2 − 6 = 0, soit U2 = −6 V.
.......................................................................................................................................................
3.6 c)

12 V 6 V

U1
U2

U3
5 V

Dans la maille surlignée et parcourue dans le sens indiqué, on trouve la relation 12 − U3 − 5 = 0, ce qui donne
U3 = 7 V.
.......................................................................................................................................................
3.7 a) La loi d’Ohm s’écrit u = Ri en convention récepteur et u = −Ri en convention générateur. Ici la

résistance est fléchée en convention générateur. Ainsi, on trouve i = −u/R.
.......................................................................................................................................................
3.7 b) La loi d’Ohm donne u = 2Ri, soit i = u

2R .
.......................................................................................................................................................
3.7 c) La résistance est fléchée en convention générateur : on a u = −(3R)× (−i), d’où i = u

3R .
.......................................................................................................................................................

3.8 a) Req = R

2 + R

3 = 5
6R.

.......................................................................................................................................................

3.8 b) 1
Req

= 2
R

+ 3
R

= 5
R

, soit Req = R

5 .
.......................................................................................................................................................

3.8 c) 1
Req

= 1
R

+ . . .+ 1
R︸ ︷︷ ︸

N fois

= N

R
, d’où Req = R

N
.

.......................................................................................................................................................
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3.8 d) La résistance équivalente Req est telle que :

1
Req

= 1
R

+ 1
R(1 + a) + 1

R(1− a) = 1
R

(
1 + 1

1 + a
+ 1

1− a

)
= 1
R

(
1 + 2

1− a2

)
= 1
R

(
3− a2

1− a2

)
.

On en déduit Req = R

(
1− a2

3− a2

)
.

.......................................................................................................................................................
3.9 a) En associant les deux résistances en série, on se ramène à deux résistances de 2 kΩ en parallèle, ce qui

est équivalent à une résistance de 1 kΩ.
.......................................................................................................................................................
3.9 b) En répétant la méthode précédente plusieurs fois, on arrive au même résultat.
.......................................................................................................................................................

3.10 La résistance équivalente du dipôle AB vaut Req = 2R+ 2RR′

2R+R′ , soit Req = 4R(R+R′)
2R+R′ .

.......................................................................................................................................................
3.11 a) On doit résoudre :

4R(R+R′)
2R+R′ = 3R soit 4R2 + 4RR′ = 6R2 + 3RR′ d’où RR′ = 2R2.

Comme R ̸= 0, on obtient R′ = 2R.
.......................................................................................................................................................
3.11 b) On doit résoudre :

4R(R+R′)
2R+R′ = 8

3R soit 12R2 + 12RR′ = 16R2 + 8RR′ d’où 4RR′ = 4R2.

Comme R ̸= 0, on obtient R′ = R.
.......................................................................................................................................................
3.11 c) Résolvons l’équation :

4R(R+R′)
2R+R′ = 2R soit 4R2 + 4RR′ = 4R2 + 2RR′ d’où 2RR′ = 0.

Comme R ̸= 0, il faut nécessairement R′ = 0.
.......................................................................................................................................................
3.12 b) Isolons I :

R1I +R2(I0 + I) = 2R2I0
(R1 +R2)I +R2I0 = 2R2I0

(R1 +R2)I = R2I0

I = R2

R1 +R2
I0.

.......................................................................................................................................................
3.13 a) Appliquons la loi des mailles en parcourant la maille dans le sens ABCF :

E − 1
4Ri−Ri1 = 0 soit E = 1

4Ri+Ri1.

.......................................................................................................................................................
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3.13 b) Appliquons la loi des mailles en parcourant la maille dans le sens ABDE :

E − 1
4Ri− 3R(i− i1) = 0 d’où E = 13

4 Ri− 3Ri1.

.......................................................................................................................................................
3.14 a) Additionnons les deux relations après avoir multiplié par 3 la première :{

3Ri+ 12Ri1 = 12E
13Ri− 12Ri1 = 4E

donnent ainsi 16Ri = 16E d’où i = E

R
.

.......................................................................................................................................................
3.14 b) Dans la première relation, remplaçons i par E/R :

R×
(
E

R

)
+ 4Ri1 = 4E donc 4Ri1 = 3E d’où i1 = 3E

4R.

.......................................................................................................................................................
3.15 a) Rappelons la règle du diviseur de tension :

Dans un circuit où N conducteurs de résistances R1, . . . , RN sont placés en série, la tension Uk qui règne aux bornes
de la résistance Rk est donnée par la formule :

Uk = Rk

R1 +R2 + · · ·+RN
U avec U =

N∑
i=1

Ui.

Ici, cela donne U1 = E × R1

R1 +R2 +R3 +R4
.

.......................................................................................................................................................
3.15 b) Ici, on cherche la tension aux bornes de l’ensemble des résistances {R2, R3} placées en série et donc

équivalent à R2 +R3. La règle du diviseur donne alors U2 = E × R2 +R3

R1 +R2 +R3 +R4
.

.......................................................................................................................................................

3.15 c) Attention, ici il y a un piège. La loi du diviseur de tension donne U3 = U
R4

R1 +R2 +R3 +R4
où U est

la somme algébrique des tensions orientées dans le même sens que la tension que l’on cherche. Aussi a-t-on U = −E
de sorte que U3 = −E × R4

R1 +R2 +R3 +R4
.

.......................................................................................................................................................

3.16 a) La formule du diviseur de courant donne i1
i

= 1/(αR)
1/(αR) + 1/R .

Par conséquent, α doit vérifier l’équation :

1
1 + α

= 1
3 c’est-à-dire α = 2.

.......................................................................................................................................................
3.16 b) On peut utiliser les formules du diviseur de courant :

i1 = i× 1/(αR)
1/(αR) + 1/R et i2 = i× 1/R

1/(αR) + 1/R ,

ce qui permet de déduire i2/i1 = α. La solution est donc α = 3.
On peut aussi tout simplement écrire la loi des mailles : αRi1 = Ri2 pour aboutir plus immédiatement au résultat.
.......................................................................................................................................................

3.17 a) L’association (R ∥ 3R) est équivalente à un conducteur de résistance Req = R× 3R
R+ 3R = 3

4R.
.......................................................................................................................................................
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3.17 b) Simplifions le montage en remplaçant l’association (R ∥ 3R) par un conducteur de résistance Req = 3
4R.

+E
3
4

R

R/4

U1

U2

On reconnaît un diviseur de tension. La formule du diviseur donne U1 = E ×
3
4R

1
4R+ 3

4R
= 3

4E.
.......................................................................................................................................................
3.17 c) Là encore, on peut utiliser la formule du diviseur de tension en faisant attention à l’orientation :

−U2 = E ×
1
4R

1
4R+ 3

4R
soit U2 = −E4 .

Remarque : on peut aussi obtenir U2 à l’aide de la loi des mailles : E + U2 − U1 = 0 avec U1 = 3
4E.

.......................................................................................................................................................

3.18 a) Remplaçons l’association (2R ∥ R) par un conducteur de résistance Req = 2R×R
2R+R

= 2
3R. On obtient

le circuit à une maille suivant :

2
3

R

R

R

E

i
i

La loi des mailles donne alors E −Ri− 2
3Ri−Ri = 0, d’où i = 3

8
E

R
.

.......................................................................................................................................................
3.18 b) La formule du diviseur donne :

i1 = 1/R
1/R+ 1/(2R) × i = 2

3 i = E

4R.

.......................................................................................................................................................

3.18 c) Le plus simple consiste à utiliser la loi des nœuds : i+ i2 = i1, ce qui donne i2 = i1 − i = − E

8R .

On peut aussi utiliser la formule du diviseur de courant en faisant attention à l’orientation des courants :

−i2 = 1/(2R)
1/R+ 1/(2R) × i = 1

3 i = E

8R.

.......................................................................................................................................................
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Fiche no 4. Étude des circuits électriques II

Réponses

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . u = L
di
dt + L′ di

dt

4.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L+ L′

4.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . di
dt = u

L
+ u

L′

4.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LL′

L+ L′

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

4.4 a) . . . . . . . . . . . . . . . . . . . . . . . du
dt =

(
1
C

+ 1
C ′

)
i

4.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC ′

C + C ′

4.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . i = (C + C ′)du
dt

4.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C + C ′

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

2

4.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c et d

4.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

4.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

4.9 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . a , b et c

4.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

4.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

R

4.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

4.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

R

4.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2E
3R

4.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3E

4.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

R

4.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RC

2

4.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . di
dt + R

L
i = E

L

4.13 b) . . . . . . . . . . . . . . . . . duC

dt + 1
RC

uC = 1
RC

E

4.13 c) . . . . . . . . . . . . . . . . . . . . . di(t)
dt + 1

RC
i(t) = 0

4.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . i = u

R
+ C

du
dt

4.13 e) . . . . . . . . . . . . . . . . . . . . . . du
dt + 2

RC
u = E

RC

4.14 a) . . . . . . . . . . . . . . . . . . uC(t) = E
(

1 − e−t/τ
)

4.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . i(t) = E

R
e−t/τ

4.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . uC(t) = 1
2E

4.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b
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4.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.15 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V

4.15 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V

4.15 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3 kΩ

4.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ω0] = T−1

4.16 b) . . . . . . . . . . . . . . . . . . . Q est sans dimension

4.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1√
LC

4.16 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R

√
C

L

4.17 a) . . . . . . . . . . . . . d2u

dt2 + R

L

du
dt + 1

LC
u = E

LC

4.17 b) . . . . . . . . . . . . . d2u

dt2 + 1
RC

du
dt + 1

LC
u = 0

4.18 a) . . . . . . . . . . . . . . . . . . . . . . E × (1 − cos(ω0t))

4.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . E

Lω0
sin(ω0t)

4.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.19 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

4.19 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

4.19 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

4.19 e). . . . . . . . . . . . . . . . . . . . . . . 1,2 × 103 rad · s−1

Corrigés

4.1 L’intensité est une succession de droites. Sa dérivée est donc constante par morceaux (et non définie
au niveau de la discontinuité). Si le dipôle se comportait comme une bobine, la tension devrait être constante par
morceaux, ce qui n’est pas ce que l’on observe. Il ne s’agit donc pas d’une bobine.
.......................................................................................................................................................

4.2 a) En vertu de la loi d’additivité des tensions, on a u = L
di
dt + L′ di

dt .
.......................................................................................................................................................

4.2 b) On peut donc écrire u = Leq
di
dt à condition de poser Leq = L+ L′.

.......................................................................................................................................................

4.2 c) En vertu de la loi des nœuds, on a i = iL + iL′ . Après dérivation, ceci donne di
dt = u

L
+ u

L′ .
.......................................................................................................................................................

4.2 d) On peut écrire u = Leq
di
dt à condition de poser :

1
Leq

= 1
L

+ 1
L′ soit Leq = LL′

L+ L′ .

.......................................................................................................................................................

4.3 On commence par regrouper les deux bobines en parallèle. On obtient alors L1 = L× L
L+ L

= L

2 . Cette

bobine se retrouve alors en série avec la première, d’où Leq = L

2 + L

2 = L.
.......................................................................................................................................................
4.4 a) En vertu de la loi d’additivité des tensions, on a u = uC + uC′ . Après dérivation par rapport au temps,

on obtient du
dt =

( 1
C

+ 1
C′

)
i.

.......................................................................................................................................................
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4.4 b) On peut donc écrire i = Ceq
du
dt à condition de poser :

1
Ceq

= 1
C

+ 1
C′ soit Ceq = CC′

C + C′ .

.......................................................................................................................................................

4.4 c) En vertu de la loi des nœuds, on a i = iC + iC′ = (C + C′)du
dt .

.......................................................................................................................................................

4.4 d) On peut écrire i = Ceq
du
dt à condition de poser Ceq = C + C′.

.......................................................................................................................................................
4.5 Si le dipôle est un condensateur alors l’intensité est proportionnelle à la dérivé de la tension. La tension

est constituée d’une droite croissante, puis d’une droite décroissante de pente opposée et enfin d’une parabole de
type at2 + bt + c avec a > 0. Si l’on dérive la tension, on obtient alors une constante positive, puis une constante
opposée et enfin une droite croissante (at+ b). C’est bien ce que l’on observe.
Notez que la tension est continue, ce qui est le propre d’un condensateur.
.......................................................................................................................................................
4.6 On commence par regrouper les deux condensateurs en parallèle. On obtient alors C1 = C/2+C/2 = C.

Ce condensateur se retrouve alors en série avec le premier, d’où Ceq = C × C
C + C

= C/2.
.......................................................................................................................................................

4.7 a) En régime stationnaire, on a duC

dt = 0, d’où i = 0. Cela correspond à la relation constitutive de
l’interrupteur ouvert, qui ne laisse pas passer le courant.
.......................................................................................................................................................

4.7 b) En régime stationnaire, on a di
dt = 0, d’où uL = 0, ce qui correspond à la relation constitutive de

l’interrupteur fermé.
.......................................................................................................................................................
4.8 En régime permanent, la bobine se comporte comme un fil et le condensateur comme un interrupteur

ouvert. L’ampoule A1 est court-circuitée et ne brille pas. Le courant dans la branche du condensateur est nul :
l’ampoule A3 est éteinte. Reste l’ampoule A2 dont la tension à ses bornes est E : elle brille donc.
.......................................................................................................................................................
4.9 a) La tension aux bornes du condensateur est toujours continue ; de plus, la tension d’un interrupteur fermé

est nulle, donc toujours continue.
Pour affirmer que la tension aux bornes d’un condensateur est continue, il faut se placer dans un cas où il n’existe
pas de courants infinis pendant une durée infiniment brève.
.......................................................................................................................................................
4.9 b) Du fait de la présence de la bobine, l’intensité i du courant électrique est une grandeur continue. Vu que
uR = Ri, c’est aussi le cas de la grandeur uR.
.......................................................................................................................................................
4.9 c) Du fait de la présence du condensateur, la tension uC est une grandeur continue. En revanche, i est

discontinue : sa valeur passe de i(0−) = 0 à i(0+) = E/R. Par conséquent, uR = Ri est également discontinue.
.......................................................................................................................................................
4.9 d) Le courant i circulant à travers une bobine est continu. On en déduit que uR = Ri est aussi continu. De

plus, la tension uC aux bornes du condensateur est aussi continue. Seule la tension aux bornes de la bobine peut
présenter une discontinuité.
.......................................................................................................................................................
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4.9 e) Les courants i et i2 sont continus car ces courants traversent une bobine. Ainsi, d’après la loi des nœuds,
le courant i1 l’est également.
La tension u est celle aux bornes du condensateur donc continue (la présence de la bobine en parallèle n’y change
rien). Finalement, la tension uL ne l’est pas car uL(0−) = 0 (régime stationnaire) et uL(0+) = E (loi des mailles).
.......................................................................................................................................................
4.10 a) À t = 0−, l’interrupteur K est ouvert donc i(0−) = 0. De plus, ce courant circulant dans une bobine, il

est continu, d’où finalement i(0+) = i(0−) = 0.
.......................................................................................................................................................
4.10 b) La tension uL n’est pas nécessairement une grandeur continue, il convient alors d’appliquer la loi des

mailles à l’instant t = 0+, d’où E = Ri(0+) + uL(0+).
De plus, on a par continuité du courant (bobine dans la branche) i(0−) = i(0+) = 0 car K est initialement ouvert.
On en déduit finalement que uL(0+) = E −R× 0 = E.
.......................................................................................................................................................
4.10 c) Le courant i n’est pas nécessairement une grandeur continue car il n’y a pas de bobine dans la branche.

On applique alors la loi des mailles à l’instant t = 0+, d’où E = Ri(0+) + uC(0+).
Or, on a uC(0+) = uC(0−) (continuité de la tension aux bornes du condensateur) puis uC(0+) = 0 car ce dernier
est initialement déchargé. On en déduit finalement que i(0+) = E/R.
.......................................................................................................................................................
4.10 d) La tension uR n’est pas nécessairement continue. On applique alors la loi des mailles (maille de gauche)

à l’instant t = 0+, d’où E = uR(0+) + u(0+).
Or, la tension u est à la fois celle du résistor mais aussi celle du condensateur car ces dipôles sont placés en parallèle.
On en déduit que u(0+) = u(0−) (continuité de la tension aux bornes du condensateur) puis u(0+) = 0 car ce dernier
est initialement déchargé, d’où finalement uR(0+) = E.
.......................................................................................................................................................
4.10 e) On applique la loi des nœuds à l’instant t = 0+, d’où i(0+) = i1(0+) + i2(0+).

De plus, on a i2(0+) = u(0+)/R = 0 et i(0+) = uR(0+)/R = E/R d’après la question précédente. On en déduit
finalement que i1(0+) = E/R.
.......................................................................................................................................................
4.11 a) La tension u aux bornes du condensateur est continue. De plus, on a u(0−) = 0 car le condensateur est

initialement déchargé. On en déduit que u(0+) = 0.
.......................................................................................................................................................

4.11 b) Pour le condensateur, on a, à l’instant t = 0+, i1(0+) = C
du
dt (0+). Il convient alors de trouver l’expression

de ce courant.
La loi des nœuds indique que i(0+) = i1(0+) + i2(0+). Or, on a i(0+) = i(0−) = 0 par continuité du courant
circulant dans la bobine, et du fait de l’ouverture de K pour t < 0. De plus, on a i2(0+) = 2u(0+)/R = 0. On en
déduit que i1(0+) = 0 et donc que du

dt (0+) = 0.
.......................................................................................................................................................
4.11 c) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme

un fil. La loi des mailles indique alors E = Ri(+∞) + R

2 i(+∞), d’où au final i(+∞) = 2E
3R . Ce résultat aurait aussi

pu être obtenu à l’aide d’un schéma équivalent.
.......................................................................................................................................................
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4.11 d) En régime stationnaire, le condensateur se comporte comme un interrupteur ouvert et la bobine comme
un fil. On observe alors un pont diviseur de tension formé par les deux résistors restants.

On en déduit u(+∞) = R/2
R+R/2E = 1

3E.
.......................................................................................................................................................

4.12 a) On écrit l’équation sous sa forme canonique : di
dt + R

L
i = E

L
. Ainsi, on identifie τ = L/R.

.......................................................................................................................................................

4.12 b) De la même manière, l’équation mise sous forme canonique est duC

dt + 2
RC

i = E

RC
, d’où τ = RC

2 .
.......................................................................................................................................................

4.13 a) Le circuit ne peut être simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri+L
di
dt

puis de mettre cette équation sous la forme canonique di
dt + R

L
i = E

L
.

.......................................................................................................................................................
4.13 b) Le circuit ne peut être simplifié davantage. Il convient alors d’appliquer la loi des mailles E = Ri+ uC .

L’équation constitutive du condensateur indique i = C
duC

dt , d’où, en combinant avec la loi des mailles :

E = RC
duC

dt + uC .

On en déduit sa forme canonique duC

dt + 1
RC

uC = 1
RC

E.
.......................................................................................................................................................
4.13 c) La loi des mailles indique que E = Ri+ uC . Cette fois-ci, il faut garder i et remplacer uC . Cependant,

la relation constitutive du condensateur fait apparaître la dérivée temporelle de cette tension.

Il convient alors de dériver l’équation obtenue à l’aide de la loi des mailles et d’écrire Rdi
dt + duC

dt = 0. Finalement,

on obtient di
dt + 1

RC
i = 0.

.......................................................................................................................................................
4.13 d) Le circuit comporte deux mailles indépendantes mais ne peut pas être simplifié. Il convient alors de faire

particulièrement attention aux indices et variables utilisées pour les différents courants et tensions.

La loi des nœuds indique que i = i1 + i2 avec i2 = u/R et i1 = C
du
dt . On obtient alors, en combinant ces résultats,

l’équation i = u

R
+ C

du
dt .

.......................................................................................................................................................
4.13 e) La loi des nœuds ayant déjà été appliquée, il convient d’appliquer la loi des mailles pour la petite maille

de gauche ; on en déduit E = Ri+u. On combine alors ce résultat avec celui de la question précédente pour obtenir
que E = u+RC

du
dt + u et au final du

dt + 2
RC

u = E

RC
.

.......................................................................................................................................................
4.14 a) Cherchons une solution particulière constante. On trouve up = E. La solution générale est donc de la

forme Ae−t/τ +E. La condition initiale donne uC(0) = 0 = A+E, soit A = −E. Finalement, uC(t) = E
(
1− e−t/τ

)
.

.......................................................................................................................................................
4.14 b) Ici, l’équation différentielle est homogène (sans second membre). La solution est de la forme Ae−t/τ . La

condition initiale donne i(0) = E/R = A. Finalement, i(t) = E

R
e−t/τ .

.......................................................................................................................................................
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4.14 c) Cherchons une solution particulière constante. On trouve up = 1
2E. La solution générale est donc de la

forme Ae−t/τ + 1
2E. La condition initiale donne u(0) = 1

2E = A+ 1
2E, soit A = 0. Finalement, uC(t) = 1

2E.
.......................................................................................................................................................
4.15 d) La courbe 2, associée à l’expression de u1, possède une asymptote horizontale d’expression u1(+∞) = E1.

On en déduit E1 = 4 V par lecture graphique.
.......................................................................................................................................................

4.15 e) La courbe 3, associée à l’expression de u2, possède une valeur initiale u2(0+) = 1
2E2. On en déduit

E2 = 4 V par lecture graphique. On peut vérifier que l’asymptote donne u2(+∞) = E2 = 4 V.
.......................................................................................................................................................

4.15 f) La courbe 1, associée à l’expression de i(t), a pour ordonnée à l’instant initial i(0+) = 3 mA = E1

R
donc

on a R = E1/i(0+) ≃ 1,3 kΩ.
.......................................................................................................................................................

4.16 a) On a dans le membre de gauche de l’équation d’ordre 2 :
[

d2x

dt2

]
=
[
ω2

0
]
[x] donc [x]T−2 =

[
ω2

0
]
[x].

Finalement, on a [ω0] = T−1.
.......................................................................................................................................................

4.16 b) On a dans le membre de gauche de l’équation d’ordre 2 :
[

d2x

dt2

]
=
[
ω0

Q

][dx
dt

]
donc [x]T−2 = T−1 [x]

[Q]T .

Finalement, on a [Q] = 1 ; donc, Q est sans dimension.
.......................................................................................................................................................

4.17 a) La loi des mailles indique que E = Ri+u+L
di
dt . De plus, la relation constitutive du condensateur donne

que i = C
du
dt . On en déduit que :

E = RC
du
dt + u+ LC

d2u

dt2 soit d2u

dt2 + R

L

du
dt + 1

LC
u = E

LC
.

.......................................................................................................................................................

4.17 b) La loi des nœuds donne i = i1 + i2. Cependant, la relation constitutive de la bobine fait intervenir di2
dt .

On dérive alors la loi des nœuds puis on la combine avec les relations constitutives des deux dipôles de droite pour

obtenir di
dt = C

d2u

dt2 + u

L
.

La loi des mailles (petite maille de gauche) indique ensuite que E = Ri + u. On dérive cette relation pour faire
apparaître la dérivée temporelle du courant puis on combine avec l’expression de cette dernière. D’où :

0 = RC
d2u

dt2 + R

L
u+ du

dt .

On en déduit finalement son expression canonique d2u

dt2 + 1
RC

du
dt + 1

LC
u = 0.

.......................................................................................................................................................
4.18 a) Cherchons une solution particulière constante (comme le second membre). On trouve up = E. La solution

générale est de la forme A cos(ω0t+ φ) + E. Les conditions initiales donnent :{
uC(0) = A cos(φ) + E = 0
duC

dt (0) = −Aω0 sin(φ) = 0
soit

{
φ = 0
A = −E.

On en déduit que uC(t) = E(1− cos(ω0t)).
.......................................................................................................................................................
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4.18 b) La solution est de la forme A cos(ω0t+φ) = a cos(ω0t) + b sin(ω0t). Appliquons les conditions initiales :{
i(0) = a = 0
di
dt (0) = bω0 = E

L

soit

{
a = 0
b = E

Lω0
.

On en déduit que i(t) = E

Lω0
sin(ω0t).

.......................................................................................................................................................
4.19 a) Le facteur de qualité est inférieur à 1/2 pour la courbe 3. De plus, il est sensiblement égal au nombre

d’oscillations observables dans le cas du régime pseudo-périodique. On observe environ dix oscillations pour la
courbe 2 et six pour la courbe 1. La courbe 2 possède donc le facteur de qualité le plus grand.
.......................................................................................................................................................
4.19 b) La fonction u1(t) ne contient pas de grandeurs circulaires (cos(ωt) ou sin(ωt)) et évolue de u1(0) = a− b

vers u1(+∞) = 0. Cela correspond à la courbe 3.
.......................................................................................................................................................
4.19 c) La tension u2(t) présente des oscillations amorties et tend vers zéro lorsque t tend vers l’infini. Seule la

courbe 2 vérifie ces propriétés.
.......................................................................................................................................................
4.19 d) On a lim

t→+∞
u3(t) = E. Seule la courbe 1 présente une asymptote horizontale d’ordonnée non nulle.

.......................................................................................................................................................
4.19 e) On détermine la pseudo-période T en mesurant la durée correspondant à 10 oscillations : 10T ≃ 52 ms

d’où T ≃ 5,2 ms. On en déduit Ω = 2π/T ≃ 1,2× 103 rad · s−1.
.......................................................................................................................................................
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Fiche no 5. Étude des filtres

Réponses

5.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
a2 + b2

5.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b/a

5.1 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

5.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f

5.2 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R

5.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lω

5.2 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/2

5.2 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cω

5.2 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −π/2

5.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R+ 1
jCω

5.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RjLω
R+ jLω

5.3 c) . . . . . . . . . . . . . . . . . . . . . . RjLω
R+ jLω −RLCω2

5.3 d) . . . . . . . . . . . . . . . . . . . . . .
R
(
1 − LCω2)

1 − LCω2 + jRCω

5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 kHz

5.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,5 V

5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

5.7 a) . . . . . . . . . . . . . . . 1
2 cos(a+ b) + 1

2 cos(a− b)

5.7 b) . . . . . . .

S0 cos(2πfpt)

+mS0
2

(
cos(2π(fp + f0)t)

+ cos(2π(fp − f0)t)
)

5.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S0

5.7 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mS0/2

5.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mS0/2

5.7 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

5.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

5.8 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

5.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

5.9 a) . . . . . . . . . . . . . . . . . . . . . . .
1
3

1 + 1
3jRCω + jRCω

3

5.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . 2,1 × 104 rad/s

5.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i1 + i2

5.10 b) . . . . . . . . . . . . . . . . . . . . . . u(2 + jRCω) − us

5.10 c) . . . . . . . . . . . . . . . . . . 1
1 + 3jRCω − (RCω)2

5.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
RC

5.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/3

5.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9,5 dB

5.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 log
(
ω

ω0

)

5.11 c) . . . . . . . . . . . . . . . . . . . 10 log
(

1 +
(
ω

ω1

)2
)
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5.11 d) . . . . . . . . . . . . . . . . . . . 10 log
(

9 +
(
ω

ω0

)2
)

5.11 e) . . . . 20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)

5.11 f) . . . . . 20 log
(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)

5.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/2

5.12 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . arctan
(
ω

ω1

)

5.12 d) . . . . . . . . . . . . . . . . . . . . . . . . − arctan
(

ω

3ω0

)

5.12 e) . . . . . . . . . . . . . . . . . . . . . . . π

2 − arctan
(
ω

ω1

)

5.12 f) . . . . . . . . . . . . . . . . . . . . . . . π

2 + arctan
(
ω

ω1

)

5.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π/4

5.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2

5.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/
√

2

5.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/4

5.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −28,0 dB

5.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −17,1 dB

5.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8,0 dB

5.15 d) . . . . . . . . . . . . . . . . . . . . . . . . . +20 dB/décade

5.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,0 kHz

5.16 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11,7 kHz

5.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19,2 kHz
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Corrigés

5.1 a) En multipliant les deux expressions de Z par leur conjugué complexe, on obtient :

Z × Z∗ = (a+ jb)(a− jb) = Z2
0 (cos(φ) + j sin(φ))(cos(φ)− j sin(φ)).

Après calcul, cette relation se réduit à a2 + b2 = Z2
0
(
cos2 φ+ sin2 φ

)
. Ainsi, on a Z0 =

√
a2 + b2.

.......................................................................................................................................................
5.1 b) En égalant les parties réelles et imaginaires des deux expressions de Z, on obtient :

a = Z0 cos(φ) et b = Z0 sin(φ).

Ainsi, on a cos(φ) = a

Z0
et sin(φ) = b

Z0
. Puis, tan(φ) = sin(φ)

cos(φ) = b

Z0

Z0

a
. Donc, on a tan(φ) = b

a
.

.......................................................................................................................................................
5.1 c) On utilise une représentation géométrique du nombre complexe Z. Les axes des abscisses et des ordonnées

du plan complexe correspondent respectivement à la partie réelle et à la partie imaginaire de Z. L’argument φ est
l’angle entre l’axe des abscisses et la droite passant par le centre du cercle et Z.

Re(Z)

Im(Z)
Z
•

a

b

φ Re(Z)

Im(Z)

Z
•

a

b

φ

On constate que si a ⩾ 0 alors φ est compris entre −π/2 et π/2.
De la même manière, on constate que si a > 0 et b ⩽ 0 alors φ est compris entre −π/2 exclu (a > 0) et 0 inclus.
.......................................................................................................................................................
5.2 a) On a Z0 =

√
R2 + 0 = R.

.......................................................................................................................................................

5.2 b) On a tan(φ) = 0
R

= 0. Donc, φ = arctan
( 0
R

)
= 0.

.......................................................................................................................................................

5.2 c) On a Z0 =
√

0 + (Lω)2 = Lω.
.......................................................................................................................................................

5.2 d) On a tan(φ) = Lω

0 → +∞. Donc, φ = arctan
(
Lω

0

)
= π

2 .
.......................................................................................................................................................

5.2 e) On a ZC = 1
jCω = −j 1

Cω
. Donc, Z0 =

√
0 +

(
− 1
Cω

)2
= 1
Cω

.
.......................................................................................................................................................

5.2 f) On a tan(φ) = − 1
Cω

1
0 → −∞. Donc, φ = arctan

(
− 1
Cω

1
0

)
= −π2 .

.......................................................................................................................................................

5.3 a) On a ZAB = R+ 1
jCω .

.......................................................................................................................................................
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5.3 b) Les deux dipôles sont associés en parallèle, nous devons sommer les admittances :

Y AB = Y R + Y L = 1
R

+ 1
jLω = R+ jLω

RjLω .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = RjLω
R+ jLω .

.......................................................................................................................................................
5.3 c) Les trois dipôles sont associés en parallèle, nous devons sommer leurs admittances :

Y AB = Y R + Y L + Y C = 1
R

+ 1
jLω + jCω = R+ jLω −RLCω2

RjLω .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = RjLω
R+ jLω −RLCω2 .

.......................................................................................................................................................
5.3 d) On commence par considérer un circuit équivalent au circuit donné.

Le circuit donné est équivalent au schéma ci-contre, où on a :

Z1 = jLω + 1
jCω = 1− LCω2

jCω .
•A

Z1

R

•B

L’admittance du dipôle est donc :

Y AB = 1
R

+ 1
Z1

= R+ Z1
R× Z1

=
(
R+ 1− LCω2

jCω

)
1

R 1−LCω2
jCω

= 1− LCω2 + jRCω
R(1− LCω2) .

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB =
R
(
1− LCω2)

1− LCω2 + jRCω .
.......................................................................................................................................................
5.4 On commence par considérer un circuit équivalent au circuit donné.

C’est le circuit ci-contre, avec Z1 = R+jLω. Ainsi, l’admittance équivalente est :

Y AB = jCω + 1
Z1

= jCω × Z1 + 1
Z1

= 1− LCω2 + jRCω
R+ jLω .

•A

Z1

C

•B

Nous en déduisons alors l’expression de l’impédance complexe du dipôle AB : ZAB = R+ jLω
1− LCω2 + jRCω .

.......................................................................................................................................................
5.5 a)

La période du signal est sur 5 carreaux. La base de temps indique 20 µs/division.

T = 5× 20× 10−6 s soit T = 1× 10−4 µs.

La fréquence du signal observé est donc f0 = 1
T

= 10 kHz.

base de temps : 20 µs/division
calibre vertical : 1 V/division

0 V

T

5 carreaux

2A05 carreaux

.......................................................................................................................................................
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5.5 b) Nous avons 5 carreaux pour la double amplitude, soit 2U0 = 5× 1 = 5 V. Donc, on a U0 = 2,5 V.
.......................................................................................................................................................
5.7 a) On calcule cos(a+ b) + cos(a− b) = 2 cos(a) cos(b) et on en déduit la formule :

cos(a) cos(b) = 1
2 cos(a+ b) + 1

2 cos(a− b).

.......................................................................................................................................................
5.7 b) On calcule :

s(t) = S0 cos(2πfpt)(1 +m cos(2πf0t)) = S0 cos(2πfpt) +mS0 cos(2πfpt) cos(2πf0t)

= S0 cos(2πfpt) + mS0

2

(
cos
(
2π(fp + f0)t

)
+ cos

(
2π(fp − f0)t

))
.

.......................................................................................................................................................
5.7 c) La composante de fréquence fp de s(t) est S0 cos(2πfpt), son amplitude est donc de S0.
.......................................................................................................................................................

5.7 d) La composante de fréquence fp + f0 de s(t) est mS0

2 cos(2π(fp + f0)t), son amplitude est donc de mS0

2 .
.......................................................................................................................................................

5.7 e) La composante de fréquence fp− f0 de s(t) est mS0

2 cos(2π(fp − f0)t), son amplitude est donc de mS0

2 .
.......................................................................................................................................................
5.8 a) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 1 kHz, 3 kHz et 5 kHz. Les

spectres a et d ne peuvent pas convenir.

De plus, la valeur moyenne de s1(t) est nulle. Le spectre c est donc à associer à s1(t).
.......................................................................................................................................................
5.8 b) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 2 kHz, 4 kHz et 6 kHz. Les

spectres b et c ne peuvent pas convenir.

De plus, la valeur moyenne de s2(t) est égale à 1 V. Le spectre a est donc à associer à s2(t).
.......................................................................................................................................................
5.8 c) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 2 kHz, 4 kHz et 6 kHz. Les

spectres b et c ne peuvent pas convenir.

De plus, la valeur moyenne de s3(t) est nulle. Le spectre d est donc à associer à s3(t).
.......................................................................................................................................................
5.8 d) Nous notons la somme de 3 fonctions sinusoïdales de fréquences respectives 1 kHz, 3 kHz et 5 kHz. Les

spectres a et d ne peuvent pas convenir.

De plus, la valeur moyenne de s4(t) est égale à 1 V. Le spectre b est donc à associer à s4(t).
.......................................................................................................................................................

5.9 a) À l’aide d’un pont diviseur de tension, on constate que us = ue

Z2
Z1 + Z2

. Ainsi, on a :

H(jω) = us

ue

= Z2
Z1 + Z2

= R

1 + jRCω
1

R+ 1
jCω

+ R
1+jRCω

= R

1 + jRCω
1 + jRCω

3R+ jR2Cω + 1
jCω

= R

3R+ j
(
R2Cω − 1

Cω

) =
1
3

1 + j 1
3

(
RCω − 1

RCω

) .
.......................................................................................................................................................
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5.9 b) Par identification dans l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que H0 = 1
3 .

.......................................................................................................................................................
5.9 c) Par identification dans l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que Q = 1
3 .

.......................................................................................................................................................
5.9 d) Par identification de l’expression de H(jω) trouvée précédemment avec la forme canonique, nous en

déduisons que x = RCω donc que ω0 = 1
RC

. L’application numérique donne :

ω0 = 1
RC

= 1
1× 103 Ω× 47× 10−9 F

= 2,1× 104 rad/s.

.......................................................................................................................................................
5.10 a) D’après la loi des nœuds, on a i = i1 + i2.
.......................................................................................................................................................
5.10 b) En multipliant la réponse précédente par la résistance R, on obtient Ri = Ri1 +Ri2.

Ainsi, d’après les trois égalités, on a :

ue − u = u− us + jRCωu donc ue = u(2 + jRCω)− us.

.......................................................................................................................................................
5.10 c) En utilisant la réponse précédente et en exprimant u à partir de la relation donnée, il vient que :

ue = us(1 + jRCω)(2 + jRCω)− us = us

(
1 + 3jRCω − (RCω)2).

Ainsi, on a H(jω) = us

ue

= 1
1 + 3jRCω − (RCω)2 .

.......................................................................................................................................................
5.10 d) En comparant les deux égalités suivantes :

H(jω) = H0

1 + jx
Q
− x2

et H(jω) = 1
1 + 3jRCω − (RCω)2 ,

on trouve H0 = 1 et x = ω

ω0
= RCω donc ω0 = 1

RC
et Q = 1

3 .
.......................................................................................................................................................
5.11 a) On a GdB1 = 20 log(∥3∥) = 20 log(3) = 9,5 dB.
.......................................................................................................................................................

5.11 b) On a GdB2 = 20 log
(∣∣∣j ω

ω0

∣∣∣) = 20 log
(
ω

ω0

)
.

.......................................................................................................................................................
5.11 c) On calcule :

GdB3 = 20 log
(∣∣∣1 + j ω

ω1

∣∣∣) = 20 log

(√
1 +

(
ω

ω1

)2
)

= 20 log

((
1 +

(
ω

ω1

)2
) 1

2
)

= 20× 1
2 log

(
1 +

(
ω

ω1

)2
)

= 10 log
(

1 +
(
ω

ω1

)2
)
.

.......................................................................................................................................................
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5.11 d) On a :

GdB4 = 20 log(|H1 −H2|) = 20 log
(∣∣∣3− j ω

ω0

∣∣∣) = 20 log

(√
9 +

(
ω

ω0

)2
)

= 10 log
(

9 +
(
ω

ω0

)2
)
.

.......................................................................................................................................................
5.11 e) On calcule :

GdB5 = 20 log
(∣∣∣∣H2
H3

∣∣∣∣) = 20 log
(
|H2|
|H3|

)
= 20 log(|H2|)− 20 log(|H3|) = GdB2 −GdB3

= 20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)
.

.......................................................................................................................................................
5.11 f) On calcule :

GdB6 = 20 log(|H2 ×H3|) = 20 log(|H2| × |H3|) = 20 log(|H2|) + 20 log(|H3|) = GdB2 +GdB3

= 20 log
(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)
.

.......................................................................................................................................................

5.12 a) On a φ1 = arg(H1) = arctan
(

Im(H1)
Re(H1)

)
= arctan

(0
3

)
= arctan(0) = 0.

.......................................................................................................................................................

5.12 b) On a φ2 = arg(H2) = arctan
(

Im(H2)
Re(H2)

)
= arctan

( ω
ω0

0

)
= lim

x→+∞
arctan(x) = π

2 .
.......................................................................................................................................................

5.12 c) On a φ3 = arg(H3) = arctan
(

Im(H3)
Re(H3)

)
= arctan

( ω
ω1

1

)
= arctan

(
ω

ω1

)
.

.......................................................................................................................................................

5.12 d) On a φ4 = arg(H1 −H2) = arg
(

3− j ω
ω0

)
= arctan

(− ω
ω0

3

)
= arctan

(
− ω

3ω0

)
= − arctan

(
ω

3ω0

)
.

.......................................................................................................................................................

5.12 e) On a φ5 = arg
(
H2
H3

)
= arg(H2)− arg(H3) = π

2 − arctan
(
ω

ω1

)
.

.......................................................................................................................................................

5.12 f) On a φ6 = arg(H2 ×H3) = arg(H2) + arg(H3) = π

2 + arctan
(
ω

ω1

)
.

.......................................................................................................................................................
5.13 a) Notons que x = ω

ω0
> 0. Ainsi, on a :

φ = arg(H(jω)) = arg
(

jx
1 + jx

)
= arg(jx)− arg(1 + jx) = arctan

(
x

0

)
− arctan

(
x

1

)
= π

2 − arctan(x).

Pour x = 1, on obtient φ = π

2 − arctan(1) = π

2 −
π

4 = π

4 .
.......................................................................................................................................................
5.13 b) On a vu plus haut que φ = π

2 − arctan(x) ; ainsi, pour ω ≫ ω0, c’est-à-dire pour x→ +∞, il vient que :

φ = lim
x→+∞

π

2 − arctan(x) = π

2 −
π

2 = 0.

.......................................................................................................................................................
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5.13 c) On a vu plus haut que φ = π

2 − arctan(x) ; ainsi, pour ω ≪ ω0, c’est-à-dire pour x→ 0, il vient que :

φ = π

2 − arctan(0) = π

2 .

.......................................................................................................................................................

5.14 a) Pour x = 1, H(jx) = 1− j
1 + j , donc G(x) =

∣∣∣∣1− j
1 + j

∣∣∣∣ = |1− j|
|1 + j| =

√
1 + 1√
1 + 1

= 1.
.......................................................................................................................................................

5.14 b) Pour x = 1, H(jx) = − j
1 + j , donc G(x) =

∣∣∣∣− j
1 + j

∣∣∣∣ = |j|
|1 + j| = 1√

1 + 1
= 1√

2
.

.......................................................................................................................................................

5.14 c) Pour x = 1 et m = 2, H(jx) = 1
1 + 4j + (j)2 = 1

4j , donc G(x) =
∣∣∣∣ 1
4j

∣∣∣∣ = |1|
|4j| = 1

4 .
.......................................................................................................................................................

5.15 a) On a GdB = 20 log
(0,04

1

)
= −28,0 dB.

.......................................................................................................................................................

5.15 b) On a GdB = 20 log
(0,14

1

)
= −17,1 dB.

.......................................................................................................................................................

5.15 c) On a GdB = 20 log
(0,4

1

)
= −8,0 dB.

.......................................................................................................................................................
5.15 d) En faisant l’application numérique, on trouve que la pente a de la droite vaut :

a = GdB(C)−GdB(A)
log(f(C))− log(f(A)) = −8,0 dB + 28,0 dB

log(2000)− log(200) = 20 dB.

Donc, le gain du filtre augmente de 20 dB
lorsque log(f) augmente d’une unité, soit
lorsque la fréquence f est multipliée par 10,
soit lorsque f augmente d’une décade.
La pente de la droite (AC) observée sur le
graphe est bien de +20 dB/décade.

101 102 103
−40

−30

−20

−10

0 f

GdB

1

+A
+B

+C

+20 dB/decade

.......................................................................................................................................................
5.16 a) Nous observons un maximum pour x = 1. Nous en déduisons que fr = f0 = 15,0 kHz.
.......................................................................................................................................................
5.16 b) La courbe de gain est maximale pour x = 1. Nous pouvons relever GdB max = −2 dB.

Aux fréquences de coupures, le gain doit vérifier GdB(xc) = GdB max − 3 dB = −5 dB.
La première valeur de xc collectée sur le graphique est xc1 = 0,78, elle correspond à une fréquence de coupure
fc1 = 0,78× f0 = 11,7 kHz.
.......................................................................................................................................................
5.16 c) La seconde valeur de xc collectée sur le graphique est xc2 = 1,28, elle correspond à une fréquence de

coupure fc2 = 1,28× f0 = 19,2 kHz.
.......................................................................................................................................................

28 Fiche no 5. Étude des filtres



Fiche no 6. Énergie et puissance électriques

Réponses

6.1 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,5 kJ

6.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6 Wh

6.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 km

6.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . Hyundai Ioniq 6

6.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . Hyundai Ioniq 6

6.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.3 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,75 W

6.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2π
ω

6.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u0i0
2

6.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u0i0
2 cos(φ)

6.5 d) . . . . . . . . . . . . . . . . . . . . . . u0i0

(
2 + 1

2 sin(ψ)
)

6.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 cos
(

7π
12

)
W

6.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W

6.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E

r +R

6.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2 R

(r +R)2

6.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2 r −R

(r +R)3

6.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(2)R0

6.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E − e

R+ r

6.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eR+ Er

R+ r

6.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
E − e

R+ r

6.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E − e)2

R+ r

6.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e
E − e

R+ r

6.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

E

6.10 g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 %

6.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

6.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

6.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

6.13 a) . . . . . . . . . . . . . . . . . . . . . . . . CE2

τ
exp(−t/τ)

6.13 b) . . . . . . . . . . . . . . . . . . . . . . . CE2

τ
exp(−2t/τ)

6.13 c). . . . . . . . CE2

τ

(
exp(−t/τ) − exp(−2t/τ)

)
6.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE2

6.13 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.13 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EC
duC

dt
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6.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . .
d
( 1

2Cu
2
C(t)

)
dt

6.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
d
( 1

2Li
2(t)

)
dt

6.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE2

6.14 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.14 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.14 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2CE

2

6.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RuI
2

6.15 b). . . . . . . . . . . E√
(RG +Ru)2 + (XG +Xu)2

6.15 c) . . . . −RuE
2 2(XG +Xu)(

(RG +Ru)2 + (XG +Xu)2
)2

6.15 d) . . . . . . E2 (R2
G −R2

u) + (XG +Xu)2(
(RG +Ru)2 + (XG +Xu)2

)2

6.15 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

Corrigés

6.1 a) L’énergie contenue dans la batterie vaut E = P∆t où P = 5 W et ∆t = 55 min = 55 × 60 s = 3 300 s.
L’énergie vaut donc E = 5× 3 300 J = 16,5 kJ.
.......................................................................................................................................................
6.1 b) L’énergie contenue dans la batterie vaut E = 16,5 kJ. Par ailleurs, e = 1 Wh est l’énergie consommée à

une puissance de 1 W pendant 1 h, soit e = 1 W× 3 600 s = 3,6 kJ.

On a donc E = 16,5 kJ
3,6 kJ × 1 Wh = 4,6 Wh.

.......................................................................................................................................................
6.2 a) L’énergie contenue dans la batterie vaut E = 77,4 kWh.

La consommation moyenne valant C = 15,1 kWh/100 km, l’autonomie en kilomètres vaut :

E

C
= 77,4 kWh

15,1 kWh/100 km = 513 km.

.......................................................................................................................................................
6.2 b) En reprenant le calcul de la question précédente, e = 1 W/h = 3,6 kJ, donc l’énergie totale stockée dans

les batteries des voitures de série vaut, en joules, E = 77,4× 103 × 3,6× 103 J = 279 MJ. C’est donc la voiture de
série qui possède la batterie de plus grande capacité.
.......................................................................................................................................................
6.2 c) La puissance en cv du moteur de la voiture électrique de série vaut P = 239/0,735 cv = 325 cv.
.......................................................................................................................................................

6.3 a) La puissance reçue par la résistance s’écrit P = u2

R
. Ici, on a donc

P = 9
10 sin2(ωt) = 9

20
(
1− cos(2ωt)

)
.

La puissance a donc une valeur moyenne de 9
20 , une valeur maximale de 9

10 et une période T = 0,5 s.

C’est la réponse a qui est la bonne.
.......................................................................................................................................................
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6.3 b) Commençons par linéariser l’expression de la puissance. On a :

P(t) = u2

R
= 1

10
(
1 + 2 cos(ωt)

)2 = 1
10
(
1 + 4 cos2(ωt) + 4 cos(ωt)

)
= 1

10
(
3 + 2 cos(2ωt) + 4 cos(ωt)

)
.

On constate que la puissance est maximale à t = 0. De plus, la composante fondamentale de ce signal est de période
égale à Tfondamental = 2π

ω
= 2 s. Finalement, comme u(t) s’annule (par exemple en ωt = π

3 ), la puissance s’annule
aussi.
Il n’y a qu’une courbe qui vérifie ces conditions : c’est la c qui est la bonne.
.......................................................................................................................................................

6.3 c) La puissance a pour expression P = u2

R
= 9

10 exp
(
−2t
τ

)
. On a donc :

dP(t)
dt = − 2

τ

9
10 exp

(
−2t
τ

)
donc dP(t)

dt (t = 0) = − 2
τ

9
10 = − 9

10W · s−1.

En exploitant la pente à l’origine, on trouve que c’est la réponse c qui est la bonne.
.......................................................................................................................................................
6.4 On lit graphiquement une période de T = 3 ms et un décalage temporel ∆t = 0,5 ms entre les deux

signaux. Le déphasage est donc φ = 2π∆t
T

= π

3 rad. Donc, cos(φ) = 1
2 .

Les amplitudes de la tension et de l’intensité sont respectivement U0 = 3 V et I0 = 5 A. La puissance moyenne vaut
donc Pmoy = 1

23 V× 5 A× 1
2 = 3,75 W.

.......................................................................................................................................................

6.5 b) On a P(t) = u0i0 cos2(ωt+ ψ) = u0i0
2

(
1 + cos(2ωt+ 2ψ)

)
.

On intègre :

Pmoy = 1
T
× u0i0

2

ˆ T

0
1 + cos(2ωt+ 2ψ) dt

= 1
T
× u0i0

2

[
t+ 1

2ω sin(2ωt+ 2ψ)
]T

0
= u0i0

2 .

On peut retenir la propriété
〈
cos2(ωt+ ψ)

〉
=
〈
sin2(ωt+ ψ)

〉
= 1

2 .
.......................................................................................................................................................

6.5 c) On a P(t) = u0i0 cos(ωt) cos(ωt+ φ) = u0i0
2 [cos(φ) + cos(2ωt+ φ)].

On vérifie ensuite que :

⟨cos(2ωt+ φ)⟩ = 1
T

ˆ T

0
cos(2ωt+ φ) dt = 1

2ωT

[
sin(2ωt+ φ)

]T

0
= 0.

Donc, on a Pmoy = u0i0
2 cos(φ).

.......................................................................................................................................................
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6.5 d) La puissance peut se décomposer en plusieurs termes :

P(t) = u0i0(1 + cos(ωt))(2 + sin(ωt+ ψ))
= u0i0(2 + 2 cos(ωt) + sin(ωt+ ψ) + cos(ωt) sin(ωt+ ψ))

= u0i0

(
2 + 2 cos(ωt) + sin(ωt+ ψ) + cos(ωt) cos

(
ωt+ ψ − π

2

))
.

On peut alors séparer les calculs de valeurs moyennes :

Pmoy = u0i0

(
2 + 2⟨cos(ωt)⟩+ ⟨sin(ωt+ ψ)⟩+

〈
cos(ωt) cos

(
ωt+ ψ − π

2

)〉)
= u0i0

(
2 + 1

2 cos
(
ψ − π

2

))
= u0i0

(
2 + 1

2 sin(ψ)
)
.

.......................................................................................................................................................

6.6 a) On a Pmoy = 1
2 Re

(
jCω|u|2

)
= 0.

.......................................................................................................................................................

6.6 b) On a Pmoy = 1
2 Re

(
jLω|i|2

)
= 0.

.......................................................................................................................................................
6.6 c) Commençons par réécrire u et i :

u = 2
(

1√
2
− j√

2

)
ejωt = 2

(
e

−j
π

4
)

ejωt = 2ej(ωt−π/4)

i = 3

(
e

j
π

3
)

ejωt = 3ej(ωt+π/3).

On en déduit Pmoy = 1
2 Re

(
6ej(ωt−π/4) × ej(ωt+π/3)) = 3 Re

(
e−j(π/3+π/4)) = 3 cos

(7π
12

)
W.

.......................................................................................................................................................
6.6 d) On a :

Pmoy = 1
2 Re

(
4
√

2ej(ωt+π/4) × (3− 5j)e−jωt
)

= 2
√

2 Re
(
(3− 5j)ejπ/4)

= 2
√

2
(

3√
2

+ 5√
2

)
= 16 W.

.......................................................................................................................................................

6.7 a) La loi des mailles permet d’écrire E = ur + uR = rI +RI = (r +R)I. On a donc I = E

r +R
.

.......................................................................................................................................................

6.7 b) La puissance dissipée dans le conducteur ohmique de résistance R vaut P = uRI = RI2 = E2 R

(r +R)2 .
.......................................................................................................................................................
6.8 a) Il faut dériver la fonction P(R). On calcule :

dP
dR = E2 1× (r +R)2 −R× 2(r +R)

(r +R)4 = E2(r +R) (r +R)− 2R
(r +R)4 ,

soit finalement :
dP
dR = E2(r +R) r −R

(r +R)4 = E2 r −R
(r +R)3 .

.......................................................................................................................................................
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6.8 b) Il faut annuler la dérivée pour trouver l’extremum de P(R). Comme P(R) est positive et vaut 0 en
R = 0 et en R→∞, alors cet extremum est un maximum. On a alors, par annulation du numérateur Rmax = r.
.......................................................................................................................................................
6.9 Si on a R = 2R0, alors on a er/R0 = 2 et donc r/R0 = ln(2). Finalement, on a r = ln(2)R0.
.......................................................................................................................................................

6.10 a) On applique la loi des mailles E − UR − ur − e = 0. On a donc E − e = (R+ r)I, et donc I = E − e
R+ r

.
.......................................................................................................................................................
6.10 b) La batterie est en convention récepteur ; donc, on a :

U = e+ rI = e+ r
E − e
R+ r

= eR+ er + rE − re
R+ r

= eR+ Er

R+ r
.

.......................................................................................................................................................

6.10 c) La puissance fournie par le chargeur vaut P = EI = E
E − e
R+ r

.
.......................................................................................................................................................
6.10 d) La puissance est dissipée par effet Joule dans les deux conducteurs ohmiques, elle vaut donc :

PJ = RI2 + rI2 = (R+ r)
(
E − e
R+ r

)2
= (E − e)2

R+ r
.

.......................................................................................................................................................

6.10 e) La puissance reçue par la batterie vaut P = eI = e
E − e
R+ r

car elle est en convention récepteur.
.......................................................................................................................................................
6.10 f) En suivant la définition de l’énoncé, on trouve :

η =
eE−e

R+r

E E−e
R+r

= e

E
.

.......................................................................................................................................................
6.10 g) Numériquement, on calcule η = 12/13 = 92 %.
.......................................................................................................................................................
6.11 a) On fait le schéma :

E CU1

R

2R 2CU2

3CU3

R

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :

U1 = E et U2 = U3 = 2
3E.

Les énergies stockées dans les condensateurs sont alors :

E1 = 1
2CE

2, E2 = 4
9CE

2 et E3 = 3
2C
(4

9E
2
)

= 2
3CE

2.

On a alors E2 < E1 < E3. C’est la réponse c qui est la bonne.
.......................................................................................................................................................

Fiche no 6. Énergie et puissance électriques 33



6.11 b) On fait le schéma :

6 V 3CU3

2C

U2

R

12 V CU1

En régime permanent, les condensateurs se comportent comme des interrupteurs ouverts :

U1 = 12 V, U2 = −6 V et U3 = 6 V.

Les énergies stockées dans les condensateurs sont alors :

E1 = 1
2C(12)2 = 72C, E2 = 1

2 × 2C(6)2 = 36C et E3 = 1
2 × 3C(6)2 = 54C.

On a alors E1 > E3 > E2. C’est la réponse a qui est la bonne.
.......................................................................................................................................................
6.12 a) Les énergies stockées dans les différentes bobines sont :

E1 = 1
2L(4)2 = 8L, E2 = 1

2 × 2L(3)2 = 9L et E3 = 1
2 × 3L(1)2 = 3

2L.

Donc, on a E3 < E1 < E2. C’est la réponse b qui est la bonne.
.......................................................................................................................................................
6.12 b) Les bobines se comportent comme des fils en régime permanent. Le montage se simplifie alors :

E

I1

R

R

R

I2

2R

I3

En calculant les résistances équivalentes, on peut déterminer les valeurs des courants :

I1 = 8E
5R, I2 = 2

3

(3E
5R

)
= 2E

5R et I3 = 1
3

(3E
5R

)
= E

5R.

Ainsi, les énergies stockées dans les bobines sont :

E1 = 1
2L
(8E

5R

)2
= 32

25
LE2

R2 , E2 = 1
2 × 2L

(2E
5R

)2
= 4

25
LE2

R2 et E3 = 1
2 × 3L

(
E

5R

)2
= 3

50
LE2

R2 .

On a E3 < E2 < E1 : c’est la réponse a qui est la bonne.
.......................................................................................................................................................
6.13 a) La puissance instantanée délivrée par la source vaut :

PE(t) = Ei(t) = E × CE

τ
exp(−t/τ) = CE2

τ
exp(−t/τ).

.......................................................................................................................................................

34 Fiche no 6. Énergie et puissance électriques



6.13 b) La puissance dissipée par effet Joule l’est dans la résistance et vaut donc :

PJ (t) = Ri2(t) = R(CE)2

τ2 exp(−2t/τ).

En simplifiant à l’aide de la relation τ = RC, on trouve PJ (t) = CE2

τ
exp(−2t/τ).

.......................................................................................................................................................
6.13 c) La puissance instantanée reçue par le condensateur vaut :

PC(t) = uC(t)i(t) = E(1− exp(−t/τ))× CE

τ
exp(−t/τ) = CE2

τ

(
exp(−t/τ)− exp(−2t/τ)

)
.

Remarquons que, par conservation de la puissance, cette dernière expression peut s’obtenir en faisant la différence
entre les deux précédentes, la puissance reçue par le condensateur étant égale à la puissance fournie par la source
de tension dont on a retranché la puissance dissipée dans le conducteur ohmique. C’est un bon moyen de contrôler
le résultat.
.......................................................................................................................................................
6.13 d) Il faut intégrer la puissance PE(t) fournie par la source sur toute la durée de la charge du condensateur,

c’est-à-dire de t = 0 à t = +∞. On a donc :

EE =
ˆ t=+∞

t=0
PE(t) dt =

ˆ t=+∞

t=0

CE2

τ
exp(−t/τ) dt = (−τ)CE

2

τ

[
exp(−t/τ)

]+∞

0
= CE2.

Remarquons que cette expression est homogène à l’énergie contenue dans un condensateur 1
2Cu

2
C .

.......................................................................................................................................................
6.13 e) Il faut intégrer la puissance PJ (t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EJ =
ˆ t=+∞

t=0
PJ (t) dt =

ˆ t=+∞

t=0

CE2

τ
exp(−2t/τ) dt = CE2

τ

(
−τ2

)[
exp(−2t/τ)

]+∞

0
= 1

2CE
2.

.......................................................................................................................................................
6.13 f) Il faut intégrer la puissance PC(t) sur tout le temps de la charge du condensateur, c’est-à-dire de t = 0

à t = +∞. On a donc :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0

CE2

τ
(exp(−t/τ)− exp(−2t/τ)) dt.

On reconnaît les deux intégrales précédentes donc :

EC = (−τ)CE
2

τ

[
exp(−t/τ)

]+∞

0
− CE2

τ

(
−τ2

)[
exp(−2t/τ)

]+∞

0
= 1

2CE
2.

Alternativement, on aurait pu effectuer le calcul suivant :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0
uCi dt =

ˆ t=+∞

t=0
uC · C

duC

dt dt =
ˆ t=+∞

t=0
d
(1

2Cu
2
C

)
pour trouver :

EC = 1
2C
(
u2

C(+∞)− u2
C(0)

)
= 1

2CE
2,

qui est le même résultat.
Remarquons que, par conservation de l’énergie, cette dernière expression peut s’obtenir en faisant la différence entre
les deux précédentes, l’énergie reçue par le condensateur étant égale à l’énergie fournie par la source de tension dont
on a retranché l’énergie dissipée dans le conducteur ohmique. C’est un bon moyen de contrôler le résultat.
.......................................................................................................................................................
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6.14 a) La puissance instantanée délivrée par la source de tension s’écrit PE(t) = Ei(t) = EC
duC

dt .
.......................................................................................................................................................
6.14 b) La puissance instantanée reçue par le condensateur s’écrit :

PC(t) = uC(t)i(t) = uC(t)C duC

dt =
d
(

1
2Cu

2
C(t)

)
dt .

.......................................................................................................................................................

6.14 c) La puissance instantanée reçue par la bobine s’écrit PL(t) = uL(t)i(t) = L
di
dt i(t) =

d
(

1
2Li

2(t)
)

dt .
.......................................................................................................................................................
6.14 d) On intègre la puissance PE(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EE =
ˆ t=+∞

t=0
EC

duC

dt dt = CE

ˆ t=+∞

t=0
duC = CE

(
uC(t = +∞)− uC(t = 0)

)
= CE2.

.......................................................................................................................................................
6.14 e) On intègre la puissance PC(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EC =
ˆ t=+∞

t=0
PC(t) dt =

ˆ t=+∞

t=0
d
(1

2Cu
2
C

)
= 1

2C
(
uC

2(+∞)− uC
2(0)

)
= 1

2CE
2.

.......................................................................................................................................................
6.14 f) On intègre la puissance PL(t) sur tout le temps de la charge du condensateur, de t = 0 à t = +∞ :

EL =
ˆ t=+∞

t=0
PL(t) dt =

ˆ t=+∞

t=0
d
(1

2Li
2
)

= 1
2L(i2(+∞)− i2(0)) = 0.

.......................................................................................................................................................
6.14 g) Il faudrait intégrer la puissance dissipée par effet Joule PJ (t) = Ri2(t) sur tout le temps de la charge

du condensateur, de t = 0 à t = +∞. Cependant, on n’a pas accès à l’expression de i(t). On peut alors malgré tout
se servir de la conservation de l’énergie :

EJ = EE − EC − EL = CE2 − 1
2CE

2 − 0 = 1
2CE

2.

.......................................................................................................................................................
6.15 a) On a :

Pm = 1
2 Re

(
(Ru + jXu)I

√
2ej(ωt+φ) · I

√
2e−j(ωt+φ)) = Re(Ru + jXu)I2 = RuI

2.

.......................................................................................................................................................
6.15 b) La loi des mailles donne :

eG =
(
ZG + Zu

)
i

donc E
√

2ejωt = [RG +Ru + j(XG +Xu)]I
√

2ej(ωt+φ)

donc E = [RG +Ru + j(XG +Xu)]Iejφ.

En prenant le module, on obtient :
I = E√

(RG +Ru)2 + (XG +Xu)2
.

.......................................................................................................................................................
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6.15 c) En reportant l’expression de I obtenue dans celle de Pm, on retrouve l’expression donnée dans l’énoncé :

Pm = RuE
2

(RG +Ru)2 + (XG +Xu)2 .

La fonction dont il faut calculer la dérivée est du type Pm(Xu) = 1
f(Xu) . La dérivée sera donc du type :

∂Pm

∂Xu
= − f ′(Xu)

(f(Xu))2 .

Finalement, on calcule :
∂Pm

∂Xu
= −RuE

2 2(XG +Xu)(
(RG +Ru)2 + (XG +Xu)2

)2 .

.......................................................................................................................................................

6.15 d) La fonction dont il faut calculer la dérivée est du type Pm(Ru) = f(Ru)
g(Ru) , la dérivée sera donc du type :

∂Pm

∂Ru
= f ′(Ru)g(Ru)− f(Ru)g′(Ru)

(g(Ru))2 .

Ainsi, on calcule :

∂Pm

∂Ru
= E2 (RG +Ru)2 + (XG +Xu)2 − 2Ru(RG +Ru)(

(RG +Ru)2 + (XG +Xu)2
)2

= E2R
2
G +R2

u + 2RGRu + (XG +Xu)2 − 2R2
u − 2RuRG(

(RG +Ru)2 + (XG +Xu)2
)2

= E2 (R2
G −R2

u) + (XG +Xu)2(
(RG +Ru)2 + (XG +Xu)2

)2 .

.......................................................................................................................................................
6.15 e) On cherche pour quelles valeurs de Ru et Xu les deux dérivées partielles de Pm sont nulles.

On a ∂Pm

∂Xu
= 0 pour Xu +XG = 0, soit Xu = −XG.

On aura alors ∂Pm

∂Ru
= E2 (R2

G −R2
u)(

(RG +Ru)2 + (XG +Xu)2
)2 . Alors, on a ∂Pm

∂Ru
= 0 pour RG = Ru.

Mathématiquement, on pourrait avoir comme solution RG = Ru ou RG = −Ru. Ainsi, la solution a pourrait aussi
être considérée comme correcte. Mais, en physique, on a nécessairement RG ⩾ 0 et Ru ⩾ 0.
.......................................................................................................................................................
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Fiche no 7. Amplificateurs linéaires intégrés

Réponses

7.1 . . . . . . . . . . . . . . . . . . a d

7.2 a) . . . . . . . . . . . . . . . . . . . Vrai

7.2 b) . . . . . . . . . . . . . . . . . . . Vrai

7.2 c) . . . . . . . . . . . . . . . . . . Faux

7.2 d) . . . . . . . . . . . . . . . . . . Faux

7.3 a) . . . . . . . . . . . . . . . . . . . Oui

7.3 b) . . . . . . . . . . . . . V + = V −

7.3 c) . . . . . . . . . . . . . . . . . . . . 0 V

7.4 a) . . . . . . . . . . . . . . . . . . . . 0 V
7.4 b) . . . . . . . . . . . . . . . . . . . . . vs

7.4 c) . . . . . . . . . . . . . . . . . . . . 0 V
7.4 d) . . . . . . . . . . . . . . . . . . . . . ve

7.4 e) . . . . . . . . . . . . . . . . . . . . . vs

7.5 a) . . . . . . . . . . . . . . . . . . Faux

7.5 b) . . . . . . . . . . . . . . . . . . . Vrai

7.5 c) . . . . . . . . . . . . . . . . . . Faux

7.5 d) . . . . . . . . . . . . . . . . . . . Vrai

7.5 e) . . . . . . . . . . . . . . . . . . Faux

7.6 a) . . . . . . . . . . . . . . . . i1 = i2

7.6 b) . . . . . . . . . . . . . . . U1 = ve

7.6 c) . . . . . . . . . . . . . . U2 = −vs

7.6 d) . . . . . . . . . . . . . . . i1 = ve

R1

7.6 e) . . . . . . . . . . . . . i2 = − vs

R2

7.6 f) . . . . . . . . . . . . . . G = −R2
R1

7.6 g) . . . . . . . . . . . . . . . . . . . . b

7.7 . . . . . . . . . . . . . . . . . . . . . . c

7.8 . . . . . . . . . . C’est un temps

7.9 a) . . . . . . . . . . . . . . . . . . . Non
7.9 b) . . . . . . . . . . . . . . . . . . . . . ve

7.9 c) . . . . . . . . . . . . . . . . . . . . . vs

7.9 d) . . . . . . . . . . . . . . . iR = iC

7.9 e) . . . . . . . . . iC = −jCωUC

7.9 f) . . . . . . . . . . . . . . . − 1
jRCω

7.9 g) . . . . . . RC
dvs

dt
= −ve(t)

7.10 a) . . . . . . . . . . . . . . . . 1
RCω

7.10 b) . . . . . . . . . . . . . . . . . . . . π

2

7.10 c) . . . . . . . − E

RCω
sin(ωt)

7.10 d) . . . . . . . . . . . . . . . . 1 kHz

7.10 e) . . . . . . . . . . . . . . . . . . . 3,1

7.10 f) . . . . . . . . . . . . . . . . . . . b

7.11 a) . . . . . . . RC
dvs

dt = −ve

7.11 b) . . . . . . . . . . − E

RC
t+K

7.11 c) . . . . . . . . . . . . . . . . . . . b

7.12 a). . . . . . . . . . . . . . . . α+ 1
α

7.12 b) . . . . . . . . . . . . . . . α

1 + α2

7.12 c) . . . . . . . . . . . . . R1 = R2

7.12 d) . . . . . . . . . . . . . . . . α = 1

7.13 a) . . . . . . . . . . . . . . . i1 = i2

7.13 b) . . . . . . . . . . . R1
R1 +R2

vs

7.13 c) . . . . . . . . . . . . . . . . . . . . ve

7.13 d) . . . . . . . . . . . . . . 1 + R2
R1

7.13 e) . . . . . . . . . . . . . . . . . . . . 16

7.14 . . . . . . . . . . . . . . . . . . . . . d

7.15 a). . . . . . . . . . . . . . . vs = ve

7.15 b) . . . . . . . . . . . . . . . . . . . ∞

7.15 c) . . . . . . . . . . . . . . . . . . . 0 A
7.15 d) . . . . . . . . . . . . . . . . . . . ∞

7.16 a) . . . . . . . . . . . . . . . . . . . ve

Z1

7.16 b) . . . . . . . . . . . . . . . . . . . Z1

7.16 c) . . . . . . . . . . . . . . . . . . . . ∞

7.16 d). . . . . . . . . . . . . . . . . . . . . 0

7.16 e) . . . . . . . . . . . . C = 10 nF
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Corrigés

7.1 Les circuits pouvant fonctionner en régime linéaire sont les circuits a et d . Avec une rétroaction sur
la seule entrée non inverseuse, les montages b et c fonctionnent en régime saturé.
.......................................................................................................................................................
7.2 a) L’impédance d’entrée d’un ALI réel est de l’ordre du mégaohm (c’est-à-dire de l’ordre de 106 Ω). Dans

le cas de l’ALI idéal, l’impédance d’entrée est supposée infinie.
.......................................................................................................................................................
7.2 b) Les courants d’entrée d’un ALI sont nuls dans le cadre du modèle de l’ALI idéal, ce qui est le cas ici.
.......................................................................................................................................................
7.2 c) Le courant de sortie est variable et dépend de la charge du circuit à ALI.
.......................................................................................................................................................
7.2 d) En régime linéaire, c’est la différence des potentiels entre les deux entrées qui est nulle : V+ − V− = 0.
.......................................................................................................................................................
7.3 a) La résistance R2 établit une rétroaction sur l’entrée inverseuse, l’ALI peut donc bien fonctionner en

régime linéaire.
.......................................................................................................................................................
7.3 b) Lorsqu’un ALI fonctionne en régime linéaire, on a ε = V + − V − = 0. On a donc V + = V −.
.......................................................................................................................................................
7.3 c) L’entrée non inverseuse est reliée à la masse donc V + = 0. D’après le schéma : VA = V −. Le régime

linéaire donne donc VA = 0.
.......................................................................................................................................................
7.4 a) Le potentiel de l’entrée non inverseuse est nul et est égal au potentiel de l’entrée inverseuse en régime

linéaire.
.......................................................................................................................................................
7.4 c) Le potentiel de l’entrée non inverseuse est nul et est égal au potentiel de l’entrée inverseuse en régime

linéaire.
.......................................................................................................................................................
7.4 d) Le potentiel de l’entrée non inverseuse est ve. Grâce au régime linéaire, on en déduit que le potentiel de

l’entrée inverseuse est également ve.
.......................................................................................................................................................
7.4 e) L’entrée inverseuse est reliée à la sortie par un fil donc V − = vs. Le régime linéaire permet d’écrire
V + = V −, d’où le résultat.
.......................................................................................................................................................
7.5 a) La résistance R4 est en convention générateur. Les trois autres sont bien en convention récepteur.
.......................................................................................................................................................
7.5 c) Attention à la convention choisie pour les courants sur la figure.
.......................................................................................................................................................
7.5 d) On a U1 = ve − V − et U3 = ve − V +. L’ALI fonctionne en régime linéaire donc V + = V −.

Ainsi, on a bien U1 = U3.
.......................................................................................................................................................
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7.5 e) On a U4 = V +, mais U2 = V − − vs.
.......................................................................................................................................................
7.6 a) La loi des nœuds appliquée à l’entrée inverseuse donne i1 = i− + i2. L’ALI étant idéal, on a i− = 0.

Finalement, on a donc i1 = i2.
.......................................................................................................................................................
7.6 b) D’après le schéma, on a U1 = ve−V −. Comme l’ALI fonctionne en régime linéaire, on a V − = V + = 0.

D’où le résultat.
.......................................................................................................................................................
7.6 c) D’après le schéma, on a U2 = V −− vs. Comme l’ALI fonctionne en régime linéaire, on a V − = V + = 0.

D’où le résultat.
.......................................................................................................................................................

7.6 d) La résistance R1 est représentée en convention récepteur. On a donc i1 = U1

R1
.

.......................................................................................................................................................

7.6 e) La résistance R2 est représentée en convention récepteur. On a donc i2 = U2

R2
.

.......................................................................................................................................................
7.6 f) D’après la première question, on a i1 = i2. Donc, on a ve

R1
= − vs

R2
. On en déduit le résultat.

.......................................................................................................................................................

7.7 Avec la formule donnée, l’amplification du montage vaut −1
6 : c’est un réel négatif. Les tensions ve

et vs doivent donc être en opposition de phase, ce qui n’est pas le cas des réponses a et d . Sur la figure b ,

l’amplification vaut −1 alors qu’on a bien −1
6(= 0,5/3) sur la figure c : seule cette dernière convient.

.......................................................................................................................................................
7.8 On peut se rappeler que τ = RC est la constante de temps d’un circuit RC.
.......................................................................................................................................................
7.9 a) En régime constant, un condensateur est équivalent à un circuit ouvert. Il n’y a alors plus de rétroaction

sur l’entrée inverseuse et l’ALI ne peut pas fonctionner en régime linéaire.
.......................................................................................................................................................
7.9 b) L’ALI fonctionne en régime linéaire donc V − = V + = 0.
.......................................................................................................................................................
7.9 d) L’ALI est idéal donc i− = 0. La loi des nœuds à l’entrée inverseuse donne iR = iC .
.......................................................................................................................................................
7.9 e) Le condensateur est représenté en convention générateur. Par conséquent, la loi d’Ohm donne :

UC = −Z × iC avec Z = 1
jCω .

.......................................................................................................................................................
7.9 f) En combinant la loi des nœuds et la loi d’Ohm, on a iR =

ve

R
= iC = −jCωvs.

En isolant l’expression
vs

ve
, on trouve le résultat.

.......................................................................................................................................................
7.9 g) À partir de l’expression de H, on obtient que jRCωvs = −ve.

Cette relation devient, en grandeurs réelles, RC dvs(t)
dt = −ve(t).

.......................................................................................................................................................
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7.10 a) Le gain est égal au module de la fonction de transfert.
.......................................................................................................................................................
7.10 b) Le déphasage demandé est égal à l’argument de la fonction de transfert. Cette dernière est un imaginaire

pur de partie imaginaire strictement positive, car H = − 1
jRCω = j

RCω
.

.......................................................................................................................................................
7.10 c) On utilise les réponses aux deux questions précédentes : l’amplitude de ve est multipliée par le gain et

le déphasage est intégré dans le cos : vs = E

RCω
cos
(
ωt+ π

2

)
= − E

RCω
sin(ωt).

.......................................................................................................................................................
7.10 d) Avec un calibre de 250 µs/division, on mesure une période de 1 ms. La fréquence de fonctionnement est

donc de 1 kHz.
.......................................................................................................................................................

7.10 e) Le module de la fonction de transfert est 1
RCω

. Avec les valeurs numériques fournies, on trouve G = 3,1.
.......................................................................................................................................................
7.10 f) Le déphasage de vs par rapport à ve est de +π

2 donc la tension de sortie doit être en avance d’un quart
de période sur la tension d’entrée. Les réponses a (tensions en phase) et c (tension de sortie en retard) ne sont
pas compatibles. À la fréquence de fonctionnement, le gain est de 3, ce n’est pas le cas sur la réponse d .
.......................................................................................................................................................
7.11 a) La fonction de transfert fournie se met sous la forme jRCωvs = −ve. Comme une multiplication par jω

en notation complexe correspond à une dérivation, on en déduit l’équation différentielle.
.......................................................................................................................................................
7.11 c) Une tension constante positive E s’intègre en fonction affine de pente négative −At+ b. Ce n’est pas le

cas des réponses c et d .

Pour t ∈
[
0, 500 µs

]
, on lit E = 3 V. Avec les valeurs numériques de R et C, on trouve une pente théorique de

−8,0× 103 V · s−1. Sur la courbe a , on mesure une pente de −6/500× 10−6 = −12× 103 V · s−1 alors qu’on a une
pente de −4/500× 103 = −8,0× 103 V · s−1 sur la courbe b .
.......................................................................................................................................................

7.12 a) On a 1
G2

= R1

R2
+ R2

R1
= α+ 1

α
.

.......................................................................................................................................................

7.12 b) On a 1
G2

= α+ 1
α

= 1 + α2

α
. Donc, G2 = 1

1
G2

= α

1 + α2 .

.......................................................................................................................................................

7.12 c) On a G1 −G2 = 1− R1

R2
. Donc, G1 = G2 ⇐⇒

R1

R2
= 1 ⇐⇒ R1 = R2.

.......................................................................................................................................................

7.12 d) On pose f(α) = α+ 1
α

. On calcule f ′(α) = 1− 1
α2 = α2 − 1

α2 . Ainsi, on f ′(α) = 0 ⇐⇒ α = 1. Comme

f(α) −−−−→
α→0+

+∞ et f(α) −−−−−→
α→+∞

+∞,

on en déduit que α+ 1
α

est mininale quand α = 1.
.......................................................................................................................................................
7.13 a) L’ALI étant idéal, les courants d’entrée sont nuls. Ainsi, la loi des nœuds à l’entrée inverseuse assure

que i1 = i2.
.......................................................................................................................................................
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7.13 b) Les deux résistances étant parcourues par le même courant, elles sont en série. Ainsi, on en déduit que
le circuit équivalent est :

R2

U2

i2

R1U1

i1

vs

La formule du diviseur de tension aux bornes de R1 donne le résultat demandé.
.......................................................................................................................................................
7.13 c) L’ALI fonctionne en régime linéaire donc on a V + = V −.
.......................................................................................................................................................

7.13 d) D’après les questions précédentes, on a ve = R1

R1 +R2
vs, d’où le résultat.

.......................................................................................................................................................
7.14 Le gain de l’amplificateur non inverseur vaut ici 6 : c’est un réel positif. Par conséquent, la tension

de sortie doit être en phase et de plus grande amplitude que la tension d’entrée. Les réponses a (tensions en
opposition de phase) et c (sortie de plus faible amplitude) sont donc exclues.

Sur la réponse b , le gain mesuré est de 16 (8/0,5) alors qu’il est de 6 sur la réponse d : seule cette dernière
convient.
.......................................................................................................................................................
7.15 a) L’ALI fonctionne en régime linéaire donc V + = V −.
.......................................................................................................................................................
7.15 b) Les courants d’entrée de l’ALI idéal étant nuls quels que soient les potentiels des deux entrées, l’ALI se

comporte comme un circuit ouvert en entrée. L’impédance d’entrée tend donc vers +∞.
.......................................................................................................................................................
7.15 c) Les courants d’entrée sont nuls donc ie = 0 A.
.......................................................................................................................................................
7.15 d) L’impédance d’entrée du montage est ici définie par Ze =

ve

ie
. L’intensité d’entrée étant nulle, l’impédance

d’entrée est infinie.
.......................................................................................................................................................

7.16 a) Avec la convention choisie, on a i1 = ve − VA

Z1
. L’ALI fonctionnant en régime linéaire, on a VA = 0.

.......................................................................................................................................................
7.16 b) L’impédance d’entrée du circuit est Ze = ve

i1
. D’après la question précédente, Ze = Z1.

.......................................................................................................................................................
7.16 c) En régime constant, l’impédance du condensateur tend vers +∞.
.......................................................................................................................................................
7.16 d) En régime constant, l’impédance d’une inductance tend vers 0.
.......................................................................................................................................................

7.16 e) Avec le condensateur, le module de l’impédance d’entrée est |Ze| = 1
Cω
≃ 0,16 · 105 Ω ≃ 16 kΩ. Il est

donc légèrement plus grand qu’avec la résistance.
.......................................................................................................................................................
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Fiche no 8. Sources lumineuses et lois de Snell-Descartes

Réponses

8.1 a) . . . . . . . . . . . . π

180 × αdeg

8.1 b). . . . . . . . . . . . . . 60 × αdeg

8.2 a) . . . . . . . . . . . . . . . . . 35°39′

8.2 b) . . . . . . . . . . . . . . 1,715 rad

8.2 c) . . . . . . . . . . . . . . . . . 60°20′

8.3 a) . . . . . . . . . . . . . . . . . . . . . . i

8.3 b) . . . . . . . . . . . . . . . . . π

2 − i

8.3 c) . . . . . arcsin
(
n1
n2

sin(i)
)

8.3 d) . . π

2 − arcsin
(
n1

n2
sin(i)

)

8.4 a) . . . . . . . . . . . . . . . . . . 16,3°

8.4 b) . . . . . . . . . . . . . . . . . . 25,5°

8.4 c) . . . . . . . . . . . . . . . . . . 22,0°

8.5 a) . . . . . . . . . . . . . . . . . . r − i

8.5 b) . . . . . . . . . . . . . . . . . π − 2i

8.6 a) . . . . . . . . . (α1 + α2) − π

8.6 b) . . . . . . . . . . . . . . . . . r + r′

8.7 a) . . . . . . . . . . . . . . . . . . . Non

8.7 b) . . . . . . . . . . . . . . . . . . . . 60°

8.8 a) . . . . . . . . . . . . . . . . . . . 1,25

8.8 b) . . . . . . . . . . . . . . . . . . . 1,18

8.8 c) . . . . . . . . . . . . . . . . . . . Non

8.9 a) . . . . . . . . .

√
1 − sin2(θi)

n2
1

8.9 b) . . . . . . . . . . cos(θr) > n2
n1

8.9 c) . . . . sin(θi) <
√
n2

1 − n2
2

8.10 a) . . . . . . . . . . . . . . 564 THz

8.10 b) . . . . . . . . 3,74 × 10−19 J

8.11 . . . . . . . . . . . . . . . b et d

8.12 a) . . . . 2,26 × 108 m · s−1

8.12 b) . . . . . . . . . . . . . . . 400 nm

Corrigés

8.2 a) On a α = 35° + 0,65× 60′ = 35°39′.
.......................................................................................................................................................
8.2 b) L’angle β vaut 98° et 15 minutes d’angle, c’est-à-dire β = 98 + 15/60 = 98,25°.

En radians, on a β = 98,25°× π

180° = 1,715 rad (on garde 4 chiffres significatifs, comme la donnée de départ).
.......................................................................................................................................................

8.2 c) On a γ = 1,053× 180°
π

= 60,33°. Or, 0,33° correspondent à 0,33× 60 = 20′. Donc γ = 60°20′.
.......................................................................................................................................................
8.3 a) On a α = i. Il s’agit de la loi de Snell-Descartes pour la réflexion.
.......................................................................................................................................................
8.3 b) On a α+ β = π

2 et α = i, donc β = π

2 − i.
.......................................................................................................................................................

8.3 c) La loi de Snell-Descartes pour la réfraction donne : n1 sin(i) = n2 sin(δ). Donc δ = arcsin
(
n1

n2
sin(i)

)
.

.......................................................................................................................................................
8.4 a) La loi de Snell Descartes pour la réfraction donne : n1 sin(i) = n2 sin(r). On obtient pour r :

r = arcsin
(
n1

n2
sin(i)

)
et donc r = arcsin

(
1

1,45 × sin(24,0)
)

= 16,3°.

Attention à bien régler la calculatrice en degrés ou à convertir l’angle en radians.
.......................................................................................................................................................
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8.4 b) Si la calculatrice est réglée en degrés, on a : r = arcsin
(

1
1,45 sin(0,674× 180

π
)
)

= 25,5°.
.......................................................................................................................................................

8.4 c) On a i = arcsin
(
n2

n1
sin(r)

)
donc i = arcsin

(1,45
1 sin 15,0

)
= 22,0°.

.......................................................................................................................................................
8.5 a) On a Dt = r − i. Attention, i et r sont orientés dans le sens trigonométrique, alors que Dt est orienté

dans le sens horaire.
.......................................................................................................................................................
8.5 b) On a Dr − (−i) + i = π donc Dr = π − 2i.
.......................................................................................................................................................
8.6 a) On utilise le fait que la somme des angles d’un quadrilatère est égale à 2π dans OIAJ. Donc, on a :

2π = A+ π

2 + π

2 + (2π − (α1 + α2)).

Ainsi, on a A = (α1 + α2)− π.
.......................................................................................................................................................
8.6 b) On utilise le fait que la somme des angles d’un triangle est égale à π dans IAJ. Donc, on obtient

π = A+ (π2 − r) + (π2 − r
′), et ainsi A = r + r′.

.......................................................................................................................................................

8.7 a) On a n1

n2
sin(i) = 1,5

1,3 sin(44°) = 0,8 < 1. Il existe un rayon réfracté, il n’y a donc pas réflexion totale.
.......................................................................................................................................................

8.7 b) Comme n1 est supérieur à n2, il existe un tel angle limite, qui est iℓ = arcsin
(
n2

n1

)
= arcsin

(
1,3
1,5

)
= 60°.

.......................................................................................................................................................
8.8 a) D’après la loi de Snell-Descartes, on a n1 sin(i) = n2 sin(r). Donc :

n2 = n1
sin(i)
sin(r) = 1,37× sin(20,0°)

sin(22,0°) = 1,25.

.......................................................................................................................................................
8.8 b) On observe une réflexion totale si n1

n2
× sin(i) > 1 donc si n2 < n1 × sin(i) = 1,37× sin(60,0°) = 1,18.

.......................................................................................................................................................

8.8 c) L’angle limite au-delà duquel il y a réflexion totale est iℓ = arcsin
(
n2

n1

)
. Un milieu ne peut pas avoir un

indice plus petit que 1 (cela signifierait que la lumière s’y propage plus rapidement que dans le vide, ce qui n’est
pas possible). Donc, pour n1 = 1,37, le plus petit angle limite de réflexion totale est :

iℓ,min = arcsin
(

1
1,37

)
= 46,9° > 40,0°.

Donc : non, il n’existe aucun milieu 2 qui permette d’observer une réflexion totale dans ces conditions.
.......................................................................................................................................................

8.9 a) On a cos(θr) =
√

1− sin2(θr) =
√

1− sin2(θi)
n2

1
.

.......................................................................................................................................................

8.9 b) Il s’agit d’un triangle rectangle, donc i = π

2 − θr. Donc la relation équivaut à
n1 sin( π

2 − θr)
n2

> 1,

c’est-à-dire à n1 cos(θr)
n2

> 1 et donc à cos(θr) > n2

n1
.

.......................................................................................................................................................
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8.9 c) On a
√

1− sin2(θi)
n2

1
>
n2

n1
donc 1− sin2(θi)

n2
1

>
(
n2

n1

)2
dont on déduit :

sin2(θi) < n2
1

(
1−

(
n2

n1

)2
)

= n2
1 − n2

2.

Ainsi, on a sin(θi) <
√
n2

1 − n2
2.

.......................................................................................................................................................

8.10 a) On a f = c

λ0
= 3,00× 108 m · s−1

532 nm = 5,64× 1014 Hz = 564 THz.
.......................................................................................................................................................
8.10 b) On a E = hf = 6,63× 10−34 J · s× 5,64× 1014 Hz = 3,74× 10−19 J.
.......................................................................................................................................................
8.11 Au passage d’un dioptre, la fréquence et l’énergie d’un photon sont inchangées. En revanche, la vitesse

de propagation de la lumière et la longueur d’onde dépendent de l’indice optique.
.......................................................................................................................................................

8.12 a) On a v = c

n
= 3,00× 108 m · s−1

1,33 = 2,26× 108 m · s−1.
.......................................................................................................................................................

8.12 b) On a λ = v

f
= c

nf
= λ0

n
= 532 nm

1,33 = 400 nm.
.......................................................................................................................................................
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Fiche no 9. Lentilles

Réponses

9.1 a) . . . . . . . . . arctan
(

AB
OA

)

9.1 b). . . arctan
(

AB
OA

)
× 180

π

9.1 c) . . . . . . . . . . . . . . . . . . 0,52°

9.1 d) . . . . . . . . . . . . . . . . . . 0,53°

9.1 e) . . . . . . . . . . . . . . . . . . . . b

9.1 f). . . . . . . . . . . . . . . . . . . . . a

9.2 a) . . . . . . . . . . OA′

OA
= A′B′

AB

9.2 b) . . . . . . . . . . . . . . . . . . . . −2

9.3 a). . . . . . . . . . . . . . . . . . 40 cm

9.3 b). . . . . . . . . . . . . . . . −10 cm

9.3 c) . . . . . . . . . . . . . . . . −50 cm

9.3 d) . . . . . . . . . . . . . . . . . 20 cm

9.4 a) . . . . . . . . . . . . . . . . . A1B1
f ′

1

9.4 b) . . . . . . . . . . . . . . . . . A1B1
f ′

2

9.4 c). . . . . . . . . . . . . . . . . . . . . f ′
1
f ′

2

9.4 d) . . . . . . . . . . . . . . . . . . . . . . 4

9.5 . . . . . . . . . . . . . . . . . . . . . . b

9.6 a) . . . . . . . . . . . . . . . . correct

9.6 b) . . . . . . . . . . . . . . incorrect

9.6 c) . . . . . . . . . . . . . . incorrect

9.6 d) . . . . . . . . . . . . . . . . correct

9.7 a) . . . . . . . . . . . . . . . . . 5,0 cm

9.7 b) . . . . . . . . . . . . . . . . . +20 δ

9.8 . . . . . . . . . . . . . . . . . . . . . . b

9.9 a) . . . . . . . . . . . . . . . . . 0,22 m

9.9 b) . . . . . . . . . . . . . . . . . . . . a

9.10 a) . . . . . . . . . . . OA × OF′

OA + OF′

9.10 b) . . . . . . . . . . . . OA′ × f ′

f ′ − OA′

9.10 c) . . . . . . . . . . . OA × OA′

OA − OA′

9.10 d) . . . . . . . . . . . . . . . . après

9.11 a). . . . . . . . . . . . . . . . . −f ′2

F′A′

9.11 b) . . . . . . . . . . . . . . FA − f ′

9.11 c) . . . . . . . . . . . . . . . . . . réel

9.12 a) . . . . . . . . . . . . . . . . . . . b

9.12 b) . . . . . . . . . . . . . . . . . . . b

9.13 a) . . . . . . OA = −5,02 cm

9.13 b) . . . . . . . 10,8 m × 7,2 m

9.14 a) . . . . . . . . . . . . . . . . . . . a

9.14 b) . . . . . . . . . . . . . . . . . . . b

9.15 a) . . . . . . . OA′ = −15 cm

9.15 b). . . . . . . . . . . . . . virtuelle

9.15 c) . . . . . . . . . . . . . . . . 5,0 cm

9.15 d) . . . . . . . . . . . . . . . . droite

9.16 a) . . . . . . . . . . . . . D2 − d2

4D

9.16 b) . . . . . . . . . . . . . . . . . 15D
64

9.16 c) . . . . . . . . . . . . . . . . . . . . . 0

Corrigés

9.1 a) Dans le triangle rectangle OAB, on a tan(α) = AB
OA. Comme l’angle α est entre −π/2 et π/2, on a

α = arctan
(AB

OA

)
pour un objet lointain.

.......................................................................................................................................................

9.1 b) On effectue une conversion radians-degrés du résultat précédent : α = arctan
(AB

OA

)
× 180

π
.

.......................................................................................................................................................

9.1 c) Dans le triangle rectangle OAB, on a OA≫ AB. Donc, on a : α ≈ tan(α) = 3,5 · 103 km
384 400 km ×

180
π

= 0,52°.
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.......................................................................................................................................................
9.1 d) Dans le triangle rectangle OAB, on a OA≫ AB. Donc, on a :

α ≈ tan(α) = 1,4 · 106 km
150 600 · 103 km ×

180
π

= 0,53°.

.......................................................................................................................................................
9.1 e) Même si les valeurs ne sont pas strictement égales, elles sont proches d’un point de vue physique, l’écart

relatif entre elles valant αS − αL

αL
= 1,9 %.

Les diamètres angulaires de la Lune et du Soleil pour un observateur situé sur Terre sont proches.
.......................................................................................................................................................
9.1 f) La Lune et le Soleil ont la même taille apparente sur le ciel. Si la Lune, plus proche de la Terre, se place

entre la Terre et le Soleil, celle-ci va dissimuler complètement le Soleil : on parle d’éclipse solaire. Les diamètres
apparents n’ont rien à voir avec l’alternance des saisons, liée à l’inclinaison de l’axe de rotation de la Terre, ni avec
l’effet de marée, lié à l’attraction gravitationnelle de la Lune et du Soleil sur les océans et la croûte terrestre.
.......................................................................................................................................................

9.2 a) Par application du théorème de Thalès, on a OA′

OA
= A′B′

AB
.

.......................................................................................................................................................
9.2 b) Par lecture graphique, on constate que OA′ = 8 unités horizontales et OA = −4 unités horizontales.

D’après la relation déterminée dans la question précédente, on a γ = A′B′

AB
= OA′

OA
= 8 carreaux
−4 carreaux = −2.

.......................................................................................................................................................
9.3 a) Le sens positif est le sens de propagation de la lumière. Le point F′

1 est après O1 donc O1F′
1 = 40 cm.

.......................................................................................................................................................
9.3 b) Le point F2 est en avant de O2 donc O2F2 = −10 cm.
.......................................................................................................................................................
9.3 c) Le point O1 est en avant de O2 donc O2O1 = −50 cm.
.......................................................................................................................................................
9.3 d) Le point A1 est en avant de F′

2 donc A1F′
2 = 20 cm.

.......................................................................................................................................................

9.4 a) Dans le triangle rectangle O1A1B1, on a tan(α) = A1B1

O1F′
1

. Comme l’objet est très éloigné, l’angle α est
petit ; comme il est exprimé en radians, on peut effectuer l’approximation α ≈ tan(α).
.......................................................................................................................................................

9.4 b) Dans le triangle rectangle O2A1B1, on a tan(α′) = A1B1

O2F′
2

. Comme l’objet est très éloigné, l’angle α′ est

petit ; comme il est exprimé en radians, on peut effectuer l’approximation α′ ≈ tan(α′).
.......................................................................................................................................................
9.4 c) En utilisant les deux expressions trouvées pour α et α′, on trouve :

G = α′

α
= A1B1

f ′
2
× f ′

1
A1B1

= f ′
1
f ′

2
.

.......................................................................................................................................................

9.4 d) Graphiquement, on lit f ′
1 = 16 carreaux et f ′

2 = 4 carreaux. Donc, on a G = f ′
1
f ′

2
= 4. Un objet lointain

observé à travers cette lunette apparaîtra sous un diamètre 4 fois plus important qu’à l’œil nu.
.......................................................................................................................................................
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9.5 Pour se placer dans les conditions de Gauss (stigmatisme approché et aplanétisme), les rayons lumineux
issus d’un objet doivent passer près du centre optique et être peu inclinés par rapport à l’axe optique principal.
.......................................................................................................................................................
9.6 a) Ce schéma est correct car un rayon parallèle au rayon incident passant par le centre optique de la lentille

sans être dévié couperait le rayon émergent dans le plan focal image de la lentille convergente.
.......................................................................................................................................................
9.6 b) Ce schéma est incorrect car le foyer image F′ d’une lentille convergente est situé au-delà de la lentille

et non en avant (par rapport au sens de propagation de la lumière). Ce schéma serait correct si la lentille était
divergente.
.......................................................................................................................................................
9.6 c) Ce schéma est incorrect car un rayon lumineux qui ressort d’une lentille parallèle à l’axe optique principal,

a une direction incidente passant par le foyer objet F. Ceci n’est pas le cas ici puisque le rayon incident passe par
le foyer image F′.
.......................................................................................................................................................
9.6 d) Ce schéma est correct car un rayon incident dont la direction passe par le foyer objet F ressort parallèle

à l’axe optique de la lentille.
.......................................................................................................................................................
9.7 a) On ajoute un rayon incident issu de B parallèle à l’axe optique principal et émergeant en B′.

On trouve la position du foyer image principal F′ à l’intersection entre l’axe optique principal et le rayon tracé.
En mesurant la distance OF′ sur le schéma et en tenant compte de l’échelle du document (8 carreaux sur le document
correspondent à 10 cm en réalité), on trouve : OF′ = 5,0 cm.
.......................................................................................................................................................

9.7 b) En utilisant la définition de la vergence, on a V = 1
f ′ = 1

0,05 m = +20 δ.
.......................................................................................................................................................
9.8 Pour comparer les lentilles, il faut comparer soit leurs distances focales images f ′, soit leurs distances

focales objets f = −f ′, soit leurs vergences V = 1
f ′ .

Remarquons que le lentille d est exclue d’office, car f ′
d = −8,0 cm < 0 donc il s’agit d’une lentille divergente

(f ′ < 0) et non convergente (f ′ > 0).
Calculons les vergences des trois lentilles qui sont encore à considérer. On a :
• pour la lentille a : Va = +8,0 δ ;

• pour la lentille b : Vb = 1
f ′

b

= 1
0,080 m = +12,5 δ ;

• et pour la lentille c : Vc = 1
f ′ = − 1

f
= − 1
−0,100 m = +10,0 δ.

On a Vb > Vc > Va ; donc, c’est la lentille b qui est la plus convergente.
.......................................................................................................................................................

9.9 a) On a R = 2(n− nair)× f ′ = 2(n− nair)
1
V

= 2× (1,67− 1)× 1
6,0 m−1 = 0,22 m.

.......................................................................................................................................................
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9.9 b) La situation c est exclue d’office car l’équation n’est pas homogène (n et nair sont sans dimension
tandis que R est une longueur).

La situation b permet de déduire que f ′ = R

2 , c’est-à-dire une distance finie à laquelle convergent les rayons.

La situation a conduit à f ′−→+∞ : les rayons convergent à l’infini donc ils ne sont pas déviés.
Une autre approche consiste à voir que si les indices de part et d’autre du dioptre sont identiques, il n’y a pas de
déviation (loi de Snell-Descartes). Réponse : a .
.......................................................................................................................................................

9.10 a) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que OA′ = OA×OF′

OA + OF′
.

.......................................................................................................................................................

9.10 b) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que OA = OA′ ×OF′

OF′ −OA′
. Ainsi, OA = OA′ × f ′

f ′ −OA′
.

.......................................................................................................................................................

9.10 c) On déduit de la relation 1
OA′

− 1
OA

= 1
OF′

que f ′ = OF′ = OA×OA′

OA−OA′
.

.......................................................................................................................................................

9.10 d) On a montré que OA′ = OA×OF′

OA + OF′
. Or, on a OA = −15 cm et OF′ = 4,0 cm.

L’application numérique donne OA′ = −15 cm× 4,0 cm
−15 cm + 4,0 cm = 5,5 cm.

Comme OA′ > 0, l’image A′B′ se situe après la lentille.
.......................................................................................................................................................

9.11 a) On déduit de la relation F′A′ × FA = −f ′2 que FA = −f
′2

F′A′
.

.......................................................................................................................................................
9.11 b) D’après la relation de Chasles, on a OA = OF + FA = −f ′ + FA.
.......................................................................................................................................................

9.11 c) On a montré d’une part que FA = −f
′2

F′A′
et d’autre part que OA = OF + FA.

Les applications numériques donnent :

FA = −(12,0 cm)2

5,0 mm = −(0,120 m)2

5,0 · 10−3 m = −2,88 m et OA = −0,12 m + (−2,88 m) = −3,00 m.

L’objet se trouve à 3 m en avant de la lentille, il s’agit donc d’un objet réel.
.......................................................................................................................................................
9.12 a) Par définition du grandissement, l’image est agrandie car |γ| > 1.
.......................................................................................................................................................
9.12 b) L’image est renversée car γ < 0.
.......................................................................................................................................................
9.13 a) On a OA′ = 15 m et f ′ = 5,00 · 10−2 m. D’après la relation de conjugaison de Descartes, on a :

1
OA′

− 1
OA

= 1
OF′

.

On en déduit que OA = OA′ ×OF′

OF′ −OA′
. Donc, on a OA = 15,0 m× 5,00 · 10−2 m

5,02 · 10−2 m− 15 m = −5,02 · 10−2 m = −5,02 cm.
.......................................................................................................................................................
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9.13 b) Le grandissement γ vaut :

γ = A′B′

AB
= OA′

OA
= 15 m
−0,050 2 m = −299.

Ainsi, la largeur de l’image sur l’écran vaut 299× 36 · 10−3 m = 10,8 m. De plus, la hauteur de l’image sur l’écran
vaut 299× 24 · 10−3 m = 7,18 m.
Finalement, les dimensions de l’image sur l’écran sont : 10,8 m× 7,2 m.
.......................................................................................................................................................

9.14 a) On sait que 1
OA′

− 1
OA

= 1
OF′

. Ici, on a OA−→−∞ donc 1
OA
−→ 0−. Finalement, on a OA′−→OF′.

.......................................................................................................................................................

9.14 b) On sait que 1
OA′

− 1
OA

= 1
OF′

. Ici, on souhaite que OA′−→+∞ ; donc on souhaite que 1
OA′

−→ 0+

et donc que OA−→−OF′ = OF.
.......................................................................................................................................................

9.15 a) On a OA′ = OA×OF′

OA + OF′
. Or, on a OA = −6,0 cm et OF′ = 10,0 cm. Donc, on a :

OA′ = −6,0 cm× 10 cm
−6,0 cm + 10 cm = −15 cm.

.......................................................................................................................................................
9.15 b) L’image se situe en avant de la lentille. On l’observera directement à travers la lentille, en regardant

dans la direction de l’objet.
.......................................................................................................................................................

9.15 c) Sa taille se calcule à l’aide de la formule du grandissement : γ = A′B′

AB
= OA′

OA
. Ici, on a :

A′B′ = OA′

OA
×AB = −15 cm

−6,0 cm × 2,0 cm = 5,0 cm.

.......................................................................................................................................................
9.15 d) Le grandissement est positif : il s’agit d’une image droite.
.......................................................................................................................................................

9.16 a) On transforme l’expression 1
f ′ = 1

D+d
2
− 1

−(D−d)
2

en mettant les fractions sous dénominateur commun

et en isolant f ′. On a :

1
f ′ = 1

D+d
2
− 1

−(D−d)
2

= 2
D + d

+ 2
D − d donc 1

f ′ = 2(D − d) + 2(D + d)
(D + d)(D − d) = 4D

D2 − d2 .

Finalement, on trouve f ′ = D2 − d2

4D .
.......................................................................................................................................................

9.16 b) En remplaçant d par D4 , on arrive à f ′ =
D2 − D2

16
4D = 15D

64 .
.......................................................................................................................................................

9.16 c) En remplaçant f ′ par D4 , on arrive à D

4 = 4D
D2 − d2 et donc à D2 = D2 − d2. Ainsi, on a d = 0.

.......................................................................................................................................................
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Fiche no 10. Cinématique

Réponses

10.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 h 6 min 40 s

10.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 min 20 s

10.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0 × τ1

10.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0 × τ1
2

2

10.2 c) . . . . . . . . . . . . . . . . . . . . a0 × τ1 ×
(τ1

2 + τ2

)
10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

10.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

10.5 a) . . . . . . . . . . . . . . . . . . a(cos(θ) #»ex + sin(θ) #»ey)

10.5 b) . . . . . . . . . a

(
cos(θ) #»ex +

(
sin(θ) + b

a

)
#»ey

)

10.5 c) . . . . . . a

(
2 cos(θ) #»ex +

(
2 sin(θ) + b

a

)
#»ey

)
10.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −b #»ey

10.6 a) . . . . . . . . . . . . . . . . . . r(cos(θ) #»ex + sin(θ) #»ey)

10.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er

10.6 c). . . . . . . . . . . . . r(cos(θ) #»ex + sin(θ) #»ey) + z #»ez

10.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er + z #»ez

10.7 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |r sin(θ)|

10.7 b) . . . . . . . . . . . r sin(θ)(cos(φ) #»ex + sin(φ) #»ey)

10.7 c). . . r sin(θ)(cos(φ) #»ex + sin(φ) #»ey) + r cos(θ) #»ez

10.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r #»er

10.7 e) . . . . . . . . . . . . . . . . . . . . . cos(θ) #»er − sin(θ) #»eθ

10.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49,4 km · h−1

10.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,0 m · s−2

10.9 a) . . . . . . aω(− sin(ωt) #»ex + cos(ωt) #»ey) + b #»ez

10.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

(aω)2 + b2

10.9 c) . . . . . . . . . . . . −aω2(cos(ωt) #»ex + sin(ωt) #»ey)

10.9 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . aω2

10.10 a) . . . . . . . . . . . . . . . . . . . . . . . cos θ #»ex + sin θ #»ey

10.10 b) . . . . . . . . . . . d #»er

dt = θ̇(− sin θ #»ex + cos θ #»ey)

10.10 c) . . . . . . . . . . . . . . . . . . #»ex = cos θ #»er − sin θ #»eθ

10.10 d). . . . . . . . . . . . . . . . . . #»ey = sin θ #»er + cos θ #»eθ

10.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d #»er

dt = θ̇ #»eθ

10.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

T

10.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
T 2

10.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a #»er

10.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2abt2 #»eθ

10.11 e). . . . . . . . . . . . . . . . . . . . . . . . . . a #»er + 2abt2 #»eθ

10.12 a) . . . . . . . . . . . . . . . . r0e−t/τ

(
− 1
τ

#»er + ω #»eθ

)

10.12 b) . . . . r0e−t/τ

((
1
τ2 − ω2

)
#»er −

(
2ω
τ

)
#»eθ

)
10.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . orthoradiale

10.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . décéléré

10.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = r0e−θ

10.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −at+ v0

10.13 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . at

10.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −1
2at

2 + v0t

10.13 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2at

2 + L
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10.13 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 cm

10.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v0xt

10.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . −1
2gt

2 + v0zt

10.14 c) . . . . . . . . . . . . . . . . . . z = − g

2v2
0x

x2 + v0z

v0x
x

10.15 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,7 s

10.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,9 m

Corrigés

10.1 a) La voiture avance à vitesse constante. Pour parcourir 100 km, il lui faudra le temps :

τ = 100 km
90 km · h−1 = 1,11 h = 1 h 6 min 40 s.

.......................................................................................................................................................

10.1 b) Pour parcourir 100 km à 80 km · h−1, il lui faudrait le temps τ ′ = 100 km
80 km · h−1 = 1,25 h. Le temps de

trajet serait donc allongé de ∆t = τ ′ − τ = 0,14 h = 8 min 20 s.
.......................................................................................................................................................
10.2 a) L’accélération est constante durant le temps τ1 et la vitesse initiale est nulle. La vitesse à un instant t

vaut donc v(t) = a0 × t, d’où v1 = v(τ1) = a0 × τ1.
.......................................................................................................................................................
10.2 b) Pour t ∈ [0, τ1], la vitesse est décrite par l’équation : v(t) = a0 × t. La distance parcourue à la date t

s’écrit donc d(t) = 1
2a0 × t2. Ainsi, on a d1 = d(τ1) = a0 × τ1

2

2 .
.......................................................................................................................................................
10.2 c) La distance totale parcourue est dtot = d1 +d2, avec d1 évaluée à la question précédente et d2 la distance

parcourue par le véhicule dans la seconde phase du mouvement où il progresse à vitesse constante.

Or, on a d2 = v1 × τ2. Ainsi, on a dtot = a0 × τ1 ×
(
τ1

2 + τ2

)
.

.......................................................................................................................................................
10.3 À t = 0, l’avion a une vitesse nulle. Sa vitesse au temps t s’écrit alors v(t) = a × t et la distance qu’il

parcourt vaut d(t) = 1
2a× t

2.

D’abord le temps td où l’avion atteint la vitesse vd vaut td = vd

a
.

Pour faire l’application numérique, il nous faut exprimer la vitesse vd en m · s−1. On a :

vd = 180× 103 m
3 600 s = 50 m · s−1 et donc td = 50 m · s−1

2,5 m · s−2 = 20 s.

La longueur de la piste correspond à la distance parcourue pendant cette durée, donc :

L = 1
2a× td

2 = vd
2

2a = (50 m · s−1)2

2× 2,5 m · s−2 = 500 m.

.......................................................................................................................................................
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10.4 La vitesse de la voiture à un instant t s’écrit v(t) = vi − a× t avec :

vi = 110 km · h−1 = 110× 103 m
3 600 s = 30,6 m · s−1.

Ainsi, le véhicule s’arrêtera à la date ta telle que vi − a× t = 0 m · s−1. On a ta = vi

a
= 30,6 m · s−1

10 m · s−2 = 3,06 s.

La distance parcourue pendant le freinage vaut d(t) = vi × t−
1
2a× t

2.

La distance d’arrêt da correspond à la distance parcourue pendant la durée ta : c’est da = vi
2

2a = 46,7 m.
.......................................................................................................................................................
10.5 a) On a #    »OA = a(cos(θ) #»ex + sin(θ) #»ey).
.......................................................................................................................................................

10.5 b) On a #   »OB = #    »OA + #   »AB = a
(

cos(θ) #»ex +
(

sin(θ) + b

a

)
#»ey

)
.

.......................................................................................................................................................

10.5 c) On a #    »OA + #   »OB = a
(

2 cos(θ) #»ex +
(

2 sin(θ) + b

a

)
#»ey

)
.

.......................................................................................................................................................
10.5 d) On a #    »OA− #   »OB = #   »BA = −b #»ey.
.......................................................................................................................................................
10.6 a) On a

#      »

OM′ = r(cos(θ) #»ex + sin(θ) #»ey).
.......................................................................................................................................................
10.6 b) On a

#      »

OM′ = r #»er.
.......................................................................................................................................................
10.6 c) On a #     »OM = r(cos(θ) #»ex + sin(θ) #»ey) + z #»ez.
.......................................................................................................................................................
10.6 d) On a #     »OM = r #»er + z #»ez.
.......................................................................................................................................................
10.7 a) On a

∥∥ #      »

OM′∥∥ = |r sin(θ)|.
.......................................................................................................................................................
10.7 b) On a

#      »

OM′ = r sin(θ)(cos(φ) #»ex + sin(φ) #»ey).
.......................................................................................................................................................
10.7 c) On a #     »OM =

#      »

OM′ +
#       »

M′M = r sin(θ)(cos(φ) #»ex + sin(φ) #»ey) + r cos(θ) #»ez.
.......................................................................................................................................................
10.7 d) On a #     »OM = r #»er.
.......................................................................................................................................................
10.7 e) Calculons les projections de #»ez sur les trois vecteurs de la base sphérique. On a :

#»ez · #»er = cos(θ)
#»ez · #»eθ = cos

(
θ + π

2

)
= − sin(θ)

#»ez · # »eφ = 0.

Par conséquent, on a :
#»ez = ( #»ez · #»er) #»er + ( #»ez · #»eθ) #»eθ + ( #»ez · # »eφ) # »eφ = cos(θ) #»er − sin(θ) #»eθ.

.......................................................................................................................................................
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10.8 a) La vitesse de la balle à l’instant t1 s’écrit #»v (M, t1) = vx(t1) #»ex + vy(t1) #»ey, avec :

vx(t1) ≃ x(t1 + ∆t)− x(t1)
∆t , vy(t1) ≃ y(t1 + ∆t)− y(t1)

∆t et ∆t = 0,05 s.

Nous obtenons le tableau suivant :
t (en s) 0 0,05 0,10 0,15

vx (en m · s−1) 7 7 7 7
vy (en m · s−1) 11,8 11,4 11,0 10,6

À l’instant initial, nous pouvons écrire : v0 ≃
√(

7 m · s−1)2 +
(
11,8 m · s−1)2 = 13,72 m · s−1 = 49,4 km · h−1.

.......................................................................................................................................................
10.8 b) L’accélération de la balle à l’instant t1 s’écrit #»a (M, t1) = ax(t1) #»ex + ay(t1) #»ey, avec :

ax(t1) ≃ vx(t1 + ∆t)− vx(t1)
∆t , ay(t1) ≃ vy(t1 + ∆t)− vy(t1)

∆t et ∆t = 0,05 s.

Ceci donne :

ax(0) ≃ 7 m · s−1 − 7 m · s−1

0,05 s = 0 m · s−2 et ay(0) ≃ 11,4 m · s−1 − 11,8 m · s−1

0,05 s = −8 m · s−2.

L’accélération initiale vaut donc a0 ≃
√(

0 m · s−2)2 +
(
−8 m · s−2)2 = 8,0 m · s−2.

.......................................................................................................................................................
10.9 a) On a #»v (M) = ẋ #»ex + ẏ #»ey + ż #»ez = aω

(
− sin(ωt) #»ex + cos(ωt) #»ey

)
+ b #»ez.

.......................................................................................................................................................

10.9 b) On a
∥∥ #»v (M)

∥∥ =
√
ẋ2 + ẏ2 + ż2 =

√
(aω)2( sin(ωt)2 + cos(ωt)2

)
+ b2 =

√
(aω)2 + b2.

.......................................................................................................................................................
10.9 c) On a #»a (M) = ẍ #»ex + ÿ #»ey + z̈ #»ez = −aω2( cos(ωt) #»ex + sin(ωt) #»ey

)
.

.......................................................................................................................................................
10.9 d) On a

∥∥ #»a (M)
∥∥ =

√
ẍ2 + ÿ2 + z̈2 = aω2.

.......................................................................................................................................................
10.11 a) On a a = r

t
. Ainsi, a est homogène à une longueur sur un temps.

.......................................................................................................................................................

10.11 b) On a b = θ

t2
. Ainsi, b est homogène à un angle sur un temps au carré. Comme un angle est une grandeur

sans dimension, on a bien le résultat donné.
.......................................................................................................................................................
10.11 c) La vitesse radiale est #»v (M)r = ṙ #»er = a #»er.
.......................................................................................................................................................
10.11 d) La vitesse orthoradiale est #»v (M)θ = rθ̇ #»eθ = 2abt2 #»eθ.
.......................................................................................................................................................
10.11 e) On a #»v (M) = a #»er + 2abt2 #»eθ.
.......................................................................................................................................................

10.12 a) On a #»v (M) = ṙ #»er + rθ̇ #»eθ = r0e−t/τ
(
− 1
τ

#»er + ω #»eθ

)
.

.......................................................................................................................................................

10.12 b) On a #»a (M) = r0e−t/τ
(( 1

τ2 − ω
2
)

#»er −
(

2ω
τ

)
#»eθ

)
.

.......................................................................................................................................................
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10.12 c) On a ω = 4,78 tour ·min−1 = 4,78× 2π rad
60 s = 0,5 rad · s−1 et 1

τ2 − ω
2 =

( 1
22 − ω

2
)

= 0 s−2.

Ainsi, on a #»a (M, t) = −2r0ω

τ
e−t/τ #»eθ. L’accélération est donc orthoradiale.

.......................................................................................................................................................

10.12 d) On a #»a (M, t) · #»v (M, t) = r0
2e−2t/τ

(
− 1
τ

( 1
τ2 − ω

2
)
− 2ω

2

τ

)
= r0

2e−2t/τ

(
− 1
τ3 −

ω2

τ

)
< 0. Le mouve-

ment est donc décéléré.
.......................................................................................................................................................

10.12 e) On a r = r0e
−t/τ et t = θ

ω
. Donc, on a r = r0e−θ/(ω×τ) = r0e−θ car ωτ = 1.

.......................................................................................................................................................

10.13 a) On a #»a (A) = d #»v (A)
dt . En projetant sur l’axe (0, #  »ex′ ), on obtient −a = dvA

dt . Puis, en calculant

ˆ vA(t)

v0

dvA =
ˆ t

0
−adt,

on obtient vA(t) = −at+ v0.
.......................................................................................................................................................

10.13 b) On a #»a (B) = d #»v (B)
dt . En projetant sur l’axe (0, #  »ex′ ), on obtient a = dvB

dt . Puis, en calculant

ˆ vB(t)

0
dvB =

ˆ t

0
adt,

on obtient vB(t) = at.
.......................................................................................................................................................

10.13 c) Sur l’axe (0, #  »ex′ ), on a vA(t) = dx′
A

dt . Donc, on a
ˆ x′

A(t)

0
dx′

A =
ˆ t

0
vA dt =

ˆ t

0
(−at+ v0) dt.

Donc, on a x′
A(t) = −1

2at
2 + v0t.

.......................................................................................................................................................

10.13 d) Sur l’axe (0, #  »ex′ ), on a vB(t) = dx′
B

dt . Donc, on a
ˆ xB(t)

L

dx′
B =

ˆ t

0
vB dt =

ˆ t

0
atdt.

Donc, on a x′
B(t) = 1

2at
2 + L.

.......................................................................................................................................................

10.13 e) Nous observerons une collision à la date t1 si x′
A(t1) = x′

B(t1) donc si −1
2at

2
1 + v0t1 = 1

2at
2
1 + L.

Donc, t1 doit être une solution réelle positive de l’équation suivante :

t21 −
v0

a
t1 + L

a
= 0,

ce qui impose une valeur positive pour son discriminant ∆ =
(
v0

a

)2
− 4L

a
⩾ 0. Donc, on doit avoir L ⩽

v2
0

4a .

Après application numérique, on trouve que la distance L doit vérifier L ⩽ 67 cm.
.......................................................................................................................................................
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10.14 a) On a #»a = d #»v

dt = #»g . En projetant, nous obtenons :
dvx

dt = 0
dvz

dt = −g.

Donc, on a vx = Cte = v0x. En intégrant une deuxième fois, vu que M est initialement en O, on obtient : x(t) = v0xt.
.......................................................................................................................................................

10.14 b) On a #»a = d #»v

dt = #»g . En projetant, nous obtenons :
dvx

dt = 0
dvz

dt = −g.

Donc, en intégrant, on a
ˆ vz(t)

v0z

dvz =
ˆ t

0
−g · dt donc vz = −gt + v0z. En intégrant une deuxième fois, vu que M

est initialement en O, on obtient :
z(t) = −1

2gt
2 + v0zt.

.......................................................................................................................................................
10.14 c) À partir de l’expression de x(t), on peut écrire t = x/v0x. On remplace t par cette expression dans z :

z = −1
2g(x/v0x)2 + v0zx/v0x.

Finalement, on trouve l’équation z = − g

2v2
0x

x2 + v0z

v0x
x.

.......................................................................................................................................................
10.15 a) On suppose que le lion et la gazelle se déplacent en ligne droite sur l’axe (Ox). On prend l’origine des

temps au moment où la gazelle aperçoit le lion et l’origine de l’axe (Ox) à la position du lion quand la gazelle
l’aperçoit.
On intègre deux fois pour avoir la position du lion xL puis celle de la gazelle xG en fonction de temps :xL(t) = v0t+ 1

2aLt
2

xG(t) = d0 + 1
2aGt

2,

avec v0 = 5,0 m · s−1, aL = 3,0 m · s−2, aG = 2,0 m · s−2 et d0 = 10 m.
Puis, on égalise ces deux positions pour déterminer le temps t1 où le lion attrape la gazelle. On obtient une équation
du second degré sur t1 :

aL − aG

2 t21 + v0t1 − d0 = 0. (∗)

On résout cette équation du second degré qui admet deux racines réelles dont l’une est négative. Le temps cherché

est la racine positive : c’est t1 = −v0 +
√

∆
aL − aG

où ∆ = v2
0 + 2d0(aL − aG) est le discriminant de l’équation (∗).

On trouve finalement t1 = 1,7 s.
.......................................................................................................................................................

10.15 b) La gazelle aura parcouru la distance d = 1
2aGt

2
1, avec aG = 2,0 m · s−2 et t1 = 1,7 s le temps mis par le

lion pour rattraper la gazelle. Finalement, on trouve d = 2,9 m.
.......................................................................................................................................................
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Fiche no 11. Principe fondamental de la dynamique

Réponses

11.1 . . . . . . . . . . . . . . . . . . . . . . . . . p+m1v1 +m2v2
m1 +m2

11.2 a). . . . . . . . . . . . . . . .
√

(mRω2 − T )2 + (mg)2

11.2 b). . . . . . . . . . . . . . . . . . . arctan
(
mRω2 − T

mg

)
11.3 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0(t− t0)

11.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

11.3 c) . . . . . . . . . . . . . . . . . . . . . . . a0
k

[
1 − e−k(t−t0)

]
11.4 a). . . . . . . . . . . . . . . . . . . . . cos(α) #»ex + sin(α) #»ey

11.4 b) . . . . . . . . . . . . . . . . . . − sin(α) #»ex + cos(α) #»ey

11.4 c) . . . . . . . . . . . . . . . . . . . . . cos(α) #»ex + sin(α) #»ey

11.4 d) . . . . . . . . . . . . . . . . . . − sin(α) #»ex + cos(α) #»ey

11.5 a). . . . . . . . . . . . . . . −P sin(α) #»ex − P cos(α) #»ey

11.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N #»ey

11.6 a) . . . . . . . . . . . . . . . . . P cos(θ) #»er − P sin(θ) #»eθ

11.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −T #»er

11.6 c) . . . . . . . . . . . (P cos(θ) − T ) #»er − P sin(θ) #»eθ

11.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P #»ex

11.7 b) . . . . . . . . . . . . . . . −T cos(θ) #»ex − T sin(θ) #»ey

11.7 c) . . . . . . . . . . . (P − T cos(θ)) #»ex − T sin(θ) #»ey

11.8 a) . . . . . . . . .
(

1
2a0t

2 + x0

)
#»ex − v0t

#»ey + z0
#»ez

11.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . a0t
#»ex − v0

#»ey

11.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a0
#»ex

11.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g #»ez

11.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v0
#»ex + gt #»ez

11.9 c). . . . . . . . . . . . (v0t+ x0) #»ex + y0
#»ey + 1

2gt
2 #»ez

11.10 a) . . . . . . . . . . . . . . . . . . . . cos(θ) #»ex + sin(θ) #»ey

11.10 b) . . . . . . . . . . . . . . . . . . − sin(θ) #»ex + cos(θ) #»ey

11.10 c) . . . . . . . . . . . . . . . −θ̇ sin(θ) #»ex + θ̇ cos(θ) #»ey

11.10 d) . . . . . . . . . . . . . . . −θ̇ cos(θ) #»ex − θ̇ sin(θ) #»ey

11.10 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ̇ #»eθ

11.10 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −θ̇ #»er

11.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

11.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . ṙ #»er + rθ̇ #»eθ

11.12 b) . . . . . . . . . . . .
(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ

11.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 N

11.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,46 rad

11.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . (T ′ − T ) cos θ

11.14 b) . . . . . . . . . . . . . . . . . . . . . (T ′ + T ) sin θ − F

11.14 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,17 kN

11.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6 N

11.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 N

11.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P cosα

11.17 b) . . . . . . . . . . . . . . . . . . . . . . −mdv
dt + P sinα

11.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1
2m

11.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g − T2
m

11.18 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g

3
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Corrigés

11.2 a) Pour obtenir F , il faut pouvoir éliminer α. L’astuce consiste à utiliser l’identité suivante :

sin2 α+ cos2 α = 1.

On a
{
F sinα = mRω2 − T
F cosα = mg

, soit F 2(sin2 α + cos2 α) = F 2 =
(
mRω2 − T

)2 + (mg)2. Finalement, l’intensité

d’une force étant positive, on trouve F =
√

(mRω2 − T )2 + (mg)2.
.......................................................................................................................................................

11.2 b) Quand on écrit le système sous la forme
{
F sinα = mRω2 − T
F cosα = mg

, on s’aperçoit qu’il suffit de faire le

rapport des deux équations pour éliminer F . On obtient :

tanα = mRω2 − T
mg

, d’où α = arctan
(
mRω2 − T

mg

)
.

.......................................................................................................................................................
11.3 a) La solution générale s’écrit v(t) = a0t+C1, où C1 est une constante d’intégration que l’on détermine à

l’aide de la condition v(t0) = 0. Cette condition donne C1 = −a0t0, d’où la solution v(t) = a0(t− t0).
.......................................................................................................................................................
11.3 b) La solution générale s’écrit v(t) = Ae−kt. La condition initiale v(t0) = 0 implique A = 0 puisque e−kt > 0

pour tout t. Ainsi la solution est v(t) = 0.
.......................................................................................................................................................
11.3 c) La solution de l’équation homogène est v(t) = Ae−kt. Une solution particulière (constante) est v = a0

k
.

Les solutions sont v(t) = Ae−kt + a0

k
. La condition initiale v(t0) = 0 donne A = −a0

k
ekt0 . Il en découle la solution

générale : v(t) = a0

k

[
1− e−k(t−t0)].

.......................................................................................................................................................
11.4 a)

La composante suivant #»ex correspond au produit scalaire :
#»a · #»ex = 1× cos(α).

De même, la composante suivant #»ey est le produit scalaire
#»a · #»ey = 1× cos(π/2− α) = a sin(α). On peut retrouver ces ré-
sultats géométriquement (cf. ci-contre).

#»ex

#»ey

#»a

α

cosα #»ex

sinα #»ey

.......................................................................................................................................................
11.4 b)

Sur le schéma proposé, −π/2 < α < 0. On peut introduire β tel
que β − α = π/2. La composante suivant #»ex vaut :

bx = #»

b · #»ex = cos(β) = cos(π/2 + α) = − sin(α).

De même, la composante suivant #»ey vaut :

by = #»

b · #»ey = sin(β) = cos(α).

On peut vérifier le résultat pour quelques situations : α = 0, où
#»

b = #»ey ; ou bien α = −π/2, où #»

b = #»ex.

#»ex

#»ey #»

b

α
β

cosβ #»ex

sin β #»ey

.......................................................................................................................................................
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11.4 c)

Il s’agit de la même situation que pour le vecteur #»a mais avec
un angle α orienté comme sur le schéma proposé et donc tel que
−π/2 < α < 0. On a :

cx = #»c · #»ex = cos(α) et cy = #»c · #»ey = sin(α).

On retrouve ces projections à l’aide de la construction ci-contre.

#»ex

#»ey

#»c

α

cosα #»ex

sinα #»ey

.......................................................................................................................................................
11.4 d)

On trouve :

dx = #»

d · #»ex = cos(π/2 + α) = − sin(α)

et
dy = #»

d · #»ey = cos(α).
La construction ci-contre confirme ces projections.

#»ex

#»ey#»

d

α

− sinα #»ex

cosα #»ey

.......................................................................................................................................................
11.5 a) La composante suivant #»ex du poids est Px = #»

P · #»ex = P cos(α + π/2) = −P sin(α). De même, sa
composante suivant #»ey s’écrit Py = #»

P · #»ey = P cos(α+ π) = −P cos(α). Ainsi, le poids s’écrit :
#»
P = −P sin(α) #»ex − P cos(α) #»ey.

.......................................................................................................................................................
11.5 b) Le vecteur #»

N est colinéaire au vecteur unitaire #»ey et de même sens ; on a donc #»
N = N #»ey.

.......................................................................................................................................................
11.6 a) La composante suivant #»er du poids est Pr = #»

P · #»er = P cos(θ). De même, sa composante suivant #»eθ

s’écrit Pθ = #»
P · #»eθ = P cos(α+ π/2) = −P sin(θ). Ainsi, le poids s’écrit :

#»
P = P cos(θ) #»er − P sin(θ) #»eθ.

.......................................................................................................................................................
11.6 b) Le vecteur #»

T est colinéaire au vecteur unitaire #»er et de sens opposé ; on a donc #»
T = −T #»er.

.......................................................................................................................................................
11.7 a) Le poids #»

P est colinéaire et de même sens que le vecteur unitaire #»ex ; on a donc #»
P = P #»ex.

.......................................................................................................................................................
11.7 b) La composante suivant #»ex de la tension du fil #»

T est Tx = #»
T · #»ex = T cos(π − θ) = −T cos(θ).

De même, sa composante suivant #»ey vaut Ty = #»
T · #»ey = T cos(π/2 + θ) = −T sin(θ). Finalement, on trouve :

#»
T = −T cos(θ) #»ex − T sin(θ) #»ey.

.......................................................................................................................................................
11.8 a) Le vecteur position est le vecteur #     »OM = x #»ex + y #»ey + z #»ez, d’où :

#     »OM =
(1

2a0t
2 + x0

)
#»ex − v0t

#»ey + z0
#»ez.

.......................................................................................................................................................
11.8 b) Dans le système de coordonnées cartésiennes, le vecteur vitesse s’écrit :

#»v = ẋ #»ex + ẏ #»ey + ż #»ez = a0t
#»ex − v0

#»ey.

.......................................................................................................................................................
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11.8 c) Dans le système de coordonnées cartésiennes, le vecteur accélération s’exprime en fonction des dérivées
secondes des coordonnées : #»a = ẍ #»ex + ÿ #»ey + z̈ #»ez = a0

#»ex.
.......................................................................................................................................................
11.9 a) D’après le principe fondamental de la dynamique, on a mg #»ez = m #»a , d’où #»a = g #»ez.
.......................................................................................................................................................
11.9 b) L’accélération s’écrit #»a = v̇x

#»ex + v̇y
#»ey + v̇z

#»ez. On en déduit :{
v̇x = 0
v̇y = 0
v̇z = g

donc

{
vx = C1
vy = C2
vz = gt+ C3.

Les conditions initiales imposent C1 = v0, C2 = 0 et C3 = 0. Finalement, on trouve #»v = v0
#»ex + gt #»ez.

.......................................................................................................................................................
11.9 c) Le vecteur vitesse s’écrit #»v = ẋ #»ex + ẏ #»ey + ż #»ez.

Par identification avec l’expression obtenue précédemment, on a :{
ẋ = v0
ẏ = 0
ż = gt

donc


x = v0t+ C4
y = C5

z = 1
2gt

2 + C6.

Les conditions initiales imposent C4 = x0, C5 = y0 et C6 = 0. Finalement, on trouve :

#     »OM = (v0t+ x0) #»ex + y0
#»ey + 1

2gt
2 #»ez.

.......................................................................................................................................................
11.10 a) On a #»er · #»ex = cos(θ) et #»er · #»ey = cos(π/2− θ) = sin(θ), d’où #»er = cos(θ) #»ex + sin(θ) #»ey.
.......................................................................................................................................................
11.10 b) On a #»eθ · #»ex = cos(π/2 + θ) = − sin(θ) et #»eθ · #»ey = cos(θ), d’où #»eθ = − sin(θ) #»ex + cos(θ) #»ey.
.......................................................................................................................................................
11.10 c) Il suffit de dériver le vecteur #»er = cos(θ) #»ex +sin(θ) #»ey, en utilisant le fait que #»ex et #»ey sont des constantes

(vectorielles). On a donc d #»er

dt = d cos(θ)
dt

#»ex + d sin(θ)
dt

#»ey. Ici, θ dépend du temps, par conséquent on a :

d cos(θ)
dt = dθ

dt ×
d cos(θ)

dθ = −θ̇ sin(θ).

De même, on a d sin(θ)
dt = θ̇ cos(θ). Finalement, on trouve :

d #»er

dt = −θ̇ sin(θ) #»ex + θ̇ cos(θ) #»ey.

.......................................................................................................................................................
11.10 d) En partant de #»eθ = − sin(θ) #»ex + cos(θ) #»ey, on trouve :

d #»eθ

dt = −d sin(θ)
dt

#»ex + d cos(θ)
dt

#»ey = −θ̇ cos(θ) #»ex − θ̇ sin(θ) #»ey.

.......................................................................................................................................................
11.11 Le vecteur #     »OM est colinéaire et de même sens que #»er. Sa norme étant égale à r, on a #     »OM = r #»er.
.......................................................................................................................................................
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11.12 a) Il suffit de dériver le vecteur position en utilisant les résultats des exercices précédents. On trouve :

#»v = d #     »OM
dt = dr

dt
#»er + r

d #»er

dt = ṙ #»er + rθ̇ #»eθ.

.......................................................................................................................................................
11.12 b) Dérivons le vecteur vitesse :

#»a = d #»v

dt = dṙ
dt

#»er + ṙ
d #»er

dt + d(rθ̇)
dt

#»eθ + rθ̇
d #»eθ

dt =
(
r̈ − rθ̇2) #»er +

(
2ṙθ̇ + rθ̈

)
#»eθ.

.......................................................................................................................................................
11.13 a) Calculons le carré scalaire :

#»
T 2 = (− #»

F − #»
P )2 = F 2 + P 2 + 2 #»

F · #»
P = 5,

car #»
F · #»

P = 0. Par conséquent, T =
√

5 N2 ≃ 2,2 N.
.......................................................................................................................................................
11.13 b) Une construction géométrique permet de trouver immédiatement l’angle α :

#»
F

#»
P − #»

T

α
tanα = F/P soit α = 0,46 rad.

On peut aussi utiliser les produits scalaires. Par exemple :
#»
T · #»

F = T × F cos(π/2 + α) = −TF sinα.

De plus, compte tenu de l’équilibre des forces, on a :
#»
T · #»

F = (− #»
F − #»

P ) · #»
F = −F 2 − #»

P · #»
F = −F 2.

Il en découle sinα = F/T , soit α = 0,46 rad (c’est-à-dire α = 26°).
.......................................................................................................................................................
11.14 a) On a #»

R = #»
T +

# »

T ′ + #»
F . La composante horizontale de #»

R vaut :

Rx = #»
R · #»ex = #»

T · #»ex︸ ︷︷ ︸
−T cos θ

+
# »

T ′ · #»ex︸ ︷︷ ︸
T ′ cos θ

+ #»
F · #»ex︸ ︷︷ ︸

0

= (T ′ − T ) cos θ.

.......................................................................................................................................................
11.14 b) La composante verticale de #»

R s’écrit :

Ry = #»
R · #»ey = #»

T · #»ey︸ ︷︷ ︸
T sin θ

+
# »

T ′ · #»ey︸ ︷︷ ︸
T ′ sin θ

+ #»
F · #»ey︸ ︷︷ ︸

−F

= (T ′ + T ) sin θ − F.

.......................................................................................................................................................
11.14 c) Résoudre l’équation vectorielle #»

R = #»0 , c’est résoudre le système d’équations suivant :{
(T ′ − T ) cos θ = 0

(T ′ + T ) sin θ − F = 0 soit

{
T ′ = T

T = F

2 sin θ .

Sachant que F = 800 N et θ = 20°, on obtient T = 1,17 kN.
.......................................................................................................................................................

Fiche no 11. Principe fondamental de la dynamique 61



11.15 Le principe fondamental de la dynamique impose m #»g + #»
F = m #»a . En projetant la relation précédente

suivant la verticale descendante, on obtient mg − F = ma, ce qui donne F = m(g − a) = 1,6 N.
.......................................................................................................................................................
11.16 L’homme subit son poids #»

P = m #»g et la force de contact due à l’ascenseur − #»
F (principe des actions

réciproques). Le principe fondamental de la dynamique donne m #»g − #»
F = m #»a . En projetant sur la verticale

ascendante, on obtient ma = −mg + F , soit F = m(a+ g) = 80 kg × 10,8 m · s−2 = 864 N.
.......................................................................................................................................................

11.17 a) Le principe fondamental de la dynamique donne #»
P + #»

fn + #»

ft = m #»a , avec #»a = dv
dt

#»et ( #»et est le vecteur
unitaire orienté suivant le vecteur vitesse ; c’est le vecteur tangent au vecteur vitesse dans la base de Frenet). Si
l’on projette la relation suivant la normale #»en au support, on aboutit à :

#»
P · #»en︸ ︷︷ ︸

P cos(π−α)

+ #»

fn · #»en︸ ︷︷ ︸
fn

+ #»

ft · #»en︸ ︷︷ ︸
0

= m
dv
dt

#»et · #»en︸ ︷︷ ︸
0

,

ce qui donne fn = −P cos(π − α) = P cosα.
.......................................................................................................................................................
11.17 b) En projetant la relation fondamentale de la dynamique suivant la direction tangentielle au support, on

obtient :
#»
P · #»et︸ ︷︷ ︸

P cos(π/2−α)

+ #»

fn · #»et︸ ︷︷ ︸
0

+ #»

ft · #»et︸ ︷︷ ︸
−ft

= m
dv
dt

#»et · #»et︸ ︷︷ ︸
1

,

c’est-à-dire ft = −mdv
dt + P sinα.

.......................................................................................................................................................
11.18 a) Le principe fondamental appliqué au bloc B1 donne 2m #»g + #»

R+ # »
T1 = 2m #»a1. En projetant cette relation

suivant le sens du mouvement, on obtient :

2m #»g · #»ex︸ ︷︷ ︸
0

+ #»
R · #»ex︸ ︷︷ ︸

0

+ # »
T1 · #»ex︸ ︷︷ ︸

T1

= 2m #»a1 · #»ex︸ ︷︷ ︸
a1

soit a1 = T1

2m.

.......................................................................................................................................................
11.18 b) Le principe fondamental appliqué au bloc B2 donne m #»g + # »

T2 = m #»a2. En projetant cette relation suivant
le sens du mouvement, on obtient :

m #»g · #»ey︸ ︷︷ ︸
g

+ # »
T2 · #»ey︸ ︷︷ ︸

−T2

= m #»a2 · #»ey︸ ︷︷ ︸
a2

soit a2 = g − T2

m
.

.......................................................................................................................................................
11.18 c) On a les relations :

a1 = T1

2m et a2 = g − T2

m
.

Multiplions la première relation par 2m, et la deuxième par m, puis additionnons-les. On trouve :

2ma1 +ma2 = T1 +mg − T2.

Comme a1 = a2 et T1 = T2, on obtient 3ma1 = mg, soit a1 = a2 = g/3.
.......................................................................................................................................................
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Fiche no 12. Approche énergétique en mécanique

Réponses

12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mg(ℓ− y)

12.2 b) . . . . . . . . . . . . . . . . . . . . . . mg(x sin(α) −H)

12.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −mgR cos(θ)

12.2 d) . . . . . . . . . . . . . . . . . mgr
(

cos(ψ) − 1
)

+ E0

12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.4 a) . . . . . . . . . . . . . . . . . . . . . 1
2k(y − ℓ0)2 − kℓ0

2

2

12.4 b) . . 1
2k
(

x

cos(β) − ℓ0

)2

− 1
2k
(

L

sin(β) − ℓ0

)2

12.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . E0 + k(x− ℓ0)2

12.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −hℓ

12.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −hRα

12.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . −(2a+ 2b)h

12.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . −(a+ b+ c)h

12.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 − v0
2

2gℓ

12.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . 0,65 rad = 37°

12.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,8 m · s−1

12.8 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,11 m

12.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,0 m

12.9 a) . . . . . . . . . . . . . . . z̈ + α

m
ż + k

m
z = g + kℓ0

m

12.9 b). . . . . . . . . . . . . . . . . . . . . . ζ + α

m
ζ̇ + k

m
ζ = 0

12.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

12.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.10 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

12.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

12.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

12.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
12.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

12.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

12.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

12.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . a , c et d

12.13 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

12.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33,6 m/s
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Corrigés

12.2 a) L’axe est ici orienté vers le bas, on a donc Epp(y) = −mgy +K1. On veut Epp(ℓ) = 0, d’où K1 = mgℓ.
Finalement, on a Epp(y) = mg(ℓ− y).
.......................................................................................................................................................
12.2 b) On peut raisonner de deux manières :

• La coordonnée verticale (axe de #»g ) z est liée à x par z = x sin(α). On a donc Epp = mgx sin(α) +K2.
L’énergie potentielle étant nulle en z = H, on a Epp(x) = mg(x sin(α)−H).

• Dans le repère (O, #»ex,
#»ey), on a #»g = −g sin(α) #»ex − g cosα #»ey.

On en déduit le travail élémentaire pour un déplacement selon x :

δW = −mg sin(α) dx = −d(mgx sin(α) +K2) = −dEpp.

On en déduit que Epp(x) = mgx sin(α) +K2.

L’énergie potentielle devant être nulle en S, qui correspond à x = H

sin(α) , on a K2 = −mgH, d’où le résultat.
.......................................................................................................................................................
12.2 c) Dans la base polaire, l’accélération de la pesanteur s’écrit #»g = g cos(θ) #»er − g sin(θ) #»eθ. Donc, le travail

élémentaire pour un déplacement sur le cercle (selon #»eθ) est :

δW = m #»g · d #     »OM = −mg sin(θ)R dθ = − d(−mgR cos(θ) +K3) = −dEpp.

On a donc Epp(θ) = −mgR cos(θ) +K3 et, comme on veut Epp(π/2) = 0, on a K3 = 0. Ainsi, on a :

Epp(θ) = −mgR cos(θ).

.......................................................................................................................................................
12.2 d) Fixons un axe (Oz) vertical ascendant avec O au centre du cercle. L’énergie potentielle de pesanteur

s’écrit alors Epp = mgz +K4. Or, on a z = r cos(ψ), d’où Epp = mgr cos(ψ) +K4.
La convention choisie (Epp(ψ = 0) = E0) entraîne que :

mgr cos(0) +K4 = E0, d’où K4 = E0 −mgr.

Finalement, on trouve :
Epp = mgr

(
cos(ψ)− 1

)
+ E0.

.......................................................................................................................................................
12.4 a) L’axe est orienté vers le bas, la longueur du ressort s’identifie donc directement à la coordonnée y.

La force de rappel s’écrit #»
F = −k(y−ℓ0) #»ey. On en déduit donc (en calculant le travail élémentaire ou par intégration

directe) que :
Epe(y) = 1

2k(y − ℓ0)2 + Cte.

Or, on veut Epe(y = 0) = 0, d’où Cte = −1
2kℓ0

2. Ainsi, on a :

Epe(y) = 1
2k(y − ℓ0)2 − 1

2kℓ0
2.

.......................................................................................................................................................
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12.4 b) On calcule d’abord la longueur ℓ du ressort en fonction de la coordonnée x. Un peu de trigonométrie

donne cos(β) = x

ℓ
, d’où ℓ = x

cos(β) . Par rapport à la coordonnée ℓ (mesurée le long de l’axe (OA)), l’énergie
potentielle vaut donc :

Epe(ℓ) = 1
2k(ℓ− ℓ0)2 + Cte.

On a donc :

Epe(x) = 1
2k
(

x

cos(β) − ℓ0

)2

+ Cte.

On détermine alors la constante afin d’avoir Epe(A) = 0. Lorsque le point M est en A, la longueur du ressort vaut
ℓ(A) = L

sin(β) . On résout donc :

Epe(ℓ(A)) = 1
2k
(

L

sin(β) − ℓ0

)2

+ Cte = 0 ce qui donne Cte = −1
2k
(

L

sin(β) − ℓ0

)2

.

Finalement, on trouve :

Epe(x) = 1
2k
(

x

cos(β) − ℓ0

)2

− 1
2k
(

L

sin(β) − ℓ0

)2

.

.......................................................................................................................................................
12.4 c) La masse centrale est soumise aux forces de rappel des deux ressorts :

• La longueur du ressort de gauche vaut x. La force exercée par celui-ci sur la masse s’exprime donc comme
# »
Fg = −k(x− ℓ0) #»ex, d’où une énergie potentielle (à une constante près) Ep,g = 1

2k(x− ℓ0)2.

• La longueur du ressort de droite vaut 2ℓ0−x. La force exercée par celui-ci sur la masse s’exprime donc comme
# »
Fd = k(2ℓ0 − x − ℓ0) #»ex = k(ℓ0 − x) #»ex (attention au signe devant k qui doit être cohérent), d’où une énergie
potentielle (à une constante près) Ep,d = 1

2k(ℓ0 − x)2.

En additionnant les deux contributions, et en demandant que Epe(ℓ0) = E0, on obtient alors Epe(x) = E0+k(x−ℓ0)2.
.......................................................................................................................................................
12.5 a) Déterminons le travail élémentaire. On a :

δW = #»
F · d #     »OM = − h

|| #»v ||
#»v · d #     »OM.

Or, par construction, les vecteurs vitesse et déplacement élémentaire sont colinéaires, d’où :

δW = −h dOM.

Par intégration, on a donc :
W =

ˆ
AB
−hdOM = −h

ˆ
AB

dOM = −hℓ.

Les autres cas se calculent semblablement.
.......................................................................................................................................................
12.5 e) Si la force était conservative, son travail ne dépendrait que des points de départ et d’arrivée, et serait

donc nul sur un chemin fermé (points de départ et d’arrivée confondus). Ce n’est pas le cas pour les chemins c) et
d), la force n’est donc pas conservative.
.......................................................................................................................................................
12.6 On applique le théorème de l’énergie cinétique entre le point de départ et le point d’arrêt. L’entraînement

précédent permet d’affirmer que le travail de la force de frottement vaut −hd. On a donc :

∆Ec = 0− 1
2mv0

2 = −hd donc d = mv0
2

2h .

.......................................................................................................................................................
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12.7 a) La masse n’est soumise qu’au poids, force conservative, et à la tension du fil qui ne travaille pas car
elle reste orthogonale au mouvement. L’énergie mécanique se conserve donc entre le point de départ et le point de
rebroussement.
• Au départ, Em = Ec = 1

2mv0
2 (on pose z = 0 pour la position initiale de la masse, et on prend Ep(0) = 0).

• Au moment du rebroussement, Em = Ep = mgz(θ0) = mgℓ(1− cos(θ0)), car on a alors z(θ) = ℓ− ℓ cos(θ).
Ainsi, on a :

1
2mv0

2 = mgℓ(1− cos(θ0)) donc cos(θ0) = 1− v0
2

2gℓ .

.......................................................................................................................................................
12.8 a) En appliquant le théorème de l’énergie mécanique entre le début et la fin de la chute libre, on a :

Em(tfin chute)− Em(tdébut chute) = 1
2mv0

2 −mg(H − ℓ0).

Les forces étant conservatives, l’énergie mécanique est conservée et on a donc :

v0 =
√

2g(H − ℓ0) =
√

2× 9,81 m · s−2 × (2,0 m− 0,30 m) = 5,8 m · s−1.

.......................................................................................................................................................
12.8 b) La masse n’est soumise qu’à des forces conservatives : son poids, ainsi que la force de rappel du ressort.

On peut donc appliquer la conservation de l’énergie mécanique entre la position d’arrivée sur le ressort (z = ℓ0) et
la position d’altitude minimale (z = zm), pour laquelle la vitesse s’annule. On a donc :

1
2mv0

2 +mgℓ0 = mgzm + 1
2k(zm − ℓ0)2.

Ainsi, après calcul, on trouve 1
2kz

2
m + (mg − kℓ0)zm + 1

2kℓ0
2 − 1

2mv0
2 −mgℓ0 = 0.

On ne demande qu’une réponse numérique, on peut donc passer aux valeurs numériques pour simplifier la résolution :

500z2
m − 290,2zm + 25,4 = 0.

Cette équation possède deux solutions, z1 ≈ 0,47 m et z2 ≈ 0,11 m. La première solution correspond à une position
supérieure en altitude à la position initiale, et n’est donc pas celle qui nous intéresse. On retient donc zm = 0,11 m.
.......................................................................................................................................................
12.8 c) La masse n’étant soumise qu’à des forces conservatives, elle revient en x = ℓ0 avec la même vitesse

qu’elle avait en arrivant, à savoir v0. Elle atteint donc une altitude maximale quand sa vitesse s’annule en z = H.
.......................................................................................................................................................
12.9 a) On choisit un axe vertical descendant de manière à pouvoir identifier z à la distance OM, qui est la

longueur du ressort.
Afin de déterminer l’équation différentielle, on souhaite appliquer le théorème de la puissance cinétique. Or :
• la puissance du poids vaut m #»g · #»v = mgż (axe descendant) ;
• la puissance de la force de rappel vaut −k(z − ℓ0) #»ez · #»v = −k(z − ℓ0)ż ;
• la puissance de la force de frottements fluides vaut −α #»v · #»v = −αż2.

Le théorème de la puissance cinétique donne alors :

dEc

dt = d
dt

(1
2mż

2
)

= mżz̈ = mgż − k(z − ℓ0)ż − αż2.

D’où finalement : z̈ + α

m
ż + k

m
z = g + kℓ0

m
.

.......................................................................................................................................................
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12.9 b) On détermine la position d’équilibre en projetant la première loi de Newton sur l’axe vertical descendant :

mg − k(zeq − ℓ0) = 0 donc zeq = ℓ0 + mg

k
.

On obtient zeq > ℓ0, ce qui est physiquement cohérent.
On pose donc ζ = z − zeq. En réinjectant dans l’équation différentielle obtenue précédemment, on obtient :

ζ̈ + α

m
ζ̇ + k

m

(
ζ + ℓ0 + mg

k

)
= g + kℓ0

m
donc ζ̈ + α

m
ζ̇ + k

m
ζ = 0.

On peut également obtenir cette équation en écrivant la force de rappel par rapport à la variable ζ et en en déduisant
l’énergie potentielle associée.
.......................................................................................................................................................
12.10 a) Au voisinage de x = 0+, la fonction énergie potentielle est équivalente à β/x2. Ici, la fonction représentée

par le graphe tend vers −∞ en 0, on a donc nécessairement β < 0.
Pour x→ +∞, la fonction énergie potentielle est équivalente à α/x. Ici, la fonction représentée par le graphe tend
vers 0+ en +∞, on a donc nécessairement α > 0.
Ce potentiel est physiquement impossible car Ep(x → 0+)−→−∞ : l’énergie potentielle n’est pas bornée inférieu-
rement, on pourrait donc théoriquement utiliser ce potentiel pour extraire une quantité infinie d’énergie.
.......................................................................................................................................................
12.11 a) La position d’équilibre stable correspond à l’état qui minimise l’énergie potentielle.

• Déterminons le minimum de l’énergie potentielle Ep(θ) = mgℓ(1− cos(θ)) en cherchant la valeur θeq telle que :

dEp

dθ (θeq) = 0 et d2Ep

dθ2 (θeq) > 0.

La première égalité donne dEp

dθ (θeq) = mgℓ sin(θeq) = 0 et donc θeq ≡ 0 [π].

Finalement, en tenant compte de d2Ep

dθ2 (θeq) > 0, on trouve θeq ≡ 0 [2π].

• On aurait pu remarquer que les minima de mgℓ(1− cos(θ)) correspondent aux maxima de cos(θ), qui sont bien
les θeq ≡ 0 [2π].

.......................................................................................................................................................
12.11 b) On dérive l’énergie potentielle, en écrivant :

dEp

dz = κz + λz3.

L’équation dEp

dz = 0 a alors trois solutions : z1 = 0, z2 =
√
−κ
λ

et z3 = −
√
−κ
λ

.

Il s’agit des positions d’équilibre de ce potentiel.

On dérive une seconde fois afin d’étudier la stabilité. On a d2Ep

dz2 = κ+ 3λz2.

Finalement, on obtient : d2Ep

dz2 (z = z1) = κ > 0

d2Ep

dz2 (z = z2) = κ+ 3λ
(
−κ
λ

)
= −2κ < 0

d2Ep

dz2 (z = z3) = κ+ 3λ
(
−κ
λ

)
= −2κ < 0.

Seule z1 = 0 est une position d’équilibre stable.
.......................................................................................................................................................
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12.11 c) On calcule la dérivée de l’énergie potentielle :

dEp

dx = 2U0βxeβx2
,

qui montre que dEp

dx s’annule pour x = 0, qui est donc une position d’équilibre.

Pour étudier sa stabilité, on dérive une seconde fois :

d2Ep

dx2 = 2U0β(1 + 2βx2)eβx2
,

qui, en x = 0, vaut 2U0β > 0. Cette position d’équilibre est donc bien stable.
.......................................................................................................................................................
12.11 d) On calcule la dérivée de l’énergie potentielle :

dEp

dϕ = 2E0 sin(ϕ− a) cos(ϕ− a).

Ainsi, dEp

dϕ s’annule pour ϕ = a et ϕ = a+ π

2 , qui sont les positions d’équilibre dans l’intervalle [0, π[.

Afin d’étudier leur stabilité, on dérive une seconde fois :

d2Ep

dϕ2 = 2E0(cos2(ϕ− a)− sin2(ϕ− a)).

• On calcule ensuite d2Ep

dϕ2 (ϕ = a) = 2E0. Ce dernier terme étant positif, la position d’équilibre ϕ = a est donc
stable.

• Pour l’autre position d’équilibre, on a d2Ep

dϕ2 (ϕ = a + π/2) = −2E0. Cette dérivée seconde étant négative, la
position d’équilibre ϕ = a+ π/2 est instable.

.......................................................................................................................................................
12.13 d) Le mouvement entre x2 et x3 correspond à un état lié : c’est un mouvement dans un puits de potentiel.

Comme le mouvement est à un degré de liberté, il est également périodique. Cependant, les positions extrêmes
étant éloignées de la position moyenne (d’équilibre x∗

3), ce mouvement n’est pas harmonique.
.......................................................................................................................................................
12.14 On a vu précédemment que les trajectoires correspondant à l’énergie mécanique E3 sont des états de

diffusion, le point matériel peut donc bien s’échapper à l’infini.
Le mouvement du point étant conservatif, on applique la conservation de l’énergie mécanique entre le départ et
« l’arrivée » à l’infini. On a :

E3 = 1
2mv

2
∞ donc v∞ =

√
2E3

m
=
√

2× 1 300 kg ·m2 · s−2

2,3 kg = 33,6 m · s−1.

.......................................................................................................................................................
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Fiche no 13. Moment cinétique

Réponses

13.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

P ∥ cos θ

13.1 b). . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(γ + β)

13.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

R∥ sin(θ + α)

13.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ cos(γ)

13.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(β)

13.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ sin(β)

13.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . #»

P = −∥ #»

P ∥ #»ey

13.2 b). . . . . . . . . . . . . ∥ #»

P ∥(− sin(θ) #»er − cos(θ) #»eθ)

13.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ #»ey

13.2 d) . . . . . . . #»

T = ∥ #»

T ∥(− cos(γ) #»er + sin(γ) #»eθ)

13.2 e) . . . . . . ∥ #»

R∥(cos(θ + α) #»ex + sin(θ + α) #»ey)

13.2 f) . . . . . . . . . . . . . . ∥ #»

R∥(cos(α) #»er + sin(α) #»eθ)

13.2 g). . . . ∥ #»

N∥(− sin(β + γ) #»ex + cos(β + γ) #»ey)

13.2 h) . . . . . . . . . . . . . . ∥ #»

N∥(cos(β) #»er + sin(β) #»eθ)

13.3 a) . . . . . . . . . . . . . . . . . . ∥ #»

P ∥ ∥ #»

R∥ cos(θ + α) #»ez

13.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . −∥ #»

T ∥ sin(γ) #»ez

13.3 c) . . . . . . . . . . . . . . . . . . . . . . . ∥ #»

N∥ cos(γ + β) #»ez

13.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(−7

14
−7

)

13.4 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( 7
−14

7

)

13.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7

13.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7

13.4 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( −6
−33
24

)

13.4 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( −6
−33
24

)

13.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . la Terre

13.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . mr v sin(α) #»ez

13.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 M L2

13.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
12 M L2

13.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5 M R2

13.10 a) . . . . . . . . . . . . . . . . . . . . . . . . −ℓF sinα cosα

13.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

13.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . mgL

2 cosα #»ez

13.11 b) . . . . . . . . . . . . . . . . . . . −mg
(
ℓ− L

2 cosα
)

#»ez

13.11 c) . . . . . . . . . . . . . . . . . . . −mg
(
ℓ− L

2 cosα
)

#»ez

13.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . a

2
#  »eX + a # »eY

13.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . a

2
#  »eX + a

3
# »eY

13.12 c) . . . . . . . . . . . . . . . P (− sinα #  »eX − cosα # »eY )

13.12 d) . . . . . . . . . . . . . . F (− cosα #  »eX + sinα # »eY )

13.12 e) . . . . . . . . . . . . . . . . . . . aF
( sinα

2 + cosα
)

#»ez

13.12 f) . . . . . . . . . . . . . . . . . aP
(
−cosα

2 + sinα
3

)
#»ez

13.12 g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3P − 6F
3F + 2P
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Corrigés

13.1 a) On calcule #»
P · #»eθ = ∥ #»

P ∥ × ∥ #»eθ∥ × cos(π + θ) = −∥ #»
P ∥ cos θ.

.......................................................................................................................................................

13.1 c) On calcule #»
R · #»ey = ∥ #»

R∥ × ∥ #»ey∥ × cos
(
π

2 − (θ + α)
)

= ∥ #»
R∥ sin(θ + α).

.......................................................................................................................................................
13.1 d) On calcule #»

T · #»er = ∥ #»
T ∥ × ∥ #»er∥ × cos(π + γ) = −∥ #»

T ∥ cos(γ).
.......................................................................................................................................................

13.1 f) On calcule #»
N · #»eθ = ∥ #»

N∥ × ∥ #»eθ∥ × cos
(
β − π

2

)
= ∥ #»

N∥ sin(β).
.......................................................................................................................................................
13.3 a) On calcule #»

P ∧ #»
R = −∥ #»

P ∥ #»ey ∧ ∥
#»
R∥(cos(θ + α) #»ex + sin(θ + α) #»ey) = −∥ #»

P ∥ ∥ #»
R∥ cos(θ + α) #»ey ∧ #»ex + #»0 .

.......................................................................................................................................................
13.3 b) On calcule #»

T ∧ #»er = ∥ #»
T ∥(− cos(γ) #»er + sin(γ) #»eθ) ∧ #»er = ∥ #»

T ∥ sin(γ) #»eθ ∧ #»er = −∥ #»
T ∥ sin(γ) #»ez.

.......................................................................................................................................................
13.3 c) On calcule #»ex ∧

#»
N = #»ex ∧ ∥

#»
N∥(− sin(β + γ) #»ex + cos(γ + β) #»ey) = ∥ #»

N∥ cos(γ + β) #»ex ∧ #»ey.
.......................................................................................................................................................

13.4 a) On calcule

(1
2
3

)
∧

(6
5
4

)
=

(2× 4− 3× 5
3× 6− 1× 4
1× 5− 2× 6

)
=

(−7
14
−7

)
.

.......................................................................................................................................................

13.4 b) On calcule

[(6
5
4

)
+

(1
2
3

)]
∧

(1
2
3

)
=

(7
7
7

)
∧

(1
2
3

)
=

(7× 3− 7× 2
7× 1− 7× 3
7× 2− 7× 1

)
=

( 7
−14

7

)
.

On aurait aussi pu voir que, comme on a #»
A ∧ #»

A = #»0 , cela revient à #»
B ∧ #»

A = − #»
A ∧ #»

B.
.......................................................................................................................................................
13.4 c) On a déjà calculé #»

A ∧ #»
B et il suffit de prendre la première coordonnée pour avoir le produit scalaire sur

#»ex, qui vaut alors −7.
.......................................................................................................................................................

13.4 d) On calcule d’abord #»
B ∧ #»ex =

(6
5
4

)
∧

(1
0
0

)
=

(5× 0− 4× 0
4× 1− 6× 0
6× 0− 5× 1

)
=

( 0
4
−5

)
, d’où :

#»
A · ( #»

B ∧ #»ex) =

(1
2
3

)
·

( 0
4
−5

)
= 1× 0 + 2× 4 + 3× (−5) = 8− 15 = −7.

On retrouve le même résultat que précédemment, ce qui correspond à la propriété du produit mixte : si #»a , #»

b et #»c
sont trois vecteurs de R3, alors on a les permutations circulaires #»a · ( #»

b ∧ #»c ) = #»

b · ( #»c ∧ #»a ) = #»c · ( #»a ∧ #»

b ).
.......................................................................................................................................................

13.4 e) On calcule d’abord #»
B ∧ #»

C =

(6
5
4

)
∧

( 0
1
−1

)
=

(5× (−1)− 4× 1
4× 0− 6× (−1)

6× 1− 5× 0

)
=

(−9
6
6

)
. On calcule ensuite :

#»
A ∧ ( #»

B ∧ #»
C) =

(1
2
3

)
∧

(−9
6
6

)
=

( 2× 6− 3× 6
3× (−9)− 1× 6
1× 6− 2× (−9)

)
=

( −6
−33
24

)
.

.......................................................................................................................................................

70 Fiche no 13. Moment cinétique



13.4 f) On calcule séparément #»
A · #»

C =

( 1
2
3

)
·

( 0
1
−1

)
= 1× 0 + 2× 1 + 3× (−1) = −1 et :

#»
A · #»

B =

( 1
2
3

)
·

(6
5
4

)
= 1× 6 + 2× 5 + 3× 4 = 28.

On a alors :

( #»
A · #»

C) #»
B − ( #»

A · #»
B) #»

C = (−1)×

(6
5
4

)
− 28×

( 0
1
−1

)
=

( −6
−33
24

)
.

On retrouve le même résultat que précédemment, ce qui correspond à la propriété du double produit vectoriel : si
#»a , #»

b et #»c sont trois vecteurs de R3, alors on a #»a ∧ ( #»

b ∧ #»c ) = ( #»a · #»c ) #»

b − ( #»a · #»

b ) #»c .
.......................................................................................................................................................
13.5 Commençons par tout remettre dans les bonnes unités pour pouvoir calculer le produit m× r × v, qui

correspond au moment cinétique puisque le rayon vecteur est bien perpendiculaire à la vitesse pour une orbite
circulaire.

Masse en kg Distance en m Vitesse en m · s−1 Moment cinétique en kg ·m2 · s−1

Mercure 3× 1023 6× 1010 5× 104 3× 6× 5× 1037 = 9× 1038

Vénus 5× 1024 1,1× 1011 3,5× 104 5× 1,1× 1039 × 7
2 ≈ 2× 1040

Terre 6× 1024 1,5× 1011 3× 104 6× 3
2 × 3× 1039 = 2,7× 1040

Mars 6× 1023 2,3× 1011 2,4× 104 ⩽ 6× 1038 × 5
2 ×

5
2 ≈ 3,7× 1039

C’est bien la Terre qui gagne finalement le concours du plus grand moment cinétique.
.......................................................................................................................................................
13.6 Le vecteur vitesse s’écrit dans la base ( #»er,

#»eθ) comme #»v = v(cosα #»er + sinα #»eθ). Le produit vectoriel
avec #     »OM s’écrit alors :

#     »OM ∧m #»v = r #»er ∧mv(cosα #»er + sinα #»eθ) = mr v sinα #»er ∧ #»eθ.

.......................................................................................................................................................
13.7 On calcule :

I∆ = ρ

ˆ L

0
x2 dx×

ˆ e

0
dy ×

ˆ h

0
dz

= M

Lhe

ˆ L

0
x2 dx× e× h

= M

L

ˆ L

0
x2 dx

=
[
M

L

x3

3

]L

0
= 1

3 ML2.

.......................................................................................................................................................

13.8 On calcule I∆ =
ˆ L/2

−L/2

M

L
x2 dx =

[
M

L

x3

3

]L/2

−L/2
= M

L
× 2 L

3/8
3 = 1

12 ML2.

.......................................................................................................................................................
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13.9 On calcule les trois intégrales indépendamment. On a bien sûr
ˆ 2π

0
dφ = 2π et

ˆ R

0
r4 dr = R5

5 . Reste

l’intégrale sur θ qui peut se résoudre avec un changement de variable en u = cos θ (qui donne du = − sin θ dθ) :
ˆ π

0
sin3 θ dθ =

ˆ π

0
sin θ (1− cos2 θ) dθ =

ˆ −1

1
−(1− u2) du =

[
u− u3

3

]1

−1
= 4

3 .

Finalement, on obtient I∆ = M
4
3π R

3 ×
R5

5 ×
4
3 × 2π = 2

5 M R2.
.......................................................................................................................................................
13.10 a) D’une part, on commence par déterminer l’expression du vecteur #»

F dans la base ( #»ex,
#»ey). On a ici, en

notant F la norme du vecteur : #»
F = F (cosα #»ex − sinα #»ey).

D’autre part, en notant M le point d’action de #»
F , on a #     »OM = ℓ sinα #»ey. On peut alors calculer :

#      »MO( #»
F ) = #     »OM ∧ #»

F = ℓ sinα #»ey ∧ F (cosα #»ex − sinα #»ey) = ℓF sinα cosα (− #»ez).

.......................................................................................................................................................

13.11 a) Dans cette configuration, le bras de levier vaut L2 cosα et le point fait tourner dans le sens trigonomé-

trique autour de A, de sorte que #     »MA( #»
P ) = mgL

2 cosα #»ez.
.......................................................................................................................................................
13.11 b) Cette fois-ci, le poids fait tourner dans le sens horaire autour de O avec un bras de levier complémentaire

du précédent de ℓ− L

2 cosα, d’où le résultat.
.......................................................................................................................................................
13.11 c) Même chose que précédemment, I et O étant à la verticale l’un de l’autre.
.......................................................................................................................................................
13.12 a) On décompose #   »OB = # »OI + # »IB = a

2
#  »eX + a # »eY .

.......................................................................................................................................................
13.12 b) On décompose #    »OG = # »OI + # »IG = a

2
#  »eX + a

3
# »eY .

.......................................................................................................................................................

13.12 c) On a #»
P = ( #»

P · #  »eX) #  »eX + ( #»
P · # »eY ) # »eY = P

[
cos
(
π

2 + α
)

#  »eX + cos(π + α) # »eY

]
= P (− sinα #  »eX − cosα # »eY ).

.......................................................................................................................................................

13.12 d) On a #»
F = ( #»

F · #  »eX) #  »eX + ( #»
F · # »eY ) # »eY = F

[
cos(π + α) #  »eX + cos

(3π
2 + α

)
# »eY

]
= F (− cosα #  »eX + sinα # »eY ).

.......................................................................................................................................................
13.12 g) Pour qu’il y ait équilibre, la somme des deux moments doit s’annuler. Les deux étant suivant #»ez, on doit

avoir :
aF
( sinα

2 + cosα
)

+ aP
(
−cosα

2 + sinα
3

)
= 0.

En divisant par a cosα, il vient :
F tanα

2 + F − P

2 + P tanα
3 = 0.

On obtient donc :
tanα =

P
2 − F
F
2 + P

3
= 3P − 6F

3F + 2P .

.......................................................................................................................................................
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Fiche no 14. Champ électrique

Réponses

14.1 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
a2 + y2

14.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a√
a2 + y2

14.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y√
a2 + y2

14.1 d) . . . . . . . . . . . . . . . . . ∥ #»

F ∥√
a2 + y2

(−a #»ex + y #»ey)

14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

14.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»ey

14.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ex

14.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»ex

14.3 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ey

14.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

14.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . qV0

14.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√

2qV0
m

14.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
√
qV0
2m

14.4 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v(a)
2

14.5 a) . . . . . . . . . . . . . . . . . . . . . . . . .
√

(x− a)2 + y2

14.5 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x2 + y2

14.5 c) . . . . . . . . . . . . . . . . . . . . . . . .
√
r2 − 2ax+ a2

14.5 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r cos(θ)

14.5 e) . . . . . . . . . . . . . . . . . .
√
r2 − 2ar cos(θ) + a2

14.5 f) . . . . . . . . . . . . . 1
4πε0

q√
r2 − 2ar cos(θ) + a2

14.5 g) . . . . . . . . . . . . . . . . . . . . . . . . .
√

(x+ a)2 + y2

14.5 h) . . . . . . . . . . . . . . . . . . . . . . . .
√
r2 + 2ax+ a2

14.5 i) . . . . . . . . . . . . . . . . . . .
√
r2 + 2ar cos(θ) + a2

14.5 j) . . . . . . . . . . . − 1
4πε0

q√
r2 + 2ar cos(θ) + a2

14.5 k) . . . .

1
4πε0

q
( 1√

r2 − 2ar cos(θ) + a2

− 1√
r2 + 2ar cos(θ) + a2

)

14.6 a) . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

r

(
1 − 2a

r

)

14.6 b). . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa cos(θ)
r2

14.6 c) . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa

r2

(
1 − 1

2θ
2
)

14.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

qa

r2

14.6 e) . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

r
ln
(

1 + r2

a2

)

14.7 a) . . . . . . . . 1
4πε0

q

r2 (sin(2θ) #»er − 2 cos(2θ) #»eθ)

14.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 8
4πε0

q

a2
#»eθ

14.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . 2,7 · 105 V.m−1

14.8 a) . . . . . . . . . . 1
4πε0

qa

r3 (2 cos(θ) #»er + sin(θ) #»eθ)

14.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4πε0

q

a2
#»eθ

14.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . 3,4 · 104 V.m−1

14.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2E0d
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14.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3E0d

14.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3πE0d

14.9 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E0de
−1

14.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3πR

3ρ0

14.10 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5πR

3ρ0

14.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 R

3ρ0

14.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3πR2h

14.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5πR

2h

14.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
15R

2h

Corrigés

14.1 a) Dans le triangle rectangle OAB, on a BA =
√
a2 + y2.

.......................................................................................................................................................
14.1 b) Dans le triangle rectangle OAB, on a cos(α) = a

BA = a√
a2 + y2

.

.......................................................................................................................................................
14.1 c) Dans le triangle rectangle OAB, on a sin(α) = y

BA = y√
a2 + y2

.

.......................................................................................................................................................
14.1 d) La composante suivant #»ex correspond au produit scalaire :

Fx = #»
F · #»ex = ∥ #»

F ∥ cos(α+ π) = −∥ #»
F ∥ cos(α).

De même, la composante suivant #»ey correspond à :

Fy = #»
F · #»ey = ∥ #»

F ∥ cos
(
−π2 + α

)
= ∥ #»

F ∥ sinα.

Ainsi, on a :
Fx = −∥ #»

F ∥ a√
a2 + y2

et Fy = ∥ #»
F ∥ y√

a2 + y2
.

Finalement, on a :
#»
F = Fx

#»ex + Fy
#»ey = ∥ #»

F ∥√
a2 + y2

(−a #»ex + y #»ey).

.......................................................................................................................................................
14.2 Une force attractive a une valeur négative, la charge qui attire le plus est donc la charge avec la force

négative la plus importante en valeur absolue, soit la réponse c . En effet, on a :

a F/C = 2,00 C
(4,00 · 10−3 m)2 = 1,25 · 105 C.m−2

b F/C = −5,0 · 103 C
(0,4 m)2 = −3,1 · 104 C.m−2

c F/C = −3,0 · 10−3 C
(200 · 10−6 m)2 = −7,5 · 104 C.m−2

d F/C = 100 C
(20 · 10−2 m)2 = 2,5 · 103 C.m−2

.......................................................................................................................................................
14.3 a) On a q0q1 = q2 et q0q2 = q2 donc #»

F 1/0 = −Fx
#»ex + Fy

#»ey et #»
F 2/0 = Fx

#»ex + Fy
#»ey. Ainsi, la somme des

deux forces est #»
F = 2Fy

#»ey.
.......................................................................................................................................................
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14.3 b) On a q0q1 = q2 et q0q2 = −q2 donc #»
F 1/0 = −Fx

#»ex + Fy
#»ey et #»

F 2/0 = −Fx
#»ex − Fy

#»ey. Ainsi, la somme
des deux forces est #»

F = −2Fx
#»ex.

.......................................................................................................................................................
14.3 c) On a q0q1 = −q2 et q0q2 = q2 donc #»

F 1/0 = Fx
#»ex − Fy

#»ey et #»
F 2/0 = Fx

#»ex + Fy
#»ey. Ainsi, la somme des

deux forces est #»
F = 2Fx

#»ex.
.......................................................................................................................................................
14.3 d) On a q0q1 = −2q2 et q0q2 = −2q2 donc #»

F 1/0 = Fx
#»ex − Fy

#»ey et #»
F 2/0 = −Fx

#»ex − Fy
#»ey. Ainsi, la somme

des deux forces est #»
F = −2Fy

#»ey.
.......................................................................................................................................................
14.4 a) Comme V0 est homogène à un potentiel électrique, l’argument entre parenthèses doit être sans dimension,

ce qui est le cas dans l’expression :

V (x) = V0

(
1−

(
x

a

)2
)
.

.......................................................................................................................................................

14.4 b) En x = 0, la vitesse est nulle donc : Cte = 1
2mv

2(0) + qV (0) = qV

(
1−

(0
a

)2
)

= qV0.
.......................................................................................................................................................
14.4 c) On a :

qV0 = 1
2mv

2(a) + qV (a) = 1
2mv

2(a) + qV

(
1−

(
a

a

)2
)

= 1
2mv

2(a).

Donc on a v(a) =
√

2qV0

m
.

.......................................................................................................................................................
14.4 d) On a :

qV0 = 1
2mv

2
(
a

2

)
+ qV0

(
a

2

)
= 1

2mv
2
(
a

2

)
+ qV0

(
1−

(
a

2a

)2
)

= 1
2mv

2
(
a

2

)
+ 3

4qV0.

Donc, on a :
1
2mv

2
(
a

2

)
= 1

4qV0 et donc v
(
a

2

)
=
√
qV0

2m .

.......................................................................................................................................................
14.4 e) On a :

v
(
a

2

)
=
√
qV0

2m =
√

2qV0

4m = 1
2

√
2qV0

m
= v(a)

2 .

.......................................................................................................................................................

14.5 a) Dans le triangle xBM, on a BM =
√

(x− a)2 + y2.
.......................................................................................................................................................
14.5 b) Dans le triangle xOM, on a r2 = x2 + y2.
.......................................................................................................................................................
14.5 c) En utilisant l’expression de r2 en fonction de x, y, on a :

BM =
√

(x− a)2 + y2 =
√
x2 + y2 − 2ax+ a2 =

√
r2 − 2ax+ a2.

.......................................................................................................................................................
14.5 d) Dans le triangle xOM, on a cos(θ) = x

r
et donc x = r cos(θ).

.......................................................................................................................................................
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14.5 e) En utilisant l’expression de x en fonction de r, θ, on peut écrire :

BM =
√
r2 − 2ax+ a2 =

√
r2 − 2ar cos(θ) + a2.

.......................................................................................................................................................
14.5 f) En utilisant les expressions de V1(M) et de BM en fonction de r, a, θ, on a :

V1(M) = 1
4πε0

q1

BM = 1
4πε0

q√
r2 − 2ar cos(θ) + a2

.

.......................................................................................................................................................

14.5 g) Dans le triangle xCM, on a CM =
√

(x+ a)2 + y2.
.......................................................................................................................................................
14.5 h) En utilisant l’expression de r2 en fonction de x, y, on a :

CM =
√

(x+ a)2 + y2 =
√
x2 + y2 + 2ax+ a2 =

√
r2 + 2ax+ a2.

.......................................................................................................................................................
14.5 i) En utilisant l’expression de x en fonction de r, θ, on a CM =

√
r2 + 2ax+ a2 =

√
r2 + 2ar cos(θ) + a2.

.......................................................................................................................................................
14.5 j) En utilisant les expressions de V2(M) et CM en fonction de r, a, θ, on a :

V2(M) = 1
4πε0

q2

CM = − 1
4πε0

q√
r2 + 2ar cos(θ) + a2

.

.......................................................................................................................................................
14.5 k) En utilisant les expressions de V1(M) et V2(M), on trouve :

V (M) = V1(M) + V2(M) = 1
4πε0

q

(
1√

r2 − 2ar cos(θ) + a2
− 1√

r2 + 2ar cos(θ) + a2

)
.

.......................................................................................................................................................

14.6 a) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a V
(
a

r

)
≈ 1

4πε0

q

r

(
1− 4a

2r

)
= 1

4πε0

q

r

(
1− 2a

r

)
.

.......................................................................................................................................................
14.6 b) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a :

V
(
a

r

)
≈ 1

4πε0

q

r

(
1 + a

2r cos(θ)−
(

1− a

2r cos(θ)
))

= 1
4πε0

qa cos(θ)
r2 .

.......................................................................................................................................................

14.6 c) À l’ordre 2, on a cos(θ) ≈ 1− 1
2θ

2. Ainsi, on a V (θ) ≈ 1
4πε0

qa

r2

(
1− 1

2θ
2
)

.
.......................................................................................................................................................

14.6 d) À l’ordre 1, on a ln(1 + x) ≈ x. Ainsi, on a V
(
a

r

)
≈ 1

4πε0

q

r

a

r
= 1

4πε0

qa

r2 .
.......................................................................................................................................................
14.6 e) À l’ordre 1, on a (1 + x)α ≈ 1 + αx. Ainsi, on a :

V
(
a

r

)
≈ 1

4πε0

q

r
ln

(
1 + 2a2

r2 + 1
1 + 2a2

r2 − 1

)
= 1

4πε0

q

r
ln

(
2 + 2a2

r2

2a2

r2

)
= 1

4πε0

q

r
ln
(

1 + r2

a2

)
.

.......................................................................................................................................................
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14.7 a) On calcule :

#»
E(M) = − ∂

∂r

(
1

4πε0

q sin(2θ)
r

)
#»er −

1
r

∂

∂θ

(
1

4πε0

q sin(2θ)
r

)
#»eθ

= − 1
4πε0

q

(
sin(2θ) ∂

∂r

(1
r

)
#»er + 1

r2
∂ sin(2θ)

∂θ
#»eθ

)
= 1

4πε0

q

r2 (sin(2θ) #»er − 2 cos(2θ) #»eθ).

.......................................................................................................................................................

14.7 b) Pour M
(
r = a

2 , θ = π
)

, le champ est #»
E(M) = 1

4πε0

q(
a
2

)2 (sin(2π) #»er − 2 cos(2π) #»eθ) = − 8
4πε0

q

a2
#»eθ.

.......................................................................................................................................................
14.7 c) On a :

∥ #»
E(M)∥ = 8

4πε0

q

a2 = 8
4π × 8,85 · 10−12 C.V−1.m−1

6,0 · 10−11 C
(4,0 · 10−3 m)2 = 2,7 · 105 V.m−1.

.......................................................................................................................................................
14.8 a) On calcule :

#»
E(M) = − ∂

∂r

(
1

4πε0

qa cos(θ)
r2

)
#»er −

1
r

∂

∂θ

(
1

4πε0

qa cos(θ)
r2

)
#»eθ

= − 1
4πε0

qa

(
cos(θ) ∂

∂r

( 1
r2

)
#»er + 1

r3
∂ cos(θ)
∂θ

#»eθ

)
= 1

4πε0

qa

r3 (2 cos(θ) #»er + sin(θ) #»eθ).

.......................................................................................................................................................

14.8 b) Pour M
(
r = a, θ = π

2

)
, le champ est :

#»
E(M) = 1

4πε0

qa

a3

(
2 cos

(
π

2

)
#»er + sin

(
π

2

)
#»eθ

)
= 1

4πε0

q

a2
#»eθ.

.......................................................................................................................................................
14.8 c) On a :

∥ #»
E(M)∥ = 1

4πε0

q

a2 = 1
4π × 8,85 · 10−12 C.V−1.m−1

6,0 · 10−11 C
(4,0 · 10−3 m)2 = 3,4 · 104 V.m−1.

.......................................................................................................................................................

14.9 a) On a V (0) =
ˆ d

0
E0

(
1− x

d

)
dx = E0

[
−d2

(
1− x

d

)2
]d

0
= 1

2E0d.

.......................................................................................................................................................

14.9 b) On a V (0) =
ˆ d

0
E0

(
1− x

d

)2
dx = E0

[
−d3

(
1− x

d

)3
]d

0
= 1

3E0d.

.......................................................................................................................................................

14.9 c) On a V (0) =
ˆ d

0
E0 sin

(3π
2
x

d

)
dx = E0

[
− 2d

3π cos
(3π

2
x

d

)]d

0
= 2

3πE0d.
.......................................................................................................................................................

14.9 d) On a V (0) =
ˆ d

0
E0
(
1− e−x/d

)
dx = E0

[
x
]d

0
− E0

[
− de−x/d

]d

0
= E0de−1.

.......................................................................................................................................................
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14.10 a) On calcule :

Q =
ˆ 2π

0

ˆ π

0

ˆ R

0
2ρ0r

2 sin(θ) dr dθ dφ

= 2ρ0

ˆ 2π

0
dφ
ˆ π

0
sin(θ) dθ

ˆ R

0
r2 dr = 2ρ0

[
φ
]2π

0
×
[
− cos(θ)

]π

0
×
[
r3

3

]R

0

= 2ρ0(2π − 0)(− cosπ + cos 0)
(
R3

3 −
0
3

)
= 2ρ0 × 2π × 2× R3

3 = 8
3πR

3ρ0.

.......................................................................................................................................................
14.10 b) On calcule :

Q = 2
ˆ 2π

0
dφ
ˆ π

0
sin(θ) dθ

ˆ R

0

(
r

R

)2
ρ0r

2 dr = 2ρ0 × 2π × 2×
ˆ R

0

r4

R2 dr

= 8ρ0π

[
1
5
r5

R2

]R

0
= 8π

(
1
5
R5

R2 −
1
5

0
R2

)
ρ0 = 8

5πR
3ρ0.

.......................................................................................................................................................
14.10 c) On calcule :

Q = 2
ˆ 2π

0
sin
(
φ

2

)
ρ0 dφ

ˆ π

0
sin(θ) dθ

ˆ R

0

(
r

R

)2
r2 dr = 2ρ0 ×

[
−2 cos φ2

]2π

0
× 2× 1

5R
3

= 4
5R

3(−2 cosπ + 2 cos 0)ρ0 = 4
5R

3(2 + 2)ρ0 = 16
5 R

3ρ0.

.......................................................................................................................................................
14.11 a) On calcule :

Q =
ˆ h

0

ˆ 2π

0

ˆ R

0
3r dr dθ dz = 3

ˆ h

0
dz
ˆ 2π

0
dθ
ˆ R

0
r dr = 3

[
z
]h

0
×
[
θ
]2π

0
×
[
r2

2

]R

0

= 3(h− 0)(2π − 0)
(
R2

2 − 0
)

= 3πR2h.

.......................................................................................................................................................
14.11 b) On calcule :

Q = 2
ˆ h

0
dz
ˆ 2π

0
dθ
ˆ R

0

(
r

R

)3
r dr = 2× h× 2π

ˆ R

0

r4

R3 dr

= 4πh
[

1
5
r5

R3

]R

0
= 4πh

(
1
5
R5

R3 −
1
5

0
R3

)
= 4

5πR
2h.

.......................................................................................................................................................
14.11 c) On calcule :

Q = 2
ˆ h

0

(
z

h

)2
dz
ˆ 2π

0
sin
(
θ

2

)
dθ
ˆ R

0

(
r

R

)3
r dr = 2× 1

5R
2
[

1
3
z3

h2

]h

0

[
−2 cos θ2

]2π

0

= 2
5R

2
(

1
3
h3

h2 −
1
3

0
h2

)
(−2 cosπ + 2 cos 0) = 2

5R
2 × 1

3h× 4 = 8
15R

2h.

.......................................................................................................................................................
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Fiche no 15. Particule dans un champ électromagnétique

Réponses

15.1 a) . . . . . . . . . 6,3 × 1018 eV

15.1 b) . . . . . . . . . . . . . . . 1,55 eV

15.1 c) . . . . . . . . . 5,0 × 10−19 J

15.1 d) . . . . . . . . . . . . . . . . violet

15.2 . . . . . . . . . . . . . . . . . . . . . tau

15.3 a) . . . . . . . . . . . . . . . . . . . b

15.3 b) . . . . . . . . . . . . . . . . . . . a

15.4 a) . . . . . . . . . . . . −Ex+ C

15.4 b) . . . . . . . . . . . . . . . α

r
+ C

15.4 c) . . . . . . . . . −β ln(r) + C

15.4 d). . . . . . . . . . . . −γxy + C

15.5 a) . . . . . . . . . . . . . . . . . qE #»ey

15.5 b) . . . . . . . . . . . . . . . |qE| #»ex

15.5 c) . qE
(

cos(β) #»ey

− sin(β) #»ex

)

15.6 a) . . . . . . . . . . . . . . |q|vB #»ey

15.6 b) . . . . . . . . . qvB cos(α) #»ez

15.6 c) . −qvB
(

cos(α) #»ex

+ sin(α) #»ey

)
15.7 a) . . . . . . . . . . . . . . . . . . . . . 0

15.7 b). . . . . . . . . . . . . . . . . . qEv

15.7 c) . . . . . . . . . . . . . 3
√

2
2 qEv

15.7 d) . . . . . . . . . . . . . . . −qEv

2

15.8 a) . . . . . . . . . . . . . .
√

3mv0
qE

15.8 b) . . . . . . . . . . . . . .
√

3mv0
qE

15.8 c) . . . . . . . . . . . . . . . . . . . . π

3

15.9 a) . . . . . . . . . . . . . . . 1,5 MV

15.9 b). . . . . . . . . . . . b et c

15.9 c) . . . . . . . . . . . . . . . . . . . a

15.9 d) . . . . . . . . . . . . . . . . . nqU

15.9 e) . . . . . . . . . . . . . . . . . . . . . 5

15.10 a). . . . . . . . . . . . q

m
#»v ∧ #»

B

15.10 b) . . . . . . . . . . . . . . . Rθ̇ #»eθ

15.10 c) . . . . . . . . . . . . . qRBθ̇ #»er

15.10 d) . . . . . . . Rθ̈ #»eθ −Rθ̇2 #»er

15.10 e) . . . . . . . . . . . . . . . . mv0
|q|B

15.10 f) . . . . . . . . . . . . . . 2π m

|q|B

15.11 a) . . . . . . . q(E − v0B) #»ey

15.11 b) . . . . . . . . . . . . . v0 = E

B

Corrigés

15.1 a) On a 1 eV = 1,6× 10−19 J donc 1 J = 1/1,6× 10−19eV = 6,3× 1018 eV.
.......................................................................................................................................................
15.1 b) On a 2,48× 10−19 J = 2,48× 10−19 J× 6,3× 1018 eV/J = 1,55 eV.
.......................................................................................................................................................
15.1 c) On a 3,1 eV = 3,1 eV× 1,6× 10−19 J/eV = 5,0× 10−19 J.
.......................................................................................................................................................
15.1 d) On peut comparer les énergies en eV : Eviolet = 3,1 eV > 1,55 eV = Erouge.
.......................................................................................................................................................
15.2 On a 1 erg = 1 g · cm2 · s−2 = 10−3 ×

(
10−2)2kg ·m2 · s−2 = 1× 10−7 J.

Avec c = 3,00× 108 m · s−1, la masse de kaon peut s’écrire, en kg :

mkaon = 7,90× 10−11 J(
3,00× 108 m · s−1)2 = 8,78× 10−28 kg.
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Comme 1 eV = 1,6× 10−19 J, on a :

mtau = 1 777× 106 × 1,6× 10−19 J(
3,00× 108 m · s−1)2 = 3,16× 10−27 kg.

C’est donc la particule tau la plus massique.
.......................................................................................................................................................
15.3 a) Le champ est d’autant plus intense en norme que les équipotentielles sont proches : pour un même

déplacement #»dℓ, la variation du potentiel électrique est plus importante.
.......................................................................................................................................................
15.3 b) Le champ électrique est orienté dans le sens des potentiels décroissants et orthogonal aux équipotentielles.

Le champ est donc orienté vers le haut à droite.
.......................................................................................................................................................
15.4 a) En effet, on commence par trouver dV (M) = −E dx = d(−Ex+ C).
.......................................................................................................................................................

15.4 b) En effet, on commence par trouver dV (M) = −αdr
r2 = d

(
α

r
+ C

)
.

.......................................................................................................................................................

15.4 c) En effet, on commence par trouver dV (M) = −β dr
r

= d(−β ln(r) + C).
.......................................................................................................................................................
15.4 d) En effet, on commence par trouver dV (M) = −γ(y dx+ xdy) = d(−γxy + C).
.......................................................................................................................................................
15.5 a) La force est indépendante de la vitesse. On trouve #»

F L,électrique = q
#»
E = qE #»ey.

.......................................................................................................................................................
15.5 b) On trouve #»

F L,électrique = q
#»
E = |qE| #»ex.

.......................................................................................................................................................
15.5 c) On trouve #»

F L,électrique = q
#»
E = qE(cosβ #»ey − sin β #»ex) avec β l’angle orienté (β < 0).

.......................................................................................................................................................

15.6 b) On trouve qvB sin
(
π

2 − α
)

#»ez = qvB cos(α) #»ez.
.......................................................................................................................................................
15.7 a) La puissance est P = #»

F · #»v = q
#»
E · #»v = qEvx avec vx la composante de la vitesse suivant #»ex (vx = #»v · #»ex).

On a donc PA = 0.
.......................................................................................................................................................

15.7 b) De même, on calcule PB = 2 sin
(
π

6

)
qEv = qEv.

.......................................................................................................................................................

15.7 c) De même, on calcule PC = 3 cos
(
π

4

)
qEv = 3

√
2

2 qEv.
.......................................................................................................................................................

15.7 d) De même, on calcule PD = − cos
(
π

3

)
qEv = −qEv2 .

.......................................................................................................................................................

15.8 a) Comme t0 est l’instant où la norme de la vitesse est double, on a 4v2
0 = v2

0 +
(
qE

m
t0

)2
, donc t0 =

√
3mv0

qE
.

.......................................................................................................................................................
15.8 b) L’énergie cinétique quadruple lorsque la vitesse double. On a donc t0 = t1.
.......................................................................................................................................................
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15.8 c) À l’instant t = t0 = t1, la vitesse peut s’écrire :

#»v = v0
#»ex +

√
3v0

#»ey = 2v0

(
1
2

#»ex +
√

3
2

#»ey

)
= 2v0

(
cos
(
π

3

)
#»ex + sin

(
π

3

)
#»ey

)
.

.......................................................................................................................................................
15.9 a) On a Umax = Emaxd = 3× 107 V ·m−1 × 5,0× 10−2 m = 1,5 MV.
.......................................................................................................................................................
15.9 b) L’énergie en sortie est Ec(S) = qUmax = 1,5 MeV = 2,4× 10−13 J.
.......................................................................................................................................................
15.9 c) La récurrence de la suite est de la forme Ec,n = Ec,n−1 + qU . C’est une suite arithmétique.
.......................................................................................................................................................

15.9 e) Déjà, on a : nqU ⩾
1
2m
(
c

10

)2
⇐⇒ n ⩾

mc2

200qU . Comme
⌈
mc2

200qU

⌉
= 5, on en déduit qu’il faut au

moins 5 condensateurs.
.......................................................................................................................................................
15.10 a) Les forces s’appliquant à la particule sont le poids et la force de Lorentz, mais on néglige le poids. Par

ailleurs, il n’y a pas de champ électrique, donc m #»a = q #»v ∧ #»
B d’où #»a = q

m
#»v ∧ #»

B.
.......................................................................................................................................................
15.10 b) Le mouvement est circulaire. Donc, en coordonnées polaires, on a #    »CM = R #»er. Donc, #»v = Rθ̇ #»eθ.
.......................................................................................................................................................
15.10 c) On peut maintenant calculer le produit vectoriel #»

F L = q #»v ∧ #»
B = qRθ̇ #»eθ ∧B #»ez = qRBθ̇ #»er.

.......................................................................................................................................................
15.10 d) On déduit de la vitesse #»a = Rθ̈ #»eθ −Rθ̇2 #»er.
.......................................................................................................................................................
15.10 e) On résout la question et on représente la situation.

En utilisant le principe fondamental de la dynamique et en projetant sur
les axes #»er et #»eθ : {

−Rθ̇2 = q

m
RBθ̇

Rθ̈ = 0.

En utilisant le fait que Rθ̇2 = v2
0
R

et Rθ̇ = v0, on obtient, d’après la première

ligne, −v
2
0
R

= q

m
Bv0. Ainsi, on trouve R = −mv0

qB
. Comme q < 0, on a

|q| = −q et on a donc R = mv0

|q|B .

#»er#»eθ

#»v 0

⊙ #»
B

C

.......................................................................................................................................................

15.10 f) Le périmètre du cercle parcouru vaut L = 2πR et donc T = 2πR
v0

= 2πmv0

|q|B
1
v0

= 2π m

|q|B .
.......................................................................................................................................................
15.11 a) L’expression générale de la force de Lorentz est #»

F L = q( #»
E + #»v ∧ #»

B), soit ici :

#»
F L = q(E #»ey + v0

#»ex ∧B #»ez) = q(E − v0B) #»ey.

.......................................................................................................................................................
15.11 b) Pour que le mouvement soit rectiligne uniforme, il faut que le vecteur accélération soit nul. D’après le

principe fondamental de la dynamique, il faut donc que la force exercée soit nulle, soit q(E−v0B) #»ey = #»0 ⇒ v0 = E

B
.

.......................................................................................................................................................
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Fiche no 16. Champ magnétique

Réponses

16.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

16.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oui

16.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

16.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0I

2πd tan(α)

16.3 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,8 µT

16.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π

2B0R
2

16.6 a) . . . . . . . . . . . . . . . . . . . . µ0Ia

2π ln
(
D + a/2
D − a/2

)

16.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ϕ ≈ µIa2

2πD

16.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nul

16.7 a) . . . . . . . . . B0(1 + cos(α)) #»ex +B0 sin(α) #»ey

16.7 b) . . . . . . . . . . . . . . . . . . . . . . B0
√

2(1 + cos(α))

16.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34,6 mT

16.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

cos(θ)

16.8 b) . . . . . . . . . . . . . . . . . . . − sin(θ) #»ex + cos(θ) #»ey

16.8 c) . . . . . . . . . . . . . . . . . . . − sin(θ) #»ex − cos(θ) #»ey

16.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . −2B0 sin(θ) #»ex

16.8 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − y

a2 + y2

16.8 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . en y = ±a

16.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

16.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

16.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . R√
R2 + z2

16.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . R3

(
√
R2 + z2)3

16.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0I

4
√

2R

16.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . R
√

25/3 − 1

16.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

16.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

16.14 a) . . .

µ0nI

2

(
z + ℓ

2√
R2 +

(
z + ℓ

2

)2

−
z − ℓ

2√
R2 +

(
z − ℓ

2

)2

)

16.14 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0nIℓ√
4R2 + ℓ2

16.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2

√
4R2 + ℓ2

√
R2 + ℓ2

16.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ0nI

16.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . B0
cosh

(z
δ

)
cosh

(e
δ

)
16.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B(0)

B0
≈ 1
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16.15 c) . . . . . . . . . . . . . . . . . . . . . . B(0)
B0

≈ 9 × 10−5

16.16 a) . . . . . . . . . . . . . . . . . . . . r2 + ω0r

Q
+ ω2

0 = 0

16.16 b). . . . . . . . . . . . . . . . . . . . . .
(
ω0
Q

)2
(1 − 4Q2)

16.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆ < 0

16.16 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B0

16.16 e) . .
B0 + e− ω0

2Q
t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))

16.16 f) . .
B0

(
1− e− ω0

Q
t
(

cos
(ω0

Q

√
4Q2 − 1 · t

)
+ 1√

4Q2 − 1
sin
(ω0

Q

√
4Q2 − 1 · t

))
16.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1,−1, 1)

Corrigés

16.2 La force cherchée s’écrit #»
F = −ev0B0( #»ex ∧ #»ey + #»ex ∧ #»ez) = ev0B0( #»ey − #»ez).

.......................................................................................................................................................
16.3 a) À l’équilibre, la boussole s’oriente dans la direction du champ résultant #»

B(O) = #    »
BH + #   »

Bfil(O). On a

alors tan(α) = Bfil

BH
, d’où BH = µ0I

2πd tan(α) .
.......................................................................................................................................................
16.3 b) On calcule :

BH = 4π × 10−7 T ·m ·A−1 × 1,2 A
2π × 2× 10−2 m× tan(30°)

= 10−7 T ·m ·A−1 × 1,2 A
1× 10−2 m× 1√

3

=
√

3× 1,2× 10−5 T = 20,8× 10−6 T.

.......................................................................................................................................................
16.4 Au lieu d’exprimer le flux de #»

B à travers la demi-sphère, il est plus simple de le calculer sur le disque
qui s’appuie, comme la demi-sphère, sur la même circonférence de rayon R (on utilise ici le fait que #»

B est un champ
vectoriel à flux conservatif). Sur le disque, on a #  »dS = dS #»ex. Ainsi ϕ = B × Sdisque = BπR2.
.......................................................................................................................................................
16.5 On calcule :

ϕ =
R̂

r=0

2πˆ

θ=0

#»
B · #»ex dr × r dθ = B0 ×

[
πR2 − 2πR4

4r2

]
= π

2R
2B0.

.......................................................................................................................................................
16.6 a) On calcule :

ϕ =
¨

cadre

µ0I

2πr
#»eθ · dS #»eθ = µ0I

2π

aˆ

0

dz ×
D+a/2ˆ

D−a/2

dr
r

= µ0Ia

2π ln
(
D + a/2
D − a/2

)
.

.......................................................................................................................................................

16.6 b) On réécrit ϕ = µ0Ia

2π

(
ln
(

1 + a

2D

)
− ln

(
1− a

2D

))
. Un développement limité de ln(1± ε) à l’ordre 1

en ε avec |ε| ≪ 1 donne alors : ln(1± ε) ≈ ±ε. D’où ϕ ≈ µIa2

2πD .
.......................................................................................................................................................
16.6 c) Si le cadre est situé dans un plan perpendiculaire à (Oz), on a #  »dS = dS #»ez et #»

B · #  »dS = 0 : le flux est nul.
.......................................................................................................................................................
16.7 a) Le champ résultant en O s’écrit : #»

B(O) = #  »
B1 + #  »

B2, soit #»
B(O) = B0(1 + cos(α)) #»ex +B0 sin(α) #»ey.

.......................................................................................................................................................
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16.7 b) On a B(O) = B0
√

(1 + cos(α))2 + sin2(α). Donc, B(O) = B0
√

2(1 + cos(α)).
.......................................................................................................................................................
16.7 c) On a B(O) = 20

√
3 mT et donc B(O) = 34,6 mT.

.......................................................................................................................................................
16.8 a) On a cos(θ) = a

d
d’où le résultat.

.......................................................................................................................................................
16.8 b) L’angle orienté θ, entre l’horizontale (Ox) et la demi-droite [O1D) se retrouve entre la verticale (Oy) et

la perpendiculaire à [O1D), c’est-à-dire la direction du vecteur #»e1. On a donc #»e1 = − sin(θ) #»ex + cos(θ) #»ey.
.......................................................................................................................................................
16.8 c) Si on note β l’angle que fait #»e2 avec la verticale descendante (−Oy), on a β + π

2 − θ = π

2 , donc β = θ.
On a donc #»e2 = − sin(θ) #»ex − cos(θ) #»ey.
.......................................................................................................................................................
16.8 d) Le champ résultant en D s’écrit #     »

Btot = B0( #»e1 + #»e2). En utilisant les résultats précédents, on trouve
#     »
Btot = −2B0 sin(θ) #»ex.
.......................................................................................................................................................
16.8 e) On a sin(θ) = y

d
. De plus, dans le triangle rectangle (O O1 D), on a d2 = a2 + y2.

Ainsi, #     »
Btot = −µ0I

π

y

a2 + y2 ,
#»ex. Par conséquent, on a f(y) = − y

a2 + y2 .
.......................................................................................................................................................

16.8 f) On calcule f ′(y) = −(a2 + y2) + y × 2y
(a2 + y2)2 = y2 − a2

(a2 + y2)2 . La fonction f ′ s’annule pour |y| → ∞, qui renvoie

lim
|y|→∞

f(y) = 0 et, pour |y| = a, qui donne
∣∣f(±a)

∣∣ = 1
2a : c’est le maximum recherché.

.......................................................................................................................................................
16.9 a) Le plan (M, #»er,

#»ez) est un plan de symétrie qui laisse M invariant ainsi que la distribution des courants
car, si N ≫ 1, chaque fil aura son symétrique, le courant circulant dans le même sens dans les deux fils symétriques.
.......................................................................................................................................................
16.9 b) Le vecteur #»

B, vecteur axial, est perpendiculaire à tout plan de symétrie de ses sources, donc #»
B(M) est

dirigé selon #»eθ.
.......................................................................................................................................................
16.10 a) Dans une symétrie par rapport au plan (xOy), les fils restent inchangés mais les courants sont inversés :

c’est donc un plan d’antisymétrie.
Dans une symétrie par rapport au plan (yOz), on permute les fils de gauche et de droite, les courants circulant
dans le sens inverse de la situation initiale : il s’agit, ici encore, d’un plan d’antisymétrie.
Seul, le plan (xOz) laisse les fils inchangés ainsi que les sens des courants : c’est donc bien un plan de symétrie pour
la distribution des courants.
.......................................................................................................................................................
16.10 b) Pour le point A sur l’axe (Ox), le plan (xOy) est un plan de symétrie pour la distribution des courants

et laisse A invariant. Le vecteur champ magnétique, vecteur axial, est perpendiculaire à tout plan de symétrie, donc
on a #»

B(A) ⊥ (xOz). Donc, #»
B(A) est parallèle à (Oy).

.......................................................................................................................................................
16.10 c) Pour le point D sur l’axe (Oy), les plans (xOy) et (yOz) sont des plans d’antisymétrie pour la distribution

des courants et laissent D invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan
d’antisymétrie, donc #     »

Btot ∈ (xOy) ∩ (yOz), soit #     »
Btot est parallèle à (Oy).

.......................................................................................................................................................
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16.11 a) Tout plan qui contient le point M et l’axe (Oz) est plan d’antisymétrie pour la distribution des courants
et laisse M invariant. Le vecteur #»

B(M), vecteur axial, est contenu dans tous ces plans d’antisymétrie. Par conséquent,
#»
B(M) est colinéaire à (Oz).
.......................................................................................................................................................
16.11 b) Le plan (M, #»er,

#»ez) est un plan d’antisymétrie pour la distribution des courants et laisse le point N
invariant. Le vecteur champ magnétique, vecteur axial, est contenu dans tout plan d’antisymétrie, donc on a
#»
B(N) ∈ (M, #»er,

#»ez).
.......................................................................................................................................................

16.12 b) On a B0f(z) = B0 sin3(α), ce qui donne f(z) = R3(√
R2 + z2

)3 .

.......................................................................................................................................................

16.12 c) Remplaçons z par R dans l’expression de Baxe. On trouve B1 = µ0I

2R f(R) = µ0I

2R
R3(√
2R2

)3 = µ0I

4
√

2R
.

.......................................................................................................................................................

16.12 d) On cherche z tel que Baxe(z) = 1
2B1, c’est-à-dire tel que :

µ0I

2R
R3(√

R2 + z2
)3 = 1

2
µ0I

4
√

2R
donc, après simplifications, tel que R3

(R2 + z2)3/2 = 1
4
√

2
.

Élevons à la puissance 2/3 chaque terme de l’égalité. On obtient :

R2

R2 + z2 = 1(
4
√

2
)2/3 = 1

(25/2)2/3 = 1
(2)5/3 d’où (2)5/3R2 = R2 + z2.

Finalement, on trouve z = R
√

25/3 − 1.
.......................................................................................................................................................
16.13 a) Tout plan qui contient l’axe (Oz) est plan d’antisymétrie pour la distribution des courants à condition

de considérer que le symétrique de chaque spire par rapport à un plan qui contient (Oz) se superpose à la spire de
départ, ce qui n’est possible qu’en négligeant l’hélicité de l’enroulement.
.......................................................................................................................................................
16.13 b) En négligeant l’hélicité de l’enroulement des spires, tout plan qui contient (Oz) est un plan d’antisymétrie

pour la distribution des courants et laisse le point M invariant. Le vecteur champ magnétique, vecteur axial, est
contenu dans tout plan d’antisymétrie, donc #»

B(M) est dirigé selon #»ez.
.......................................................................................................................................................

16.14 a) On a B(z) = µ0nI

2

 z + ℓ
2√

R2 +
(
z + ℓ

2

)2
−

z − ℓ
2√

R2 +
(
z − ℓ

2

)2

.

.......................................................................................................................................................
16.14 b) Au point O, on a αmax = π − αmin. Or cos(π − αmin) = − cos(αmin), ce qui donne en O :

cos(αmin) = ℓ/2√
R2 + ℓ2/4

.

Ainsi, on a B(O) = µ0nI cos(αmin) = µ0nI
ℓ√

4R2 + ℓ2
.

.......................................................................................................................................................
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16.14 c) Remarquons déjà que la fonction B(z) est une fonction paire de z. On aura donc B
(
− ℓ2

)
= B

(
+ ℓ

2

)
.

En z = ℓ

2 , on a αmax = π

2 , donc cos(αmax) = 0 et cos(αmin) = ℓ√
R2 + ℓ2

. Ainsi, on a
B
(
± ℓ2

)
B(O) = 1

2

√
4R2 + ℓ2
√
R2 + ℓ2

.
.......................................................................................................................................................

16.14 d) On a B(O) = µ0nI
ℓ√

4R2 + ℓ2
= µ0nI√

1 + 4R2

ℓ2

. Si ℓ

R
→ +∞, alors 4R2

ℓ2 −→ 0 et B(O)−→µ0nI.

.......................................................................................................................................................

16.15 a) La solution de l’équation différentielle s’écrit B(z) = C exp
(
z

δ

)
+D exp

(
−z
δ

)
. La fonction B(z) étant

paire, on a C = D. D’où B(z) = 2C cosh
(
z

δ

)
.

La condition aux limites en z = e permet d’exprimer la constante C par continuité de B (forcément continu car

défini en volume) : on trouve C = B0

2 cosh
(
e

δ

) . Ainsi, on a B(z) = B0

cosh
(
z

δ

)
cosh

(
e

δ

) .

.......................................................................................................................................................

16.15 b) Pour e = δ/10, on a B(0)
B0

= 1
cosh(1/10) ≈ 1.

.......................................................................................................................................................

16.15 c) Pour e = 10δ, on a B(0)
B0

= 1
cosh(10) ≈ 9× 10−5.

.......................................................................................................................................................

16.16 b) On calcule ∆ =
(
ω0

Q

)2

− 4ω0
2 = ω0

2
(

1
Q2 − 4

)
= ω0

2 1− 4Q2

Q2 =
(
ω0

Q

)2

(1− 4Q2).
.......................................................................................................................................................
16.16 c) En effet, on a Q > 1/2.
.......................................................................................................................................................
16.16 d) La fonction constante B0 est solution de (∗).
.......................................................................................................................................................
16.16 e) Les racines de l’équation caractéristique sont − ω0

2Q ± i ω0

2Q
√

4Q2 − 1.

Donc, la solution générale de l’équation sans second membre associée à (∗) est :

e− ω0
2Q

t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))
.

Donc, la solution générale de l’équation (∗) est B0 + e− ω0
2Q

t
(
λ cos

( ω0

2Q
√

4Q2 − 1 · t
)

+ µ sin
( ω0

2Q
√

4Q2 − 1 · t
))

.
.......................................................................................................................................................

16.16 f) La condition initiale B(0) = 0 donne λ = −B0. La condition initiale B′(0) = 0 donne µ = −B0√
4Q2 − 1

.

.......................................................................................................................................................
16.17 On a [µB ] =

[
eα ·mβ

e · hγ
]

= Qα ·Mβ · [h]γ .
La constante de Planck h est homogène au produit d’une énergie par un temps (la fréquence est homogène à l’inverse
d’un temps). De plus, une énergie est homogène au produit d’une masse par une vitesse au carré. Nous obtenons

donc : [h] = M · L2

T
. Ainsi, on a [µB ] = Qα ·Mβ+γ · L2γ

T γ
.

Le magnéton de Bohr s’exprime en A ·m2. Il est donc homogène à [µB ] = [I] · [S] = Q · L2

T
.

Finalement, en comparant les équations obtenues, on obtient α = 1, β = −1 et γ = 1.
.......................................................................................................................................................
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Fiche no 17. Induction

Réponses

17.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×1/2

17.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ×2

17.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et b

17.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui

17.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

17.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.3 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Bac

17.3 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bac

17.4 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ba2

17.4 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.4 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.4 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

4

17.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Bab

17.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

17.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba2

17.5 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ba(b− a)

17.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

17.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.7 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i < 0

17.8 a) . . . . . . . . . . . . . . . . . . . . . . . . Le flux diminue

17.8 b) . . . . . . . . . . . . . . . . . . . . Le flux ne varie pas

17.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . Le flux diminue

17.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.8 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i = 0

17.8 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i > 0

17.9 a) . . . . . . . . . . . . . . . . . . . . . . B0S0ω sin(ωt+ φ)

17.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . B0S0
t

τ2 e
−t/τ

17.9 c) . . . . . . . . . . . . . . . −8B0S0ω cos(ωt) sin3(ωt)

17.9 d) . . . . . . . . . −B0S0ω[2 cos(4ωt) + cos(2ωt)]

17.10 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IBd #»ex

17.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . −IBd

m
t+ v0

17.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mv2
0

2IBd

17.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IaB #»ey

17.11 b) . . . . . . . . . . . . . . . . . . . IaB

(√
3

2
#»ex + 1

2
#»ey

)

17.11 c) . . . . . . . . . . . . . . . . . IaB

(
−

√
3

2
#»ex + 1

2
#»ey

)
17.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IaB #»ez
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17.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −IaB #»ez

17.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #»0

17.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ia2B #»ex

17.12 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ia2 #»ez

17.12 h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −Ia2B #»ex

17.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iab #»eθ

17.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iabB cos θ

17.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . −a

2mg sin θ

17.13 d) . . . . . . . . . . . . . . . . . . . . . . . . arctan
(

2ibB
mg

)

Corrigés

17.1 a) Le flux du champ magnétique à travers une spire est φ1 = BS = πR2B. Le flux total à travers la bobine
est donc :

φtot = Nφ1 = µ0πR
2N2

ℓ
i.

On retrouve l’expression de l’inductance L de la bobine en fonction de ses caractéristiques géométriques :

φtot = Li ⇐⇒ L = µ0πR
2N2

ℓ
.

Si on double le courant, on double donc le flux.
.......................................................................................................................................................
17.1 b) En doublant la longueur du solénoïde, en gardant les spires jointives et le fil de même épaisseur, on

double alors la longueur ℓ et le nombre de spires N : on double alors le flux.
.......................................................................................................................................................
17.1 c) Le fil est deux fois plus épais mais de même longueur : on a toujours N spires mais réparties sur une

longueur 2ℓ au lieu de ℓ. Le flux propre est donc divisé par deux.
.......................................................................................................................................................
17.1 d) Si on double le rayon des spires en gardant la longueur de fil identique, le nombre de spires dans la

bobine diminue. En effet, en notant ℓfil la longueur du fil, on trouve : ℓfil = 2πNR = 2πN ′(2R) ⇐⇒ N ′ = N/2 en
notant N ′ le nouveau nombre de spires. La longueur de la bobine est également divisée par 2.
Le flux total devient alors :

φ′
tot = µ0π(2R)2(N/2)2

(ℓ/2) i = 2µ0πR
2N2

ℓ
i = 2φtot.

Le flux total est donc multiplié par deux.
.......................................................................................................................................................
17.2 a) D’après la règle de la main droite, le pouce étant dans le sens du courant, en enroulant la main on trouve

que le champ magnétique sort de la feuille au niveau des circuits. De plus, en enroulant la main droite dans le sens
de l’orientation de chaque circuit, on peut déterminer le sens du vecteur surface par le sens du pouce, ainsi les spires
A et B ont un vecteur surface vers la feuille et les spires C et D ont un vecteur surface qui sort de la feuille. Comme
le flux est donné par ϕ

( #»
B
)

=
¨

S

#»
B · #  »dS, celui-ci sera négatif si le vecteur surface et le vecteur champ magnétique

présentent des sens opposés.
.......................................................................................................................................................
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17.2 b) On rappelle que le flux du champ magnétique à travers une surface orientée S vaut ϕ
( #»
B
)

=
¨

S

#»
B · #  »dS.

Sans tenir compte de l’orientation des surfaces, le flux sera d’autant plus important dans le circuit que celui-ci est
proche du fil car le champ magnétique produit par un fil infini est une fonction décroissante de la distance au fil.
On a donc |ϕA| > |ϕB|.
.......................................................................................................................................................
17.2 c) D’après la même justification que la question précédente, on a |ϕD| > |ϕC|.
.......................................................................................................................................................
17.3 a) On oriente toutes les surfaces vers l’extérieur du volume. Ainsi, pour la surface AA′B′B, le vecteur normal

s’écrit #»
SAA′B′B = −ab #»ex. On rappelle que le flux du champ magnétique à travers une surface est : ϕ =

¨
S

#»
B · #  »dS.

Le flux à travers la surface ABC est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 b) Le flux à travers la surface A′C′B′ est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 c) Le flux à travers la surface AA′B′B est nul car la surface est orthogonale au champ magnétique.
.......................................................................................................................................................
17.3 d) Le flux au travers de ACC′A′ vaut −Bac.
.......................................................................................................................................................
17.3 e) Le flux au travers de BB′C′C vaut Bac car le champ magnétique est à flux conservatif : la somme des

flux sortant d’une surface fermée est nulle.
.......................................................................................................................................................
17.4 a) Le flux sortant de la surface ABCD vaut −Ba2 car le champ est uniforme sur cette surface.
.......................................................................................................................................................
17.4 b) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul.
.......................................................................................................................................................
17.4 c) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 d) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 e) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.4 f) Comme le champ magnétique est à flux conservatif, le flux total sortant est nul. De plus, par symétrie,

les flux sur les surfaces ADE, DCE, CBE et BAE sont identiques. Ainsi, ces flux valent Ba
2

4 .
.......................................................................................................................................................
17.5 a) Le champ #»

B étant orthogonal à la surface ABCD, son flux y vaut −Bab.
.......................................................................................................................................................
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17.5 b) Le flux du champ magnétique est nul sur la surface BAA′B′ car #»
B est inclus dans ce plan.

.......................................................................................................................................................
17.5 c) Le flux du champ magnétique est nul sur la surface CC′D′D car #»

B est inclus dans ce plan.
.......................................................................................................................................................
17.5 d) Le flux du champ magnétique est nul sur la surface ADD′A′ car #»

B est inclus dans ce plan.
.......................................................................................................................................................
17.5 e) Le champ #»

B étant orthogonal à la surface A′D′C′B′, son flux y vaut Ba2.
.......................................................................................................................................................
17.5 f) En exploitant la conservation du flux magnétique, on en déduit donc que le flux sortant de la surface

CBB′C′ vaut Bab−Ba2 = Ba(b− a).
.......................................................................................................................................................
17.6 Avec un courant positif, le champ magnétique produit par la boucle externe est sortant de la feuille.

Comme le courant augmente, le flux également. Le champ magnétique induit par les effets inductifs est opposé aux
causes qui lui ont donné naissance : il sera rentrant dans la feuille. Le courant est donc dans le sens horaire.
.......................................................................................................................................................
17.7 a) Rappelons que, pour un aimant droit, le champ sort par le Nord : les lignes de champ sont orientées du

Nord vers le Sud.
La première étape consiste à déterminer le sens de variation du champ magnétique vu par la spire au cours du
déplacement. On déduit alors de la loi de Lenz le sens du champ magnétique induit #»

Bind, qui tend à atténuer les
variations de #»

B. On détermine ensuite par la règle de la main droite le sens réel du courant dans la spire. Enfin,
par comparaison entre le sens réel du courant et le sens i > 0 indiqué sur la figure, on en déduit le signe de i.
Le champ magnétique créé par l’aimant droit est orienté vers la gauche au niveau de la spire. Il augmente dans la
spire avec le déplacement de l’aimant. Le champ induit va s’opposer à cette augmentation : il sera orienté vers la
droite. On a donc ia > 0.
.......................................................................................................................................................
17.7 b) La physique est identique à la situation précédente, seule change la convention sur le sens positif du

courant : on en déduit immédiatement ib < 0.
.......................................................................................................................................................
17.7 c) Le champ magnétique est orienté vers la droite au niveau de la spire. Il diminue avec le déplacement de

l’aimant. Le champ induit va s’opposer à cette variation : il sera orienté vers la droite également. Ainsi, on a ic > 0.
.......................................................................................................................................................
17.7 d) Les variations de champ vues par la spire sont les mêmes qu’à la question a), le sens réel du courant

induit est donc le même. Comme le sens choisi positif du courant est opposé, alors id < 0.
.......................................................................................................................................................
17.7 e) Les variations de champ vues par la spire sont les mêmes qu’à la question c), le sens réel du courant

induit est donc le même. Comme le sens choisi positif du courant est opposé, alors ie < 0.
.......................................................................................................................................................
17.7 f) Le déplacement de la spire renforce l’effet du déplacement de l’aimant. Cette fois, le champ vu par la

spire diminue au cours du mouvement, le champ induit a donc tendance à le renforcer. On a donc if < 0.
.......................................................................................................................................................
17.8 a) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal. Dans la configuration finale, le flux du champ magnétique dans la spire est
nul. Le flux diminue donc.
.......................................................................................................................................................
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17.8 b) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens opposé
au champ magnétique : le flux est minimal.
La configuration finale est identique à la configuration initiale : le flux est le même.
.......................................................................................................................................................
17.8 c) La spire est initialement orthogonale aux lignes de champ et la surface est orientée dans le sens des

lignes de champ : le flux est maximal.
La configuration finale est similaire à la configuration initiale mais le flux est moins grand car le nombre de lignes
de champ interceptées est inférieur. Le flux diminue donc.
.......................................................................................................................................................
17.8 d) Le courant circulant dans la spire va produire un champ magnétique tel qu’il s’oppose à la diminution

du flux : le courant sera donc positif. On a i(A) > 0.
.......................................................................................................................................................
17.8 e) Il n’y a pas de variation de flux, donc pas d’induction : on a i(B) = 0.
.......................................................................................................................................................
17.8 f) Le courant circulant dans la spire va produire un champ magnétique afin de compenser la diminution

du flux : le courant sera donc positif. On a i(C) > 0.
.......................................................................................................................................................
17.9 c) On peut réécrire le flux sous la forme suivante : Φ3 = 2B0S0 sin4(ωt) ; d’où e3 = −8B0S0ω cos(ωt) sin3(ωt).
.......................................................................................................................................................

17.9 d) De même, on commence par linéariser l’expression. On a Φ4 = B0S0

2 [sin(4ωt) + sin(2ωt)]. Puis, on
dérive et on trouve : e4 = −B0S0ω[2 cos(4ωt) + cos(2ωt)].
.......................................................................................................................................................

17.10 a) La force de Laplace se calcule par #»
F =

ˆ N

M
I

#»dℓ ∧ #»
B, soit #»

F =
ˆ N

M
−I dz #»ez ∧ −B #»ey = −IBd #»ex.

.......................................................................................................................................................
17.10 b) La force de Laplace est constante. Par application du principe fondamental de la dynamique en projection

sur #»ex, on a :
m

dv(t)
dt = −IBd.

En intégrant (avec la condition initiale), on trouve v(t) = −IBd
m

t+ v0.
.......................................................................................................................................................
17.10 c) Par application du théorème de l’énergie cinétique entre le point x = 0 et le point d’arrêt x = D, on a :

∆Ec = 0− 1
2mv

2
0 =
ˆ x=D

x=0

#»
F · #»dℓ =

ˆ x=D

x=0
−IBd #»ex · dx #»ex = −IBdD.

On en déduit : D = mv2
0

2IBd .
.......................................................................................................................................................
17.11 a) Il s’agit de calculer le produit vectoriel sur chaque segment, le vecteur #»dℓ étant le long du segment.

Chaque force de Laplace s’exerce au milieu de chaque segment et la règle de la main droite indique qu’elle est
orthogonale au segment dirigé vers l’extérieur du triangle. Le triangle est équilatéral et comporte donc trois angles
de 60 °, ce qui amène aux projections sur #»ex et #»ey. D’où les résultats.
.......................................................................................................................................................
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17.11 d) Le champ magnétique étant uniforme, la résultante des forces de Laplace sur le circuit fermé est nulle :

#»
F L,tot =

˛
C

(
I

#»dℓ ∧ #»
B
)

= I

(˛
C

#»dℓ
)
∧ #»
B = #»0 .

.......................................................................................................................................................
17.12 h) Dans ce cas, les forces de Laplace sont nulles sur les segments BC et DA ( #»dℓ et #»

B sont colinéaires). Les
seules forces sont alors :

#»
FAB = IaB #»ez et #»

FCD = −IaB #»ez.

Le couple est alors #»Γ = −Ia2B #»ex.
.......................................................................................................................................................
17.13 a) Dans la base cylindrique telle que #»ez = #  »e∆, le moment magnétique est porté par #»eθ et sa norme est
m = iS = iab.
.......................................................................................................................................................
17.13 b) Par définition, le couple magnétique se calcule par #»Γ = #»m ∧ #»

B. Le calcul du produit vectoriel amène à
#»Γ = iabB cos θ #»ez. Comme #»ez = #  »e∆, la projection sur l’axe ∆ donne donc Γ∆ = iabB cos θ.
.......................................................................................................................................................
17.13 c) Dans la base cylindrique, le poids s’exprime #»

P = mg(cos θ #»er − sin θ #»eθ). On considère qu’il s’applique au
barycentre des masses du cadre, soit en son plein centre que l’on notera G. Son moment par rapport à l’axe ∆ se
calcule parM∆( #»

P ) =
( #    »OG ∧ #»

P
)
· #  »e∆ avec O un point sur l’axe ∆. D’où,M∆( #»

P ) =
(
a/2 #»er ∧

#»
P
)
· #  »e∆ = −a2mg sin θ.

.......................................................................................................................................................
17.13 d) À l’équilibre, la somme des moments des forces par rapport à l’axe ∆ est nulle. Ainsi, on a :

Γ∆ +M∆( #»
P ) = 0.

D’où iabB cos θeq −
a

2mg sin θeq = 0, ce qui amène à isoler tan θeq = 2ibB
mg

, soit finalement θeq = arctan
(

2ibB
mg

)
.

.......................................................................................................................................................

92 Fiche no 17. Induction



Fiche no 18. Gaz parfaits

Réponses

18.1 a) . . . . . . . . . . . . . . . . . . 62 L

18.1 b). . . . . . . . . . . . . . . . . . 25 L

18.1 c) . . . . . . . . . . . 6,8 × 102 L

18.2 a) . . . . . . . . . . 58 g · mol−1

18.2 b) . . . . . . . . . 1,8 × 102 bar

18.2 c) . . . . . . . . . . . . . . . . 5,5 m3

18.3 a) . . . . . . . . 24,8 L · mol−1

18.3 b) . . . . . . . . 13,4 L · mol−1

18.4 . . . . . . . . . . . . . . . . . . . 64 °C

18.5 a) . . . . . . . . . . . . . . 1,00 bar

18.5 b) . . . . . . . . . . . . . . 1,24 bar

18.6 a) . . . . . . . . . . . . . . . . . . . a

18.6 b) . . . . . . . . . . . . . . . . . . . d

18.7 a) . . . . . . . . . . . . . . . . . MP

RT

18.7 b) . . . . . . . . . . . . . . . . . . non

18.8 a) . . . . . . . . . . . . . . . . . . 4ρ1

18.8 b). . . . . . . . . . . . . . . . . 3,7ρ1

18.9 a) . . . . . . . . . . . . . n2
n1

= P2
P1

18.9 b). . . . . . . . . . . . 2P1
P1 + P2

V

18.10 . . . . . . . . . . . . . . . . . . MA
Mair

18.11 a) . . . . . . . . . . . . . . . 4
3πr

3

18.11 b) . . . 4πP0r
3 + 16πγr2

3RT0

18.12 a) . . . . . . . 18,2 g · mol−1

18.12 b) . . . . . . . . . . . . . . 4,79 %

18.13 a) . . . . . . . 30,6 g · mol−1

18.13 b) . . . . . . . . . . . . . . 65,6 %

18.14 . . . . . . . . . . . . . . . . . 5,5 kg

18.15 a) . . . . . . . . . . . . . 400 hPa

18.15 b) . . . . . . . . . . . . . 400 hPa

Corrigés

18.1 a) On a PV = nRT avec n = m

M
. Ainsi, on a V = m

M
× RT

P
. Notez que l’on peut laisser les masses en g

si l’on exprime la masse molaire en g ·mol−1.

Ainsi, on a V = 100 g
40 g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 62× 10−3 m3 = 62 L.
.......................................................................................................................................................

18.1 b) On a V = 32 g
2× 16 g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 24,8× 10−3 m3 = 25 L.
.......................................................................................................................................................

18.1 c) On a V = 1 200 g
(12 + 2× 16)g ·mol−1 ×

8,314 J ·K−1 ·mol−1 × 298,15 K
1× 105 Pa

= 0,676 m3 = 6,8× 102 L.
.......................................................................................................................................................
18.2 a) On a MC4H10 = 4×MC + 10×MH = 4× 12 g ·mol−1 + 10× 1 g ·mol−1 = 58 g ·mol−1.
.......................................................................................................................................................
18.2 b) Si tout le butane était à l’état gazeux dans la bouteille et en admettant qu’il se comporte comme un

gaz parfait, la pression qui y règnerait serait de :

P = nRT

V
= m

M
× RT

V
= 13× 103 g

58 g ·mol−1 ×
8,314 J ·K−1 ·mol−1 × 293,15 K

30,6× 10−3 m3 = 179× 105 Pa = 1,8× 102 bar,

et la bouteille exploserait... Heureusement qu’une grande partie est à l’état liquide !
.......................................................................................................................................................
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18.2 c) En considérant le butane comme gaz parfait, on a :

V = nRT

P
= m

M

RT

P
= 13× 103 g

58 g ·mol−1 ×
8,314 J ·K−1 ·mol−1 × 293,15 K

1× 105 Pa
= 5,5 m3.

.......................................................................................................................................................

18.3 a) Le volume molaire est le volume occupé par une mole de gaz : c’est Vm = V

n
= RT

P
.

En exprimant la pression en pascals et la température en kelvins, on obtient :

Vm = 8,314 J ·K−1 ·mol−1 × 298,15 K
1,00× 105 Pa

= 24,8× 10−3 m3 ·mol−1 = 24,8 L ·mol−1.

.......................................................................................................................................................
18.3 b) On applique la même formule. On trouve :

Vm = 8,314 J ·K−1 ·mol−1 × (273,15 + 50)K
2,00× 105 Pa

= 13,4× 10−3 m3 ·mol−1 = 13,4 L ·mol−1.

Remarquez que le volume molaire ne dépend pas de la nature du gaz mais seulement des conditions de pression et
de température.
.......................................................................................................................................................
18.4 D’après la loi des gaz parfaits : P1V = nRT1 et P2V = nRT2, ce qui donne à volume constant :

T2 = T1
P2

P1
= (273, 15 + 20)K× 2,3 bar

2,0 bar = 337 K = 64 °C.

.......................................................................................................................................................
18.5 a) À température constante, le produit PV reste constant, d’où :

P1V1 = P2V2 avec V2 = 1,2V1 d’où P2 = P1

1,2 = 1,0 bar.

.......................................................................................................................................................
18.5 b) À volume constant, le quotient P/T reste constant, d’où :

P1

T1
= P2

T2
d’où P2 = P1

T2

T1
= 1,2× 303, 15

293, 15 = 1,24 bar.

.......................................................................................................................................................

18.6 a) La loi des gaz parfaits permet d’exprimer P en fonction de T : P = nR

V
T = Cte × T , car nR/V est

constant. On prévoit donc une relation linéaire dont la courbe représentative est une droite passant par l’origine.
.......................................................................................................................................................

18.6 b) En vertu de la loi des gaz parfaits, on a P = nRT

V
= Cte

V
, car nRT est fixé. On prévoit donc une relation

inverse dont la courbe représentative est une hyperbole.
.......................................................................................................................................................
18.7 a) Par définition, la masse volumique vaut :

ρ = m

V
= nM

nRT
P

= MP

RT
.

.......................................................................................................................................................
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18.7 b) Assimilons la vapeur d’eau à un gaz parfait. On a alors :

ρ = 18× 10−3 kg ·mol−1 × 1,013× 105 Pa
8,314 J ·K−1 ·mol−1 × 373,15 K

= 0,588 kg ·m−3.

Ce résultat est en désaccord avec la mesure.
Au voisinage d’un changement d’état (comme ici, où l’eau est à l’état de vapeur saturante), le modèle du gaz parfait
n’est pas valide.
.......................................................................................................................................................

18.8 a) La masse volumique d’un gaz parfait s’écrit ρ = MP

RT
. On a donc ici :

ρ1 = MP1

RT1
et ρ2 = MP2

RT1
.

Ceci donne ρ2 = ρ1
P2

P1
= 4ρ1.

.......................................................................................................................................................

18.8 b) Le même raisonnement mène à ρ2 = ρ1
T1P2

T2P1
= 3,7ρ1.

On fera attention au fait que, dans un rapport de températures, celles-ci sont à exprimer en kelvins.
.......................................................................................................................................................

18.9 a) D’après la loi des gaz parfaits, on a n1 = P1V

RT
et n2 = P2V

RT
, d’où la relation n2

n1
= P2

P1
.

.......................................................................................................................................................
18.9 b) Appliquons la loi des gaz parfaits dans chaque compartiment. On a :

P ′V1 = n1RT et P ′V2 = n2RT,

dont on déduit V2/V1 = n2/n1.
Par ailleurs, la conservation du volume total donne :

2V = V1 + V2 = V1

(
1 + n2

n1

)
.

Ainsi, il découle :
V1 = 2V

1 + n2/n1
= 2V

1 + P2/P1
= 2P1

P1 + P2
V.

.......................................................................................................................................................
18.10 Exprimons la masse volumique en fonction de la masse molaire pour un gaz parfait :

V = nRT

P
= mRT

MP
donc ρ = m

V
= PM

RT
.

Ainsi, sous la même pression et la même température, on a :

d = ρA

ρair
= PMA

PMair
= MA

Mair
.

.......................................................................................................................................................

18.11 a) Le volume de la bulle vaut V = 4
3πr

3.
.......................................................................................................................................................

18.11 b) La pression de l’air intérieure vaut P = P0 + 4γ
r

. La loi des gaz parfaits donne alors :

PV =
(
P0 + 4γ

r

)
× 4

3πr
3 = nRT0 d’où n = 4πP0r

3 + 16πγr2

3RT0
.

.......................................................................................................................................................
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18.12 a) La masse molaire du mélange est la moyenne pondérée des masses molaires : M =
∑

i

xiMi.

Ceci donne ici :

M =
(
0,813× 16 + 0,029× 30 + 0,004× 44 + 0,002× 58 + 0,143× 28

)
g.mol−1 = 18,2 g ·mol−1.

.......................................................................................................................................................
18.12 b) Faisons un bilan avec une mole de mélange :
• le mélange a une masse totale m = 18,2 g ;
• ce mélange contient 0,029 mol d’éthane, soit mC2H6 = 0,029× 30 = 0,87 g.

On en déduit que le titre massique vaut :

wC2H6 = mC2H6/m = 4,79 %.

.......................................................................................................................................................
18.13 a) Le mélange étant considéré parfait, on peut appliquer la loi des gaz parfaits :

PV = nRT d’où ρ = m

V
= MP

RT
.

On en déduit la masse molaire :

M = ρRT

P
= 1 kg ·m−3 × 8,314 J ·K−1 ·mol−1 × 373,15 K

1,013× 105 Pa
= 30,6× 10−3 kg ·mol−1.

.......................................................................................................................................................
18.13 b) La masse molaire du mélange est la moyenne pondérée des masses molaires. Si l’on note x la fraction

molaire en dioxygène et y celle en diazote, on a M = xMO2 + yMN2 , avec x+ y = 1. On en déduit :

x = M −MN2

MO2 −MN2
= 30,626 g ·mol−1 − 28 g ·mol−1

32 g ·mol−1 − 28 g ·mol−1 = 65,6 %.

.......................................................................................................................................................
18.14 Calculons la pression partielle en vapeur d’eau : elle vaut PH2O = 60 %psat = 1,90× 103 Pa.

Dans un volume de 400 m3, cela correspond à une quantité de matière :

nH20 = PH2OV

RT
= 1,90× 103 Pa × 400 m3

8,314 J ·K−1 ·mol−1 × 298,15 K
= 307 mol.

Ceci représente une masse m = nH2O ×MH2O = 18× 10−3 kg ·mol−1 × 307 mol = 5,5 kg.
.......................................................................................................................................................
18.15 a) La loi de Dalton impose P = PA + PB, d’où PB = 400 hPa.
.......................................................................................................................................................
18.15 b) La pression partielle d’une espèce dépend de sa quantité de matière, de sa température et du volume

total. En effet :

P =

(∑
i

ni

)
×RT

V
=
∑

i

Pi avec Pi = niRT

V
.

Puisque ces quantités n’ont pas changé pour l’espèce B, sa pression partielle est restée la même.
.......................................................................................................................................................
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Fiche no 19. Premier principe

Réponses

19.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 J

19.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0,5 J

19.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 J

19.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 J

19.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 J

19.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B

19.4 a) . . . . . . . . . . . . . . . . . . . . −P0(Vfinal − Vinitial)

19.4 b). . . . . . . . . . . . . −(P2 + P1)(Vfinal − Vinitial)
2

19.5 a) . . . . . . . . . . . . . . . . . . . . . . . . −nRT0 ln
(
Vf

Vi

)

19.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . PfVf − PiVi

k − 1

19.6 a) . . . . . . . . . . . . . . . . . . . . . . . 76 J · K−1 · mol−1

19.6 b) . . . . . . . . . . . . 18 × 10−3 kcal · K−1 · mol−1

19.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . mc(Tf − Ti)

19.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,2 kJ

19.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR

γ − 1

19.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,2 × 102 J

19.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nRγ

γ − 1

19.8 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,7 × 102 J

19.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . CV (Tf − Ti)

19.9 b) . . . . . . . . . . . . . A

2 (Tf
2 − Ti

2) +B(Tf − Ti)

19.9 c). . . . . . . . . . . . . . . . . . . . . . . . . . . D

4 (Tf
4 − Ti

4)

19.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −268 kJ

19.11 . . . . . . . . . . . . . . . . . . . Ti + n2a

CV

(
1
Vf

− 1
Vi

)

19.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ti + Q

C

19.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ti e
Q
A

19.12 c) . . . . . . . . . . . . . . . . . . . . . . .
(
Ti

3 + 3Q
B

)1/3

19.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . nRTi ln
(
Vf

Vi

)

19.13 b) . . . . . . . . . . . . . . . . . . . . . . . . nR

γ − 1(Tf − Ti)

19.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

19.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W1 −Q1

19.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q1 −Q2

19.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W1 −Q2

19.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 J · K−1

19.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

h

19.16 b) . . . . . . . . . . . . . . . . . . . Ta + (T0 − Ta)e− ht
C

19.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

19.18 a) . . . . . . . . . . . . . . . . . . . . . . . . m1T1 +m2T2
m1 +m2

19.18 b) . . . . . . . . . m1T1 +m2T2
m1 +m2

+ Q

(m1 +m2)c
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Corrigés

19.1 a) On a W = −
(
1,5× 105 Pa

)(
3× 10−3 m3 − 5× 10−3 m3) = 300 J.

.......................................................................................................................................................
19.1 b) On a P0 = 50 mbar = 50× 10−3 bar =

(
50× 10−3)× 105 Pa = 50× 102 Pa.

On a Vi = 2 cL = 2× 10−2 L =
(
2× 10−2)× 10−3 m3 = 2× 10−5 m3.

On a Vf = 120 mL = 120× 10−3 L =
(
120× 10−3)× 10−3 m3 = 12× 10−5 m3.

On a W = −
(
50× 102 Pa

)
×
(
12× 10−5 m3 − 2× 10−5 m3) = −0,5 J.

.......................................................................................................................................................
19.1 c) On a Vi = 20 cm3 = 20× 10−6 m3 et Vf = 10 cm3 = 10× 10−6 m3.

On a W = −
(
150× 105 Pa

)
×
(
10× 10−6 m3 − 20× 10−6 m3) = 150 J.

.......................................................................................................................................................

19.2 a) Le volume ne variant pas, on a dV = 0. Le travail des forces de pression s’écrit W = −
ˆ Vfinal

Vinitial

Pext dV .

Il est donc nul.
.......................................................................................................................................................
19.2 b) Le travail des forces de pression s’écrit :

W = −
ˆ Vfinal

Vinitial

Pext dV = −Pext

ˆ Vfinal

Vinitial

dV = −Pext(Vfinal − Vinitial).

Nous pouvons donc faire l’application numérique : W = −1× 105 Pa × (2× 10−3 m3 − 1× 10−3 m3) = −100 J.
.......................................................................................................................................................
19.3 Le système A a reçu du milieu extérieur un travail Wa = 50 W× 30 s = 1 500 J.

Le système B a reçu du milieu extérieur un travail Wb = 400 W× 5 s = 2 000 J.
Le système B a donc reçu la plus grande quantité d’énergie.
.......................................................................................................................................................
19.4 a) Le travail correspond à l’opposé de l’aire sous la courbe, et donc à l’opposé de l’aire du rectangle :

W = −P0(Vfinal − Vinitial).

.......................................................................................................................................................
19.4 b) On décompose l’aire sous la courbe en un rectangle et en un triangle :

W = −
(
P1(Vfinal − Vinitial) + (P2 − P1)(Vfinal − Vinitial)

2

)
= −(P2 + P1)(Vfinal − Vinitial)

2 .

.......................................................................................................................................................
19.5 a) Le système est un gaz parfait, nous avons donc PV = nRT . De plus, la température reste constante et

vaut T0. Le travail s’écrit alors : W = −nRT0

ˆ Vf

Vi

1
V

dV = −nRT0 ln
(
Vf

Vi

)
.

.......................................................................................................................................................
19.5 b) La transformation étant polytropique, on a alors PiVi

k = PfVf
k = PV k. Le travail s’exprime alors :

W = −
ˆ Vf

Vi

PiVi
k

V k
dV = −PiVi

k

1− k

(
1

Vf
k−1 −

1
Vi

k−1

)
= PfVf − PiVi

k − 1 .

.......................................................................................................................................................

98 Fiche no 19. Premier principe



19.6 a) Par définition, on a c = C

m
= n

Cm

m
. Et donc Cm = MH2O × c = 76 J ·K−1 ·mol−1.

.......................................................................................................................................................

19.6 b) On a Cm = 76 J ·K−1 ·mol−1

4184 = 18× 10−3 kcal ·K−1 ·mol−1.
.......................................................................................................................................................
19.7 a) La masse m d’eau liquide de capacité thermique massique c = 4,2 kJ ·K−1 · kg−1 aura une capacité

thermique C = mc. Ainsi, on a ∆U = mc(Tf − Ti).
.......................................................................................................................................................
19.7 b) Notons que la température doit être exprimée en kelvins. Ici, on a Ti = 293 K et Tf = 303 K. Nous

obtenons donc ∆T = 10 K. Ainsi, on a ∆U = 100× 10−3 kg × 4,2 kJ ·K−1 · kg−1 × 10 K = 4,2 kJ.
.......................................................................................................................................................
19.8 a) On commence par exprimer la capacité thermique à volume constant CV du gaz parfait, à partir de la

relation de Mayer CP − CV = nR et du rapport des capacités thermiques γ = CP

CV
. On obtient CV = nR

γ − 1 .
.......................................................................................................................................................
19.8 b) La grandeur CV étant constante, la variation d’énergie interne d’un gaz parfait peut être écrite :

∆U = CV ∆T = CV (Tf − Ti) = nR

γ − 1(Tf − Ti).

On passe alors à l’application numérique : on a ∆U = 1 mol× 8,314 J ·K−1 ·mol−1 × 30 K
1,4− 1 = 6,2× 102 J.

.......................................................................................................................................................
19.8 c) On commence par exprimer la capacité thermique à volume constant CP du gaz parfait, à partir de la

relation de Mayer CP − CV = nR et du rapport des capacités thermiques γ = CP

CV
. On obtient CP = nRγ

γ − 1 .
.......................................................................................................................................................
19.8 d) La grandeur CP étant constante, la variation d’enthalpie d’un gaz parfait s’exprime :

∆H = CP ∆T = CP (Tf − Ti) = nRγ

γ − 1(Tf − Ti).

On passe alors à l’application numérique : on a ∆H = 1 mol× 8,314 J ·K−1 ·mol−1 × 1,4
1,4− 1 × 30 K = 8,7× 102 J.

.......................................................................................................................................................
19.9 a) On a ∆U = CV ∆T = CV (Tf − Ti).
.......................................................................................................................................................

19.9 b) On a ∆U = A

2 (Tf
2 − Ti

2) +B(Tf − Ti).
.......................................................................................................................................................

19.9 c) On a ∆U = D

4 (Tf
4 − Ti

4).
.......................................................................................................................................................
19.10 Pour cette transformation, nous avons une masse ml = 800 g d’eau qui est transformée de l’état liquide

à l’état solide, et qui subit donc une solidification (transformation inverse d’une fusion).
La variation d’enthalpie s’exprime : ∆H = −ml × Lfus = 0,800 kg ×−335 kJ · kg−1 = −268 kJ.
.......................................................................................................................................................

19.11 On a Tf = Ti + n2a

CV

(
1
Vf
− 1
Vi

)
.

.......................................................................................................................................................
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19.12 a) On a alors C(Tf − Ti) = Q, et donc Tf = Ti + Q

C
.

.......................................................................................................................................................

19.12 b) On a alors A ln
(
Tf

Ti

)
= Q, et donc Tf = Tie

Q
A .

.......................................................................................................................................................

19.12 c) On a alors B
(
Tf

3

3 − Ti
3

3

)
= Q, et donc Tf =

(
Ti

3 + 3Q
B

)1/3
.

.......................................................................................................................................................
19.13 a) Le système est un gaz parfait, et nous avons donc PV = nRT , avec T la température qui est constante

et qui vaut donc Ti. L’expression du travail est donc :

W = −nRTi

ˆ Vf

Vi

dV
V

= −nRTi ln
(
Vf

Vi

)
.

D’après la première loi de Joule, pour un gaz parfait, la variation d’énergie interne s’écrit ∆U = Cv∆T = 0.

On obtient finalement : Q = −W = nRTi ln
(
Vf

Vi

)
.

.......................................................................................................................................................

19.13 b) Pour une transformation isochore, le travail est nul : W = −
ˆ Vf

Vi

P dV = 0.

On obtient alors : Q = ∆U = nR

γ − 1(Tf − Ti).
.......................................................................................................................................................
19.13 c) Pour une transformation adiabatique, le transfert thermique reçu de l’extérieur est nul, et donc Q = 0.
.......................................................................................................................................................
19.14 a) On a ∆UA = WA +QA avec WA = W1 et QA = −Q1. Ainsi, on a ∆U1 = W1 −Q1.
.......................................................................................................................................................
19.14 b) On a ∆UB = WB +QB avec WB = 0 et QB = Q1 −Q2. Ainsi, on a ∆U2 = Q1 −Q2.
.......................................................................................................................................................
19.14 c) On a ∆Utot = ∆UA + ∆UB = W1 −Q1 +Q1 −Q2 = W1 −Q2.
.......................................................................................................................................................
19.15 La capacité thermique du calorimètre vaut donc C = m× ceau. On obtient C = 42 J ·K−1.
.......................................................................................................................................................

19.16 a) Le temps caractéristique pour l’équation différentielle obtenue est τ = C

h
.

.......................................................................................................................................................
19.16 b) On obtient T = Ta + (T0− Ta)e− ht

C en sommant solutions particulière et homogène, et en appliquant la
condition initiale T (0) = T0.
.......................................................................................................................................................
19.17 La température initiale est Ta, donc la courbe doit commencer en Ta. Les courbes a et c sont donc

exclues. La courbe d correspond à une exponentielle croissante et ne convient donc pas. La réponse est b .
.......................................................................................................................................................

19.18 a) On trouve Teq = m1T1 +m2T2

m1 +m2
.

.......................................................................................................................................................

19.18 b) On trouve Teq = m1T1 +m2T2

m1 +m2
+ Q

(m1 +m2)c .
.......................................................................................................................................................
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Fiche no 20. Second principe et machines thermiques

Réponses

20.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −94,8 J

20.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

20.3 a) . . . . . . . . . . . . . . . . . . . . . dH = T dS + V dP

20.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dU = 0

20.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = nR
dV
V

20.4 a) . . . . . . . . . . . . . . . . . . dU = δW = −Pext dV

20.4 b) . . . . . . . . . . . . . . . . . . . . dU = δW = −P dV

20.4 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dU = δQ

20.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = δSc

20.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dS = 0

20.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . dS = δQ

T
+ δSc

20.6 a) . . . . . . . . . . . . . . . . . . . . . TfVf
γ−1 = TiVi

γ−1

20.6 b) . . . . . . . . . . . . . . . . . . Tf
γPf

1−γ = Ti
γPi

1−γ

20.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . PfVf
γ = PiVi

γ

20.7 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ − 1

20.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ

(1 − γ)

20.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = (1 − γ)
γ

20.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = γ2

(1 − γ)

20.7 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x = 1 − γ

20.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,03 bar

20.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,31 J · K−1

20.9 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,98 J · K−1

20.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,89 J · K−1

20.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

20.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR ln(2)

20.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

20.11 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

20.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.11 e). . . . . . . . . . . . . . . . . . . . . . . . . . . 6 390 J · K−1

20.12 a) . . . . . . . . . . . . . . . . . . . . . 393 J · K−1 · kg−1

20.12 b) . . . . . . . . . . . . . . . . . . . . . 447 J · K−1 · kg−1

20.12 c) . . . . . . . . . . . . . . . . . . . . . m1c1T1 +m2c2T2
m1c1 +m2c2

20.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 K

20.12 e) . . . . . . . . . . . . . . . . . . . . . . ∆S =7,54 J · K−1

20.12 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

20.13 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . W × COP

20.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,4 MJ

20.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −37,4 MJ

20.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

20.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . η = 33 %

20.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −QC

COP

20.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 GJ

20.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,6 MJ

20.15 d) . . . . . . . . . . . . . . . . . . . . . . . . 1,2 × 103 euros

20.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 %

20.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ηQF

(1 − η)
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20.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −295 J

20.16 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13,4 cv

20.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
P

20.17 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
T

20.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −1

Corrigés

20.1 Le premier principe donne ∆U = W +Q donc Q = ∆U −W . De plus, la première loi de Joule donne :

∆U = CV ∆T = CV (Tf − Ti).

Finalement, on a Q = CV (Tf − Ti)−W = 1,04 J ·K−1 × (298 K− 293 K)− 100 J = −94,8 J.
.......................................................................................................................................................
20.2 On effectue un bilan d’énergie à l’aide du premier principe. La variation élémentaire d’énergie interne

du liquide est :
dU = mc× dT soit, en puissance, P = dU

dt = mc
dT
dt ,

où P est la puissance de chauffe apportée. En supposant cette puissance constante, il vient ∆t = mc∆T
P

.

On a donc :
∆teau

∆thuile
= ceau

chuile
= 4 180 J ·K−1 · kg−1

2 000 J ·K−1 · kg−1 = 2,09 > 1.

Ainsi, l’huile chauffe plus de deux fois plus vite que l’eau.
.......................................................................................................................................................
20.3 a) Par définition, on a H = U + PV . Ainsi, on a dH = dU + P dV + V dP . On en déduit :

dH = T dS − P dV + P dV + V dP = T dS + V dP.
.......................................................................................................................................................
20.3 b) Le gaz parfait suit la première loi de Joule : son énergie interne ne dépend que de la température. Ainsi,

pour une transformation isotherme, on a dU = 0.
.......................................................................................................................................................
20.3 c) On a dU = 0. Ainsi, la première identité thermodynamique devient :

0 = T dS − P dV.

On en déduit T dS = P dV . Ainsi, grâce à l’équation d’état PV = nRT , on en déduit :

dS = P

T
dV = nR

dV
V
.

.......................................................................................................................................................
20.6 a) Utilisons la relation ∆S = 0 qui fait intervenir les volumes et les températures. On a :

∆S = 0 = nR

γ − 1 ln
(
Tf

Ti

)
+ nR ln

(
Vf

Vi

)
donc nR

γ − 1

[
ln
(
Tf

Ti

)
+ (γ − 1) ln

(
Vf

Vi

)]
= 0.

En utilisant les propriétés de la fonction logarithme, on obtient :

∆S = nR

γ − 1 ln
[(

Tf

Ti

)(
Vf

Vi

)γ−1
]
.

On en déduit Tf

Ti

(
Vf

Vi

)γ−1
= 1, c’est-à-dire TfVf

γ−1 = TiVi
γ−1.

.......................................................................................................................................................
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20.6 b) On procède de la même manière à partir de l’expression qui fait intervenir les températures et les
pressions. On a :

∆S = nRγ

γ − 1 ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
= 0 = nR

γ − 1

[
γ ln
(
Tf

Ti

)
− (γ − 1) ln

(
Pf

Pi

)]
.

En utilisant les propriétés de la fonction logarithme, on obtient :

nR

γ − 1 ln
[(

Tf

Ti

)γ(Pf

Pi

)1−γ
]

= 0.

On aboutit à : (
Tf

Ti

)γ(Pf

Pi

)1−γ

= 1 c’est-à-dire Tf
γPf

1−γ = Ti
γPi

1−γ .

.......................................................................................................................................................
20.6 c) Utilisons l’expression qui fait intervenir les pressions et les volumes. On a :

∆S = 0 = nR

γ − 1 ln
(
Pf

Pi

)
+ nRγ

γ − 1 ln
(
Vf

Vi

)
= nR

γ − 1

[
ln
(
Pf

Pi

)
+ γ ln

(
Vf

Vi

)]
.

En simplifiant, on trouve :
nR

γ − 1 ln
[(
Pf

Pi

)(
Vf

Vi

)γ]
= 0.

Finalement, on aboutit à : (
Pf

Pi

)(
Vf

Vi

)γ

= 1 c’est-à-dire PfVf
γ = PiVi

γ .

.......................................................................................................................................................
20.7 a) On a PV γ = Cte. Avec l’équation d’état du gaz parfait, on obtient :

nRT

V
V γ = Cte et donc TV γ−1 = Cte

nR
= Cte.

.......................................................................................................................................................
20.8 a) On travaille sur un gaz parfait de manière isochore. Ainsi, on a :

V

nR
= Cte = T

P
= Ti

Pi
= Tf

Pf
.

On en déduit :
Pf = Tf

Ti
Pi = (130 °C + 273)

(120 °C + 273) × 1.

Finalement, on trouve Pf = 1,03 bar.
.......................................................................................................................................................
20.8 b) On a dH = T dS + V dP . Ainsi, on a :

dS = dH
T
− nRdP

P
.

En intégrant cette relation, on obtient :

∆S = CP ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
= 5

2nR ln
(
Tf

Ti

)
− nR ln

(
Pf

Pi

)
.

Comme PV = nRT , on a Tf

Ti
= Pf

Pi
et donc ∆S = 3

2nR ln
(
Tf

Ti

)
.

L’application numérique donne ∆S = 0,31 J ·K−1.
.......................................................................................................................................................
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20.9 a) On a Se = 1,00 mol× 8,314 J ·K−1 ·mol−1

1,4− 1 ln
(550 K

500 K

)
= 1,98 J ·K−1.

.......................................................................................................................................................
20.9 b) Le premier principe s’écrit : ∆U = W︸︷︷︸

=0

+Q.

Le gaz étant supposé parfait, la première loi de Joule s’applique : on a ∆U = Cv∆T .

De plus, sa capacité thermique satisfait la relation de Mayer : on a Cp − Cv = nR donc Cv = nR

γ − 1 par définition

du coefficient adiabatique γ = Cp

Cv
.

Par conséquent, l’entropie échangée s’exprime :

Se = ∆U
T0

=
nR

γ−1 (Tf − Ti)
T0

.

L’application numérique donne :

Se =

1,00 mol× 8,314 J ·K−1 ·mol−1

1,4− 1 (550 K− 500 K)

550 K = 1,89 J ·K−1.

.......................................................................................................................................................
20.9 c) Le second principe s’écrit ∆S = Se + Sc. L’entropie créée au cours de la transformation étudiée vaut
Sc = ∆S − Se =1,98 J ·K−1 - 1,89 J ·K−1 = 0,09 J ·K−1. Puisque Sc > 0, on peut conclure que la transformation
n’est pas réversible.
.......................................................................................................................................................
20.10 La détente étant isoénergétique, on a ∆U = 0 = W +Q. Comme il s’agit d’une détente dans le vide, on

a W = 0 et ainsi Q = 0 : cette détente brutale et rapide est adiabatique. Le second principe s’écrit :

∆S = Q

T0︸︷︷︸
=0

+Sc.

De plus, la détente du gaz parfait étant isoénergétique, on a Ti = Tf (en utilisant la première loi de Joule). Ainsi,
on peut écrire ∆S = nR ln

(
Vf

Vi

)
. Finalement, on a Sc = nR ln(2).

.......................................................................................................................................................
20.11 a) L’expression comporte trois termes : la variation d’enthalpie liée au changement de température de

l’eau à l’état liquide, la variation d’enthalpie liée à la vaporisation de l’eau et enfin la variation d’enthalpie liée au
changement de température de l’eau à l’état gazeux. Le premier terme décrit la variation de température de l’eau
à l’état liquide, qui est chauffée de T2 à T1 (car la différence T1 − T2 correspond au bilan entre l’état final et l’état
initial), autrement dit de T2 = Ti (température initiale) à T1 = T0 (changement d’état). Le résultat est cohérent
car T0−Ti > 0 : la variation d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
.......................................................................................................................................................
20.11 b) Voir corrigé précédent.
.......................................................................................................................................................
20.11 c) Le troisième terme décrit la variation de température de l’eau à l’état gazeux, qui est chauffée de T4

à T3 (car la différence T3 − T4 correspond au bilan entre l’état final et l’état initial), autrement dit de T4 = T0
(changement d’état) à T3 = Tf (température finale). Le résultat est cohérent car Tf − T0 > 0 et donc la variation
d’entropie est positive, ce qui est cohérent avec une transformation de type chauffage.
.......................................................................................................................................................
20.11 d) Voir corrigé précédent.
.......................................................................................................................................................
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20.11 e) De manière analogue à l’expression de la variation d’enthalpie fournie par l’énoncé, la variation d’entropie
s’exprime en trois termes. Après intégration entre l’état initial et l’état final, on obtient :

∆S = mceau ln
(
T0

Ti

)
+m

∆vapH
o

T0
+mcP,vapeur ln

(
Tf

T0

)
.

L’application numérique donne :

∆S = 1,00 kg × 4 180 J ·K−1 · kg−1 × ln
(373 K

353 K

)
+ 1,00 kg × 2 257 kJkg−1

373 K

+ 1,00 kg × 2 010 J ·K−1 · kg−1 × ln
(393 K

373 K

)
= 6 390 J ·K−1.

.......................................................................................................................................................
20.12 a) La capacité thermique molaire est Cm, qu’on peut exprimer en J ·K−1 ·mol−1. La capacité thermique

massique c est donnée par c = Cm

M
. L’application numérique pour le cuivre donne c1 = 393 J ·K−1 · kg−1.

.......................................................................................................................................................

20.12 b) De même, en utilisant c = Cm

M
, l’application numérique pour le fer donne c2 = 447 J ·K−1 · kg−1.

.......................................................................................................................................................
20.12 c) Les phases condensées sont de volume constant donc W = 0, et le système est supposé isolé donc Q = 0.

L’application du premier principe au système donne ∆U = 0. L’additivité de l’énergie interne permet d’écrire :

∆U = ∆U1 + ∆U2 = 0.

On a donc :
m1c1(Tf − T1) +m2c2(Tf − T2) = 0.

On isole Tf pour obtenir :
Tf = m1c1T1 +m2c2T2

m1c1 +m2c2
.

.......................................................................................................................................................
20.12 d) L’application numérique donne Tf = 361 K.
.......................................................................................................................................................

20.12 e) Pour une phase condensée, on a CV = CP = Cm et dU = dH = mcdT . Ainsi, on a dS = mcdT
T

.

Par additivité de l’entropie, puis par intégration, on peut écrire que la variation d’entropie du système est :

∆S = ∆S1 + ∆S2 = m1c1 ln
(
Tf

T1

)
+m2c2 ln

(
Tf

T2

)
.

L’application numérique donne ∆S = 7,54 J ·K−1.
.......................................................................................................................................................
20.12 f) Appliquons le second principe sur le système formé par l’ensemble des deux solides. On a :

∆S =
ˆ

δQ

T ext + Sc = Sc,

où l’entropie d’échange
ˆ

δQ

T ext = 0 car le système est isolé ; il n’échange donc pas de transfert thermique avec
l’extérieur.
Par conséquent, l’entropie créée vaut Sc = ∆S = 7,49 J ·K−1 > 0. Cette valeur est strictement positive : ainsi, la
transformation est irréversible.
.......................................................................................................................................................
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20.13 a) L’efficacité d’une machine frigorifique (ou COP) est : COP = QF

W
. Ainsi, on a QF = W × COP.

.......................................................................................................................................................
20.13 b) L’application numérique donne QF = 20,4 MJ.

Attention : pour une machine frigorifique, on a QF > 0, QC < 0 et W > 0.
.......................................................................................................................................................
20.13 c) Sur un cycle, on a ∆U = W +QC +QF = 0. Donc, QC = −W −QF .

L’application numérique donne QC =−37,4 MJ.
.......................................................................................................................................................
20.14 a) Le premier principe sur le cycle donne ∆U = W +QC +QF = 0. Ainsi, on a QF = −W −QC .

Attention : il faut bien identifier que, pour un moteur, W = −500 J et QC = 1 500 J.
L’application numérique donne QF = −1 000 J.
.......................................................................................................................................................

20.14 b) L’efficacité du moteur est η = −W
QC

, avec ici W = −500 J et QC = 1 500 J. On arrive à η = 33 %.

Il est important d’identifier le signe des transferts ici.
.......................................................................................................................................................

20.15 a) L’efficacité d’une pompe à chaleur (ou COP) est : COP = −QC

W
. Ainsi, W = −QC

COP .
.......................................................................................................................................................

20.15 b) L’application numérique donne W = −QC

COP = −(−3 GJ)
3 = 1 GJ.

Attention : pour une pompe à chaleur, on a QF > 0, QC < 0 et W > 0.
.......................................................................................................................................................
20.15 c) On a 1 kWh = 1 000 Wh = 1 000 W× 3 600 s = 3,6 MJ.
.......................................................................................................................................................
20.15 d) La pompe utilise une énergie W = 1 GJ par semaine, soit 1× 109/(3,6× 106) kWh. En multipliant par

le coût de 17 centimes d’euro du kilowatt-heure et en considérant la moitié des 52 semaines annuelles, on obtient
un coût annuel de :

1× 109

3,6× 106 × 0,17 euro× 52
2 = 1 228 euros = 1,2× 103 euros

(en prenant le bon nombre de chiffres significatifs).
.......................................................................................................................................................

20.16 a) Le rendement de Carnot d’un moteur cyclique ditherme est donné par η = 1− TF

TC
. Après avoir converti

les températures en kelvins en ajoutant 273,15, on trouve η = 33 %.
.......................................................................................................................................................

20.16 b) Pour un moteur, on a η = −W
QC

. Or, sur un cycle, on a ∆U = W +QC +QF = 0. Ainsi, on a :

η = −W
−W −QF

et donc W = ηQF

1− η .

.......................................................................................................................................................
20.16 c) Il faut identifier que, pour un moteur, on a QF < 0, soit ici QF = −600 J.

L’application numérique donne : W = 0,33× (−600 J)
1− 0,33 = −295 J.

Si on considère que η = 1/3, on trouve W = −300 J.
.......................................................................................................................................................
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20.16 d) Le moteur fournit 295 J par cycle à un régime de 2 000 cycles par minute. La puissance P est donc :

P = 295 J× 2 000 cycles ·min−1

60 s ·min−1 = 9 833 W.

En utilisant que 1 cv = 736 W, on obtient P = 13,4 cv.
Si on considère que W = −300 J, on trouve P = 13,5 cv.
.......................................................................................................................................................

20.17 a) Pour un gaz parfait, on a l’équation d’état PV = nRT , ainsi V = nRT

P
.

On dérive par rapport à P à T constant. On obtient :(
∂V

∂P

)
T

= −nRT
P 2 et donc χT = − 1

V

(
∂V

∂P

)
T

= nRT

V P 2 .

En utilisant de nouveau l’équation d’état PV = nRT , il vient alors χT = 1
P

.
.......................................................................................................................................................

20.17 b) Pour un gaz parfait, on a l’équation d’état PV = nRT , ainsi V = nRT

P
.

On dérive par rapport à T à P constant. On obtient :(
∂V

∂T

)
P

= nR

P
et donc α = 1

V

(
∂V

∂T

)
P

= nR

PV
.

En utilisant de nouveau l’équation d’état PV = nRT , il vient alors α = 1
T

.
.......................................................................................................................................................
20.17 c) On utilise l’équation d’état PV = nRT pour isoler la variable à dériver. Après calcul, on obtient :(

∂V

∂T

)
P

= nR

P
,

(
∂T

∂P

)
V

= V

nR
et

(
∂P

∂V

)
T

= −nRT
V 2 .

On arrive alors à Y = −1.
.......................................................................................................................................................
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Fiche no 21. Statique des fluides

Réponses

21.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 N · cm−2

21.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,5 bar

21.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,4 atm

21.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,9 × 102 N

21.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 bar

21.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

21.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 + ρgz1

21.5 b) . . . . . . . . . . . . . . . . . . . . p0 + ρg(H − h− z2)

21.5 c) . . . . . . . . . . . . . . . . . . ρg(H − z3 sin(α)) + p0

21.6 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 1√
2

( #»ex − #»ey)

21.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − #»ey

21.6 c) . . . . . . . . . . . . . . . . . . . . . . . . −1
2

(√
3 #»ex + #»ey

)
21.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.7 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a c

21.7 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ρhVh
ρes

21.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 + ρgH

21.8 b) . . . . . . . . . . . . . . . . . . . . . . p0 + ρg
(
H + s

S
h
)

21.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 N

21.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 N

21.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 N

21.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

21.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

21.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −ρga3

21.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − # »

Pd

21.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 N

21.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

21.13 a) . . . . . . . . . . . . . . . . . . [ρsh− ρℓ(h− x)]S #»g

21.13 b). . . . . . . . . . . . . . . . . . . . . . . . . . . h

(
ρℓ − ρs
ρℓ

)
21.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . (ρℓ − ρs)Shg

21.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

21.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3
S(h− x)3

h2

21.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . h

(
1 − 3

√
ρs
ρe

)
21.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

21.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A #»ez

21.16 b) . . . . . . . . . . . By2 #»ex + 2Bxy #»ey + 2Ce2z #»ez

21.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . 43,6 g · mol−1

21.17 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14,8 g · m−3

21.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

21.17 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 km

21.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . dp
dz = − 2p

zmax

21.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . p0 e−2z/zmax

21.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . p0e−agz/p0
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21.19 b) . . . . . . . . . . . . . . . . . . . . . p0 + a

b

(
e−bgz − 1

)
21.19 c) . . . . . . . . . . . . . p0 − agz + bcg

(
1 − e−z/c

)
21.20 a) . . . . . . . . . . . . . . . . . . . . . . . ρ(ay − gz) + p0

21.20 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . z = a

g
y

21.21 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2ρgLh

2

21.21 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
6ρgLh

3

21.21 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3h

Corrigés

21.1 a) Par définition, on a 1 Pa = 1 N ·m−2. Ainsi, on a :

750 kPa = 750× 103 Pa = 750× 103 N ·m−2 = 750× 103 ×N× (100 cm)−2 = 75 N · cm−2.

.......................................................................................................................................................
21.1 b) En effet, par définition, on a 1 bar = 1× 105 Pa.
.......................................................................................................................................................

21.1 c) Par définition, on a 1 atm = 1 013,25 hPa. C’est pourquoi 750 kPa = 7 500 hPa = 7 500
1 013,25 = 7,4 atm.

.......................................................................................................................................................

21.2 a) La force de pression s’écrit #»
F =

¨
p #»n dS, où #»n est le vecteur unitaire normal à l’élément de surface

et dirigé vers l’intérieur du solide. Ici #»n est vertical car la surface est un disque horizontal. Enfin, la pression étant
uniforme sur la base du cylindre, on a :

#»
F = pS #»n, soit F = pπ(d/2)2 = 6× 105 × π × (0,01)2 = 1,9× 102 N.

.......................................................................................................................................................
21.2 b) Le volume de gaz ne variant pas, la pression reste la même.
.......................................................................................................................................................
21.3 La formule a n’est pas homogène car p0 est une pression et z une longueur. La formule b n’est pas

homogène car p0

(
1− e− z

zmax

)
est une pression et z une longueur. La formule d n’est pas homogène car (entre

autres) l’expression 1− z − z2 n’est pas homogène, puisque z est une longueur et z2 une aire.
.......................................................................................................................................................
21.4 Dans un liquide incompressible en équilibre dans le champ de pesanteur uniforme #»g , la pression suit la

loi p(M) = p0 + ρg × hM, où hM est la profondeur du point M depuis la surface libre soumise à une pression p0.
Ici, le point M se situe à une profondeur hM = h0 − z. Donc, on a p(M) = p0 + ρg(h0 − z).
.......................................................................................................................................................
21.5 a) L’équation fondamentale de la statique des fluides est #      »grad p = ρ #»g . On projette cette égalité suivant

l’axe (O1z1) :
dp
dz1

= ρg d’où après intégration p(z1) = ρgz1 + C1.

À l’interface air/eau, on a p(z1 = 0) = p0 = C1. Ainsi, on a p(z1) = p0 + ρgz1.
.......................................................................................................................................................
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21.5 b) Suivant l’axe (O2z2), on a dp
dz2

= −ρg. D’où, p(z2) = −ρgz2 + C2. À l’interface air/eau, on a :

p(z2 = H − h) = p0 = −ρg(H − h) + C2.

Donc, on a C2 = p0 + ρg(H − h). Finalement, on trouve p(z2) = p0 + ρg(H − h− z2).
.......................................................................................................................................................
21.5 c) Suivant l’axe (O3z3), on a :

dp
dz3

= −ρg sinα ce qui donne p(z3) = −ρg sinαz3 + C3.

Au fond de l’eau, on a p(z3 = 0) = p0 + ρgH = C3. Par conséquent, on a p(z3) = ρg(H − z3 sinα) + p0.
On pouvait aussi plus simplement reprendre la formule de la question b) et noter que z3 = (z2 + h)/ sin(α), ce qui
donne le même résultat.
.......................................................................................................................................................
21.6 a) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uA = 1√
2

( #»ex − #»ey).
.......................................................................................................................................................
21.6 b) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uB = − #»ey.
.......................................................................................................................................................
21.6 c) La force pressante est toujours normale à la surface de l’objet et orientée vers celui-ci.

On trouve ainsi : #  »uC = − cos
(
π

6

)
#»ex − sin

(
π

6

)
#»ey = −1

2
(√

3 #»ex + #»ey

)
.

.......................................................................................................................................................
21.7 a) Le point A est sous une hauteur h d’huile de masse volumique ρh par rapport à la surface. La pression

en A vaut donc : pA = patm + ρhgh. Le volume Vh d’huile occupe la hauteur h dans le tube de section s telle que :
Vh = sh. On obtient ainsi pA = patm + ρhg

Vh

s
.

.......................................................................................................................................................
21.7 b) Le point B est sous une hauteur d1 d’eau de masse volumique ρe par rapport à A, la pression en B vaut

donc : pB = pA + ρegd1.
.......................................................................................................................................................
21.7 c) Le point C est sous une hauteur d2 d’eau par rapport à la surface. La pression en C vaut donc :

pC = patm + ρegd2.

De plus, les points B et C sont à la même altitude dans le même fluide donc pB = pC.
.......................................................................................................................................................
21.7 d) À partir des expressions de pA, pB et pC obtenues précédemment, la relation pB = pC donne :

patm + ρhg
Vh

s
+ ρegd1 = patm + ρegd2.

Il en découle : d2 − d1 = ρhVh

ρes
.

.......................................................................................................................................................
21.8 a) La pression qui règne dans un liquide incompressible s’écrit p(M) = p0 + ρghM, où hM est la profondeur

du point M depuis la surface libre soumise à une pression p0. Ainsi, au fond du récipient, on a p = p0 + ρgH.
.......................................................................................................................................................

110 Fiche no 21. Statique des fluides



21.8 b) En plongeant le solide dans le liquide, on modifie la hauteur de liquide. Notons H ′ cette nouvelle hauteur.
On obtient H ′ en traduisant l’additivité des volumes :

SH + sh = SH ′ soit H ′ = H + s

S
h.

Finalement, la pression au fond du récipient vaut :

p = p0 + ρgH ′ = p0 + ρg
(
H + s

S
h
)
.

.......................................................................................................................................................
21.9 a) On a

∥∥ #»Π
∥∥ = mgly × g = ρgly × Vimmergé × g, avec Vimmergé = a3. Finalement, on trouve :∥∥ #»Π
∥∥ = ρgly × a3 × g = 1,2× 10−3 kg · cm−3 × (10 cm)3 × 9,8 m · s−2 = 12 N.

.......................................................................................................................................................

21.9 b) On a
∥∥ #»Π
∥∥ = msavon × g = ρsavon × Vimmergé × g, avec Vimmergé = 1

2 ×
4
3πa

3. Finalement, on trouve :

∥∥ #»Π
∥∥ = 2

3ρsavon × πa3g = 2
3 × 2,5× 10−3 kg · cm−3 × π × (10 cm)3 × 9,8 m · s−2 = 51 N.

.......................................................................................................................................................

21.9 c) On a
∥∥ #»Π
∥∥ = meau×g = ρeau×Vimmergé×g avec Vimmergé = 2

3πa
2h avec h = 4a. Finalement, on trouve :

∥∥ #»Π
∥∥ = 8

3ρeau × πa3g = 8
3 × 1,0× 10−3 kg · cm−3 × π × (10 cm)3 × 9,8 m · s−2 = 82 N.

.......................................................................................................................................................
21.10 En notant #»

P le poids du solide et #»Π la poussée d’Archimède qui s’exerce sur lui, la condition d’équilibre
assure #»

P + #»Π = #»0 . Par projection sur l’axe vertical, on obtient mSg−mLg = 0, avec mL la masse de fluide déplacé
par le glaçon. En faisant apparaître les masses volumiques, l’équation mS = mL devient ρSVS = ρLVimm : b .
.......................................................................................................................................................
21.11 a) La pression ne dépend que de z, par conséquent les forces de pression qui s’exercent sur les faces latérales

verticales se compensent. Aussi a-t-on Rx = 0.
.......................................................................................................................................................
21.11 b) Pour les mêmes raisons que précédemment, Ry = 0.
.......................................................................................................................................................
21.11 c) Rappelons que la pression vérifie la loi p(z) = p0 + ρgz avec p0 la pression qui règne à la surface

libre. Faisons un bilan des forces qui agissent sur les faces horizontales du cube. La face du dessus ressent la force
# »
F1 = (p0 + ρgz1)a2 #»ez alors que la face du dessous subit une force pressante # »

F2 = −(p0 + ρgz2)a2 #»ez. Ainsi, la
résultante verticale des forces pressantes vaut :

Rz = ( # »
F1 + # »

F2) · #»ez = −ρga2(z2 − z1) = −ρga3.

.......................................................................................................................................................
21.11 d) On trouve donc #»

R = −ρga3 #»ez. L’immersion du solide déplace un volume a3 de liquide, qui a pour masse
m = ρ a3 et poids # »

Pd = ρa3 #»g = ρa3g #»ez. Ainsi on trouve #»
R = − # »

Pd conformément au principe d’Archimède.
.......................................................................................................................................................
21.12 a) Avant immersion, on a #»

T + #»
P = #»0 , où #»

P est le poids du solide. Après, on a
# »

T ′ + #»
P + #»Π = #»0 , où #»Π est

la poussée d’Archimède. On en déduit :
#»Π = #»

T −
# »

T ′ soit ∥ #»Π∥ = ∥ #»
T −

# »

T ′∥ = 10 N− 8 N = 2 N.

.......................................................................................................................................................
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21.12 b) On a vu que le poids vaut P = 10 N et la poussée d’Archimède Π = 2 N. Or, on a :

P = ρsV g et Π = ρeV g avec
{
ρs masse volumique du solide
ρe masse volumique de l’eau.

Le rapport de ces deux relations donne immédiatement la densité du solide : d = ρs

ρe
= P

Π = 5.
.......................................................................................................................................................
21.13 a) Le poids du bloc solide vaut #»

P = ρsSh
#»g . La poussée d’Archimède est l’opposée du poids de liquide

déplacé, à savoir #»Π = −ρℓS(h− x) #»g . Ainsi, la résultante des forces vaut #»
R =

[
ρsh− ρℓ(h− x)

]
S #»g .

.......................................................................................................................................................

21.13 b) La condition d’équilibre mécanique #»
R = #»0 donne ρsh− ρℓ(h− x) = 0 et donc x = h

(
ρℓ − ρs

ρℓ

)
.

.......................................................................................................................................................
21.13 c) La résultante des forces vaut maintenant #»

R = #»
P + #»Π + #»

F . En faisant x = 0 dans l’expression obtenue à
la question a), on trouve :

#»
R = (ρsh− ρℓh)S #»g + #»

F .

La condition d’équilibre #»
R = #»0 donne alors #»

F = (ρℓh− ρsh)S #»g , d’où ∥ #»
F ∥ = |(ρℓh− ρsh)S|g = (ρℓ − ρs)Shg.

.......................................................................................................................................................
21.14 a) La proposition a est homogène car ρs/ρe est sans dimension et h est homogène à une longueur.

La formule b n’est pas homogène à cause de la racine cubique.
La formule c n’est pas homogène non plus car on ajoute une longueur (h) à une masse volumique (ρs).

Enfin, la proposition d n’est pas homogène car le produit d’une masse volumique par une longueur ne peut pas
donner une longueur.
.......................................................................................................................................................

21.14 b) Le volume immergé s’écrit Vimm = 1
3S

′(h− x), où S′ est l’aire de la base du volume conique immergé.
Si l’on note r′ le rayon de cette base, on a :

S′

S
=
(
r′

r

)2

=
(
h− x
h

)2
,

où la dernière égalité utilise les relations de Thalès (r est le rayon de la base de l’iceberg et r′ celui du cône immergé).
On en déduit :

Vimm = 1
3
S(h− x)3

h2 .

.......................................................................................................................................................

21.14 c) Le poids du cône vaut #»
P = m #»g , avec m = 1

3Shρs et S l’aire de la base du cône.

Quant à la poussée d’Archimède, on a #»Π = −md
#»g , où md désigne la masse de liquide déplacé par l’immersion

du cône. On a md = ρeVimm = 1
3
S(h− x)3

h2 ρe, d’où #»Π = −1
3
S(h− x)3

h2 ρe
#»g . La condition d’équilibre #»Π + #»

P = #»0
donne : [

1
3Shρs −

1
3S

(h− x)3

h2 ρe

]
#»g = #»0 d’où x = h

(
1− 3

√
ρs

ρe

)
.

.......................................................................................................................................................

112 Fiche no 21. Statique des fluides



21.15 a) La masse mB peut se décomposer en notant mliq la masse de la partie liquide et mglaçon celle des glaçons :

mB = mliq +mglaçon = ρe(Vtot − Vim) +mglaçon,

en notant ρe la masse volumique de l’eau, Vtot le volume total du verre (égal à celui du verre A) et Vim le volume
immergé des glaçons.
Par ailleurs, l’équilibre mécanique des glaçons donne d’après le PFD : mglaçon = ρeVim. Ainsi, mB = ρeVtot = mA.
.......................................................................................................................................................
21.15 b) Le polystyrène étant moins dense que la glace, il est aussi moins dense que l’eau. Par conséquent, les

boules flottent. Ayant la même masse que les glaçons, les boules de polystyrène présenteront un volume immergé
identique à la situation précédente. La hauteur sera donc identique.
.......................................................................................................................................................
21.15 c) Le fer est plus dense que l’eau, donc les boules coulent. On note Vsb1 et Vsb2 respectivement les volumes

submergés avec les glaçons et avec les boules de fer. On a les relations :

Vsb1 = Vliq + Vim et Vsb2 = Vliq + VFe.

De plus, comme les boules de fer sont de même masse que les glaçons : mglaçon = ρeVim = mFe = ρFeVFe, en notant

ρFe la masse volumique du fer et VFe leur volume. Ainsi : VFe =
(
ρe

ρFe

)
Vim. Ainsi, on a :

Vsb2 = Vliq +
(
ρe

ρFe

)
Vim,

avec ρe

ρFe
< 1. Ainsi, Vsb2 < Vsb1 : le niveau diminue.

.......................................................................................................................................................
21.16 a) On a :

∂(p0 +Az)
∂x

= 0, ∂(p0 +Az)
∂y

= 0 et ∂(p0 +Az)
∂z

= A.

On en déduit #      »grad(p) = A #»ez.
.......................................................................................................................................................
21.16 b) On a :

∂(Bxy2 + Ce2z)
∂x

= By2,
∂(Bxy2 + Ce2z)

∂y
= 2Bxy et ∂(Bxy2 + Ce2z)

∂z
= 2Ce2z.

Par conséquent, #      »grad(p) = By2 #»ex + 2Bxy #»ey + 2Ce2z #»ez.
.......................................................................................................................................................
21.17 a) La masse molaire d’un mélange s’obtient en effectuant la moyenne pondérée des masses molaires :

M = 0,96M(CO2) + 0,02M(Ar) + 0,02M(N2)
= 0,96× 44 g ·mol−1 + 0,02× 40 g ·mol−1 + 0,02× 28 g ·mol−1 = 43,6 g ·mol−1.

.......................................................................................................................................................
21.17 b) En partant de l’équation d’état des gaz parfaits, on a :

pV = nRT = m

M
RT donc pM

RT
= m

V
= ρ.

L’application numérique donne : ρ = 6× 102 Pa × 43,6× 10−3 kg ·mol−1

8,314 J ·K−1 ·mol−1 × 213,15 K
= 14,8 g ·m−3.

.......................................................................................................................................................
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21.17 c) On remplace ρ par son expression trouvée précédemment et on obtient alors une équation différentielle
du premier ordre :

dp
dz = −ρg = −Mg

RT
p donc dp

dz + p

z0
= 0.

Ainsi, on a :
p(z) = p0 exp

(
− z

z0

)
avec z0 = RT

Mg
.

.......................................................................................................................................................

21.17 d) On calcule H = 5z0 = 5 8,314 J ·K−1 ·mol−1 × 213,15 K
43,6× 10−3 kg ·mol−1 × 3,72 m · s−2 = 55 km.

.......................................................................................................................................................

21.18 a) En effet, on a dp
dz = p(z + dz)− p(z)

dz , ce qui donne l’équation différentielle dp
dz = − 2p

zmax
.

.......................................................................................................................................................
21.18 b) Il s’agit d’une équation différentielle linéaire du type y′ + ay = 0.

La solution s’écrit p(z) = A e−2z/zmax , avec A une constante d’intégration que l’on détermine à l’aide de la contrainte
p(z = 0) = p0. On trouve p(z) = p0 e−2z/zmax .
.......................................................................................................................................................

21.19 a) La projection de l’équation de la statique sur les axes (Ox) et (Oy) donne ∂p

∂x
= ∂p

∂y
= 0. Le champ de

pression ne dépend donc que de z. La projection selon (Oz) donne alors :

dp
dz = −ρg = −ag

p0
p.

Par conséquent, on aboutit à l’équation différentielle :

dp
dz + ag

p0
p = 0.

C’est une équation différentielle linéaire du premier ordre dont les solutions s’écrivent p(z) = C1e−agz/p0 .
On détermine la constante d’intégration C1 à l’aide des conditions aux limites :

p(z = 0) = p0 = C1 d’où p(z) = p0e−agz/p0 .

.......................................................................................................................................................
21.19 b) Pour les mêmes raisons que précédemment, le champ de pression ne dépend que de z. La projection de

l’équation de la statique suivant (Oz) donne :

dp
dz + bg p = −ag + bgp0.

C’est une équation différentielle linéaire du première ordre avec un second membre constant. Les solutions de
l’équation homogène se mettent sous la forme ph(z) = C2e−bgz, et il est facile de trouver une solution particulière
constante : ppart = p0 −

a

b
. La solution générale s’écrit donc :

p(z) = ph(z) + ppart = C2e−bgz + p0 −
a

b
.

Il ne nous reste plus qu’à déterminer C2 à l’aide de la condition aux limites :

p(z = 0) = p0 = C2 + p0 −
a

b
d’où p(z) = p0 + a

b

(
e−bgz − 1

)
.

.......................................................................................................................................................
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21.19 c) À nouveau, le champ de pression ne dépend que de z. La projection de l’équation de la statique suivant
(Oz) donne :

dp
dz = −ag + bge−z/c.

On obtient p(z) en cherchant la primitive de −ag + bge−z/c, à savoir : p(z) = −agz − bcge−z/c + C3.
La condition p(0) = p0 impose bcg + C3 = p0, soit C3 = p0 − bcg. Finalement, on trouve :

p(z) = p0 − agz + bcg
(
1− e−z/c

)
.

.......................................................................................................................................................
21.20 a) Projetons l’équation de la statique sur les trois axes cartésiens. On trouve :

∂p

∂x
= 0, ∂p

∂y
= ρa et ∂p

∂z
= −ρg.

La première relation implique que le champ de pression ne dépend que de y et z.
Intégrons la deuxième relation :

∂p

∂y
= ρa donc p(y, z) = ρay + f(z).

Dérivons cette dernière relation par rapport à z : ∂p
∂z

= f ′(z). Par identification avec la troisième projection, on
trouve :

f ′(z) = −ρg donc f(z) = −ρgz + C.

Le champ de pression se met sous la forme p(y, z) = ρay − ρgz + C. Déterminons la constante d’intégration C à
l’aide de la condition aux limites :

p(y = 0, z = 0) = p0 = C d’où p(y, z) = ρ(ay − gz) + p0.

.......................................................................................................................................................
21.20 b) La surface libre est l’ensemble des points du liquide soumis à une pression p0 :

p(y, z) = ρ(ay − gz) + p0 = p0 donne z = a

g
y.

Il s’agit de l’équation d’un plan incliné d’un angle α = arctan (a/g).
.......................................................................................................................................................
21.21 a) On calcule

Fp =
¨

p(z) dy dz =
¨

ρg(h− z) dy dz

= ρg

ˆ L

0
dy
ˆ h

0
(h− z) dz = ρgL

[
hz − z2

2

]h

0

= ρgL(h2 − h2

2 ) = 1
2ρgLh

2.

.......................................................................................................................................................
21.21 b) On calcule

Mp =
¨

z p(z) dy dz =
¨

ρg(hz − z2) dy dz

= ρg

ˆ L

0
dy
ˆ h

0
(hz − z2) dz = ρgL

[
hz2

2 − z3

3

]h

0

= ρgL(h
3

2 −
h3

3 ) = 1
6ρgLh

3.

.......................................................................................................................................................

21.21 c) On a zC = Mp

Fp
=

1
6ρgLh

3

1
2ρgLh

2 = 1
3h.

.......................................................................................................................................................
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Fiche no 22. Fondamentaux de la chimie des solutions

Réponses

22.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 mmol

22.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,1 × 1022

22.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 g

22.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51,8 mol

22.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,12 × 1025

22.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,01 × 1024

22.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,75 × 10−22

22.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 400

22.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le cuivre

22.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

22.5 b) . . . . . . . . . . . . . . . . [H3O+] = 10−7mol · L−1

22.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pH0 − 2

22.6 a) . . . . . . . . . . . . . . . . . x = 2,85 et y = 5,80

22.6 b) . . . . a = H2A, b = HA− et c = A2−

22.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HA−

22.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2A

22.6 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2−

22.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le premier

22.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le premier

22.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 g · L−1

22.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . 0,26 mol · L−1

22.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

22.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1V1
V1 + V2

22.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,28 g · L−1

22.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 g · L−1

22.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aucune

22.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . C1V1 + C2V2
V1 + V2

22.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n×M

V

22.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V × Cm

M

22.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . V = m

C ×M

22.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mL

22.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,2 g · L−1

22.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,2 g

22.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 g

22.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 mol

22.15 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,4 mol

22.15 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,2 mol

22.16 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,128 mol

22.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,128 mol

22.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,86 g

22.17 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,4 g

22.17 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,33

22.17 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . Il a diminué

22.18 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

22.18 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

22.18 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

22.19 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,19 kg

22.19 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,44 kg

22.19 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 mol · L−1

22.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 %

22.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
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Corrigés

22.1 a) Par définition, on a :

n = m

M
= 6 g

12× 12 g ·mol−1 + 22× 1 g ·mol−1 + 11× 16 g ·mol−1 .

L’application numérique donne n = 18× 10−3 mol.
.......................................................................................................................................................
22.1 b) On a :

N = n×NA = 18× 10−3 mol× 6,02× 1023 mol−1.

L’application numérique donne N = 1,1× 1022.
.......................................................................................................................................................
22.2 a) On peut écrire m = 3 106× 200× 10−3 g = 621 g.
.......................................................................................................................................................

22.2 b) On a n = 621 g
12 g ·mol−1 = 51,8 mol.

.......................................................................................................................................................
22.2 c) Par définition, on a :

N = n×NA = 51,8 mol× 6,02× 1023 mol−1.

L’application numérique donne N = 3,12× 1025.
.......................................................................................................................................................
22.3 a) Déjà, 24,0 cL d’eau pèsent 240 g, la quantité de matière correspondante est donc :

n = 240 g
18 g ·mol−1 = 13,3 mol.

Il reste à calculer N0 = n×NA = 13,3 mol× 6,02× 1023 mol−1 = 8,01× 1024.
.......................................................................................................................................................
22.3 b) Le rapport des volumes est :

R = 24,0 cL
1,37× 1018 m3 = 2,40× 10−1 L

1,37× 1018 m3 = 2,40× 10−4 m3

1,37× 1018 m3 = 1,75× 10−22.

.......................................................................................................................................................
22.3 c) Les N0 molécules d’eau se retrouveront dans l’ensemble du volume Vtot, on considère donc qu’on prélève

un volume V = 24 cL dans le volume total. Ainsi, le rapport des volumes nous donnera la proportion N de molécules
d’eau prélevées par rapport à N0.
Ainsi, le nombre N de molécules d’eau initiales présentes dans le verre à la fin est :

N = N0 ×R = 8× 1024 × 1,75× 10−22 = 1 400.

.......................................................................................................................................................

22.4 On rappelle que 1 cm3 = 1 mL et 1 dm3 = 1 L. On a ρCu = m

V
= 178 g

20× 10−3 L
= 8 900 g · L−1. De même,

on calcule ρFe = 24× 103 g
3 L = 8 000 g · L−1.

.......................................................................................................................................................

Fiche no 22. Fondamentaux de la chimie des solutions 117



22.5 c) On a pH0 = − log10(x/C◦) et pH = − log10(100x/C◦) = − log10(100)− log10(x/C◦) = −2 + pH0.
.......................................................................................................................................................
22.6 c) Par lecture du diagramme de prédominance, il s’agit directement de l’espèce HA−.
.......................................................................................................................................................
22.6 d) Commençons par calculer le pH de la solution. Il vaut pH = − log10(1,0× 10−2) = 2. Une lecture du

diagramme de prédominance montre que l’espèce H2A prédomine.
.......................................................................................................................................................
22.6 e) On commence par calculer le pH de la solution ; il vaut pH = − log10(a(H3O+)).

Le produit ionique de l’eau est défini par a(H3O+)× a(HO−) = Ke, ainsi il vient pH = − log10

(
Ke

a(HO−)

)
.

Donc, on a pH = − log10

(
1× 10−14

1,0× 10−5

)
= 9. Une lecture du diagramme de prédominance à pH = 9 montre que

l’espèce A2− prédomine.
.......................................................................................................................................................
22.7 a) La première concentration en masse du sel est de 267 g · L−1 ; la deuxième vaut 3 g · L−1.
.......................................................................................................................................................
22.7 b) La première concentration du sucre est de 300 mol · L−1 ; la deuxième vaut 200 mol · L−1.
.......................................................................................................................................................

22.8 a) La concentration en masse est donnée par Cm = 3× 6 g
20× 10−2 L

= 90 g · L−1.
.......................................................................................................................................................

22.8 b) Une analyse dimensionnelle permet de retrouver que C = Cm

M
= 90 g

344 g ·mol−1 = 0,26 mol · L−1.
.......................................................................................................................................................
22.9 a) Une concentration en quantité de matière s’exprime en mol · L−1, seule la dernière proposition est

homogène (mais fausse).
.......................................................................................................................................................
22.9 b) La concentration de ces ions dans le mélange est donnée par le rapport de la quantité de matière sur le

volume total, soit [Fe3+]i = C1V1

V1 + V2
.

.......................................................................................................................................................
22.10 a) La masse m1 de caféine est m1 = C1 × V1 = 0,7 g · L−1 × 100× 10−3 L = 0,07 g. La concentration en

masse dans la solution finale de volume V = V1 + V2 = 250 mL est donc : C′
1 = m1

V
= 0,07 g

250× 10−3 L
= 0,28 g · L−1.

.......................................................................................................................................................
22.10 b) La masse m2 de sucre est m2 = C2 × V2 = 40 g · L−1 × 150× 10−3 L = 6 g. La concentration en masse

dans la solution finale de volume V = V1 + V2 = 250 mL est donc : C′
2 = m2

V
= 6 g

250× 10−3 L
= 24 g · L−1.

.......................................................................................................................................................
22.11 a) Une concentration en quantité de matière s’exprime en mol · L−1, aucune de ces relations n’est homogène,

elles ne peuvent donc pas être correctes.
.......................................................................................................................................................
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22.11 b) Lors du mélange, la quantité de matière se conserve. La quantité de matière totale en sucre est

n = n1 + n2 = C1V1 + C2V2.

Le volume total du mélange est V = V1 + V2 (en négligeant la contraction des volumes). La concentration en
quantité de matière du mélange en sucre est donc C = n

V
= C1V1 + C2V2

V1 + V2
.

.......................................................................................................................................................

22.12 a) On a Cm = m

V
= n×M

V
.

.......................................................................................................................................................

22.12 b) En partant de la relation précédente Cm = m

V
= n×M

V
, il vient Cm × V = n×M puis Cm × V

M
= n.

.......................................................................................................................................................
22.12 c) On a Cm = m

V
et Cm = M × C, ainsi m

V
= M × C. Soit alors m = C ×M × V . Finalement, on a

V = m

C ×M .
.......................................................................................................................................................
22.13 a) Lors d’une dilution, la quantité de matière prélevée à la solution mère est conservée dans la solution

fille. Ainsi, on a CVi = CfVf et donc :

Vi = CfVf

C
= 20 g · L−1 × 100× 10−3 L

80 g · L−1 .

L’application numérique donne Vi = 25 mL.
.......................................................................................................................................................
22.13 b) La même démarche donne CmVm = CfVf , soit :

Cf = CmVm

Vf
= 40 g · L−1 × 20× 10−3 L

250× 10−3 L
.

L’application numérique donne Cf = 3,2 g · L−1.
.......................................................................................................................................................
22.14 a) Dans 20 mL d’une solution saturée en sel, on a m = 358 g · L−1 × 20× 10−3 L = 7,2 g de sel.
.......................................................................................................................................................
22.14 b) Dans 300 mL, on peut dissoudre m = 2× 103 g × 300× 10−3 L = 600 g de sucre.
.......................................................................................................................................................

22.15 a) On a n = C × V = Cm

M
× V = 1 220 g

138 g ·mol−1 × 250× 10−3 L = 2,2 mol.
.......................................................................................................................................................
22.15 b) La dissolution de K2CO3 donne deux ions K+. Ainsi, on a n1 = 2× n = 4,4 mol.
.......................................................................................................................................................
22.15 c) La dissolution de K2CO3 donne un ion CO2−

3 . Ainsi, on a n2 = n = 2,2 mol.
.......................................................................................................................................................

22.16 a) La quantité de matière de fluorure de calcium que l’on a dissoute est n = 10 g
78 g ·mol−1 = 0,128 mol.

.......................................................................................................................................................
22.16 b) Une entité CaF2 libère un ion Ca2+. Ainsi, en solution, on retrouve nCa2+ = 0,128 mol.
.......................................................................................................................................................
22.16 c) Une entité CaF2 libère deux ions F−. Ainsi, en solution, on retrouve nF− = 0,256 mol. Cela représente

une masse mF− = 0,256 mol× 19 g ·mol−1 = 4,86 g.
.......................................................................................................................................................
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22.17 a) La masse maximale que l’on peut dissoudre dans ce volume est :

mmax = s× V = 330 g · L−1 × 20× 10−3 L = 6,6 g.

Sur les 10 g introduits, il reste donc 3,4 g non dissous.
.......................................................................................................................................................
22.17 b) La masse volumique de la solution tient compte de la masse du soluté et du solvant (on ne tient pas

compte de la masse non dissoute). Ainsi ρ = 6,6 g + 20 g
20× 10−3 L

= 1,33 kg · L−1. La densité est donc d = 1,33.
.......................................................................................................................................................
22.17 c) Comme la densité réelle augmente à masse constante, il s’agit d’une diminution de volume. On parle

d’effet de contraction de volume lors d’une dissolution.
.......................................................................................................................................................
22.18 a) La courbe 1 car on retrouve l’ordre de grandeur de la densité égale à 1.
.......................................................................................................................................................
22.18 b) La courbe 2 car elle présente une densité plus faible que l’eau et peut se retrouver liquide à 230 °C

d’après les températures d’ébullition de l’huile et de l’éthanol dans le tableau.
.......................................................................................................................................................
22.18 c) L’eau se vaporise à 100 °C sous pression atmosphérique, cela se confirme par l’arrêt de la courbe de

densité du liquide sur le graphe.
.......................................................................................................................................................
22.19 a) Prenons 1 L de solution. La densité vaut 1,19. Cette solution pèse donc m = 1,19 kg.
.......................................................................................................................................................
22.19 b) Cette solution contient mHCl = 37 %× 1,19× 1 kg · L−1 × 1 L = 0,44 kg d’acide pur.
.......................................................................................................................................................
22.19 c) La quantité de matière d’acide chlorhydrique pur contenu dans ce litre de solution est :

n = m

M
= 0,44× 103 g

36,5 g ·mol−1 = 12 mol.

Ainsi, la concentration en quantité de matière de ce litre de solution est C = 12 mol · L−1.
.......................................................................................................................................................
22.20 Prenons 1 L de solution. Cette solution contient n = 18 mol d’acide pur. Soit une masse en acide
macide = n ×M = 18 mol × 98 g ·mol−1 = 1 764 g = 1,764 kg. Ce litre de solution présente une densité d = 1,84,
donc il pèse 1,84 kg. Ainsi, le titre massique vaut :

t = 1,764
1,84 = 96 %.

.......................................................................................................................................................
22.21 La masse de la solution est m = ρ × V = 0,789 × 1 kg · L−1 × 10 000 L = 7 890 kg. Elle contient 95,4 %

d’éthanol pur, soit une masse :
mEtOH = 0, 954× 7 890 kg = 7 527,06 kg.

Cela représente une quantité de matière :

nEtOH = m

M
= 7 527,06 kg

46,07× 10−3 kg ·mol−1 = 163 383 mol = 163 kmol.

.......................................................................................................................................................
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Fiche no 23. Fondamentaux de la chimie en phase gazeuse

Réponses

23.1 . . . . . . . . . . . . . . . . . . . . RT

P

23.2 a) . . . . . . . . 12,5 L · mol−1

23.2 b) . . . . . . . . 24,9 L · mol−1

23.2 c) . . . . . . . . . 495 L · mol−1

23.2 d) . . . . . . . . 24,9 L · mol−1

23.3 . . . . . . . . . . . . . . . . . . . . . c

23.4 a) . . . . . . . . . . . . . . . . . . . b

23.4 b) . . . . . . . . . . . . . . . . . . . c

23.4 c) . . . . . . . . . . . . . . . . . . . d

23.4 d) . . . . . . . . . . . . . . . . . . . a

23.5 . . . . . . . . . . . . . . . . . . . . . b

23.6 a). . . . . . . . . . 0,078 g · L−1

23.6 b) . . . . . . . . 24,8 L · mol−1

23.6 c) . . . . . . . . . . . 2 g · mol−1

23.6 d) . . . . . . . . . . . . . . . . . . . H2

23.7 a) . . . . . . . . . . . . . . . . . . RT

23.7 b). . RT + bP − a

Vm
+ ab

V 2
m

23.7 c) . . . . . . . . . . . . . . . . . . . . . 0

23.8 . . . . . . . . . . . . . . . . . . . . . a

23.9 a) . . . . . . . . . . 1
V0

N∑
k=0

PkVk

23.9 b) . . . . . . . . . . . . . . . . . . . P0

23.9 c) . . . . . . . . . N(N + 1)
2 P0

23.9 d). . . . . . . . . . . . . Nn0RT0
V0

23.10 a) . . . . . . . . . . . 151 mmol

23.10 b) . . . . . . . . . . . . . . . 0,788

23.10 c). . . . . . . . . . . . . . . . . 0,21

23.10 d) . . . . . . . . . . . 213 mbar

23.10 e). . . . . . . . . . . . . . 8 mmol

23.10 f) . . . . . . . . . . . . . . . . 0,162

23.10 g) . . . . . . . . . . . 164 mbar

23.10 h) . . . . . . . . . . . . 51 mbar

23.11 a) . . . . . . . . . . . . . . . . faux

23.11 b) . . . . . . . . . . . . . . . . faux

23.11 c) . . . . . . . . . . . . . . . . . vrai

23.11 d) . . . . . . . . . . . . . . . . faux

23.12 a) . . . . . . . . . . . . . . . 4 bar

23.12 b) . . . . . . . . . . . . 0, 78 bar

23.12 c) . . . . . . . . 2 × 10−4 bar

23.12 d) . . . . . . . . . 9 × 101 bar

23.12 e) . . . . . . . . 6 × 10−3 bar

23.12 f) . . . . . . . . . . . . . 0,21 bar

23.13 a) . . . . . . . . . . . . . 4n− 2ξ

23.13 b) . . . . . . . . . . . 2n− ξ

2n Pi

23.13 c) . . . . . . . . . . . . . ξ

2 − ξ
Pi

23.13 d). . . . . . . . . . . (n− ξ)
4n Pi

23.13 e) . . . . . . . . . . 3(n− ξ)
4n Pi

23.14 . . . . . . . . . . . . . . . . . . . . c

23.15 a) . . . . . . . . . . . . . . . . . . . 0

23.15 b) . . . . . . . . . . . . . . . . . −2

23.15 c) . . . . . . . . . . . . . . . . . . +2

23.15 d) . . . . . . . . . . . . . . . . . −1

23.16 a) . . . . . . . . .
P 2

NH3
(P ◦)2

PN2P
3
H2

23.16 b) . . . . . . . . . . . . (P ◦)5

P 4
H2
PO2

23.16 c) . . . . . . . . [CO2](P ◦)3

PCH4P
2
O2
C◦

23.16 d). . . . . . . . . [H2CO3]P ◦

PCO2C
◦

23.17 . . . . . . . . . . . . . . . . . . . . c
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Corrigés

23.1 Par définition, le volume molaire s’écrit Vm = V

n
, soit Vm = RT

P
par identification avec l’équation d’état

des gaz parfait (PV = nRT ). Le volume molaire est indépendant de la nature chimique du gaz : il ne dépend que
des conditions de température et de pression.
.......................................................................................................................................................

23.2 a) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 1,00× 105 Pa et T = 150 K. L’application numérique

donne : Vm = 8,31 J ·K−1 ·mol−1 × 150 K
1,00× 105 Pa

= 12,5 L ·mol−1 en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.2 b) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 1,00× 105 Pa et T = 300 K. Par rapport au cas a),

la pression est inchangée et la température est doublée : le volume molaire est donc doublé. On peut le vérifier

par l’application numérique : Vm = 8,31 J ·K−1 ·mol−1 × 300 K
1,00× 105 Pa

= 24,9 L ·mol−1 en considérant le bon nombre de
chiffres significatifs.
.......................................................................................................................................................

23.2 c) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 5,000× 103 Pa et T = 298 K. L’application numérique

donne : Vm = 8,31 J ·K−1 ·mol−1 × 298 K
5,000× 103 Pa

= 495 L ·mol−1 en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.2 d) Pour un gaz parfait, on a Vm = RT

P
. Ici, P = 5,00× 104 Pa et T = 150 K. Par rapport au cas a), la

pression est divisée par deux et la température est inchangée : le volume molaire est donc doublé, comme dans

le cas b). On peut le vérifier par l’application numérique : Vm = 8,31 J ·K−1 ·mol−1 × 150 K
5,00× 104 Pa

= 24,9 L ·mol−1 en
considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.3 On note Vm le volume molaire du gaz sous ces conditions. La masse de gaz est :

m = n×M = V

Vm
M

en exprimant n via la définition du volume molaire, à savoir Vm = V

n
. Ainsi, la masse est proportionnelle au produit

MV , la valeur Vm ne dépendant pas de la nature chimique du gaz.
En convertissant les volumes en litres (par exemple), les applications numériques donnent une masse de 20/Vm

pour l’hélium, 24/Vm pour le dioxygène (avec M(O2) = 2M(O)), 28/Vm pour le diazote (avec M(N2) = 2M(N))
et 20/Vm pour le dihydrogène (avec M(H2) = 2M(H)) : la réponse c est la bonne.
.......................................................................................................................................................
23.4 a) Cette loi stipule que, à pression et quantité de matière fixées, le rapport volume/température est constant,

c’est-à-dire que le volume est une fonction linéaire de la température. La représentation graphique V = f(T ) est
donc une droite : c’est la réponse b .
.......................................................................................................................................................
23.4 b) Cette loi stipule que, à pression et température fixées, le rapport volume/quantité de matière (appelé

volume molaire) est constant, c’est-à-dire que le volume est une fonction linéaire de la quantité de matière. La
représentation graphique V = f(n) est donc une droite : c’est la réponse c .
.......................................................................................................................................................
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23.4 c) Cette loi stipule que, à volume et quantité de matière fixés, le rapport pression/température est constant,
c’est-à-dire que la pression est une fonction linéaire de la température. La représentation graphique P = f(T ) est
donc une droite : c’est la réponse d .
.......................................................................................................................................................
23.4 d) Cette loi stipule que, à température et quantité de matière fixées, le produit pression× volume est

constant, c’est-à-dire que la pression est une fonction inverse du volume. La représentation graphique P = f(V ) est
donc une branche d’hyperbole : c’est la réponse a .
.......................................................................................................................................................
23.5 L’équation d’état d’un gaz parfait est PV = nRT .

Ainsi, si l’on fait subir une transformation isotherme (T est une constante) à une quantité de matière donnée (n
est une constante) d’un gaz parfait, alors le produit PV est identique à chaque instant de la transformation. Dans
notre cas, en notant P1 la pression du gaz dans la bouteille, V1 le volume du gaz contenu dans la bouteille, P2 la
pression du gaz respiré (égale à la pression atmosphérique, soit 1 bar) et V2 le volume de gaz que le plongeur peut
respirer, on a P1V1 = P2V2 ou encore V2 = P1

P2
V1.

L’application numérique donne :
V2 = 200 bar

1 bar × 12 L = 2 400 L.

Une bouteille de 12 L remplie d’air comprimé à 200 bar contient donc l’équivalent de 2 400 L d’air à la pression
atmosphérique.
.......................................................................................................................................................
23.6 a) Par définition, on a ρ = m

V
.

Sachant que m = 0,70 mg et V = 0,009 0 L, l’application numérique donne ρ = 0,078 g · L−1.
.......................................................................................................................................................

23.6 b) Pour un gaz parfait, on a Vm = RT

P
. Ici, on a P = 1,00× 105 Pa et T = 298 K. Finalement, on trouve

Vm = 0,024 8 m3 ·mol−1 = 24,8 L ·mol−1.
.......................................................................................................................................................

23.6 c) On sait que ρ = m

V
, Vm = V

n
et M = m/n. On en déduit M = ρ× Vm = 24,8× 0,078 ∼ 2 g ·mol−1.

.......................................................................................................................................................
23.6 d) On a trouvé M ∼ 2 g ·mol−1. Sachant qu’on a M(H) = 1 g ·mol−1 et que le corps simple formé par

l’hydrogène est le dihydrogène H2, on déduit que M(H2) ∼ 2 g ·mol−1. On en conclut que le gaz formé est H2.
.......................................................................................................................................................

23.7 a) En identifiant Vm = V

n
dans l’équation d’état d’un gaz parfait, on obtient PVm = RT .

.......................................................................................................................................................

23.7 b) En identifiant Vm = V

n
dans l’équation d’état de van der Waals et en développant le produit, on obtient

PVm = RT + bP − a

Vm
+ ab

V 2
m

.
.......................................................................................................................................................
23.7 c) En identifiant les deux expressions obtenues précédemment, on constate qu’elles sont identiques si, et

seulement si, a = b = 0.
.......................................................................................................................................................
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23.8 Intuitivement, il semble que la pression totale doit être supérieure à chacune des pressions des bouteilles
individuelles. En modélisant tous les gaz comme des gaz parfaits, la pression correspond exactement à la somme
des pressions des différentes bouteilles. En effet, pour chaque bouteille, ni = PiVi

RT
, avec V1 = V2 = V3 = V4 = V

(toutes les bouteilles sont de même volume). Après mélange, la bouteille finale contient une quantité de matière
n =

∑
i
ni, donc la pression totale s’exprime Ptot =

∑
i
Pi (loi de Dalton). On remarque que la pression des gaz

dans chaque bouteille correspond à la pression partielle dans le mélange obtenu.
.......................................................................................................................................................
23.9 a) Les gaz étant parfaits, chaque contenant initial vérifie l’équation d’état des gaz parfaits, c’est-à-dire que

le contenant k contient une quantité de matière nk = PkVk

RT
. Une fois l’ensemble des contenants transvasé dans le

flacon, ce dernier contient une quantité de matière n =
∑

k
nk. Le mélange obtenu se comportant a priori lui aussi

comme un gaz parfait, on a P = nRT0

V0
=
RT0

∑
k
nk

V0
. En injectant l’expression de nk, il vient P = 1

V0

N∑
k=0

PkVk.

.......................................................................................................................................................

23.9 b) En partant de l’expression P = 1
V0

N∑
k=0

PkVk obtenue précédemment, on obtient P = P0

N

N∑
k=0

1 = P0.

.......................................................................................................................................................

23.9 c) En partant de l’expression P = 1
V0

N∑
k=0

PkVk obtenue précédemment, on obtient P = P0
V0

V0

N∑
k=0

k.

On reconnaît la somme des entiers naturels de 1 à N . Ainsi, on a P = N(N + 1)
2 P0.

.......................................................................................................................................................

23.9 d) En partant de P = 1
V0

N∑
k=0

PkVk (obtenu précédemment), on obtient P = n0RT0

V0

N∑
k=0

1 = Nn0RT0

V0
.

.......................................................................................................................................................
23.10 a) On a ntot = 119 mmol + 24 mmol = 151 mmol.
.......................................................................................................................................................

23.10 b) On a xins(N2) = nins(N2)
ntot

= 119 mmol
151 mmol = 0,788. Sachant que la même quantité de matière totale est

inspirée et expirée et que la quantité de diazote est inchangée, on retrouve naturellement la fraction molaire du
mélange expiré.
.......................................................................................................................................................

23.10 c) On a xins(O2) = nins(N2)
ntot

= 32 mmol
151 mmol = 0,21. On peut aussi considérer la quantité totale : on trouve

x(O2) = 1− 0,788 = 0,212.
.......................................................................................................................................................
23.10 d) On a Pins(O2) = xins(O2)× ptot = 0,212× 1 013 mbar = 213 mbar. On peut aussi considérer la pression

totale : on a PO2 = 1 013 mbar− 800 mbar = 213 mbar.
.......................................................................................................................................................
23.10 e) On a nexp(CO2) = ntot − nexp(N2)− nexp(O2) = 151 mmol− 119 mmol− 24 mmol = 8 mmol.
.......................................................................................................................................................
23.10 f) On a xexp(CO2) = xtot − xexp(N2)− xexp(O2) = 1− 0,788− 0,050 = 0,162.
.......................................................................................................................................................
23.10 g) On a Pexp(O2) = xexp(O2)× ptot = 0,162× 1 013 mbar = 164 mbar.
.......................................................................................................................................................
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23.10 h) On a Pexp(CO2) = xexp(CO2)×ptot = 0,050×1 013 mbar = 51 mbar. On peut aussi considérer la pression
totale : on a PCO2 = 1 013 mbar− 800 mbar− 162 mbar = 51 mbar.
.......................................................................................................................................................
23.11 a) Si les pressions partielles sont égales, alors les quantités de matière sont égales d’après la loi de Dalton :

la proposition est fausse.
.......................................................................................................................................................
23.11 b) Si les fractions molaires sont égales, alors les quantités de matière sont égales, par définition de la fraction

molaire : la proposition est fausse.
.......................................................................................................................................................
23.11 c) Les gaz étant différents, ils n’ont pas la même masse molaire ; donc, si leurs quantités de matière sont

égales, leurs masses ne peuvent pas l’être : la proposition est vraie.
.......................................................................................................................................................
23.11 d) Si les volumes sont identiques, alors les quantités de matière sont identiques, par définition du volume

molaire : la proposition est fausse.
.......................................................................................................................................................
23.12 a) On a PN2 = 0,04× 90 bar = 4 bar, en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 b) On a PN2 = 0,78× 1,000 bar = 0,78 bar, en considérant le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 c) On a PN2 = 0,03× 600× 1× 10−5 bar = 2× 10−4 bar, avec le bon nombre de chiffres significatifs.
.......................................................................................................................................................

23.12 d) On a PCO2 = 0,96× 9× 106 Pa
1 013× 102 Pa · bar−1 = 9× 101 bar, avec le bon nombre de chiffres significatifs.

.......................................................................................................................................................
23.12 e) On a PCO2 = 0,95× 600× 10−5 bar = 6× 10−3 bar, avec le bon nombre de chiffres significatifs.
.......................................................................................................................................................
23.12 f) On a PO2 = 0,21× 1,000 bar = 0,21 bar.
.......................................................................................................................................................
23.13 a) On a ntot(t) = nN2 (t) + nH2 (t) + nNH3 (t) = (n− ξ(t)) + (3n− 3ξ(t)) + 2ξ(t) = 4n− 2ξ(t).

La quantité de matière totale dépend de l’avancement. La réaction ayant lieu dans un volume constant et la
température étant constante, la pression dépendra elle aussi de l’avancement si l’on considère des gaz parfaits.
.......................................................................................................................................................

23.13 b) On sait que Ptot(t) = ntot, gazeux(t)RT
V

avec V le volume et T la température du système (constantes).

Pour l’état initial, on a Pi = 4nRT
V

. Pour un état intermédiaire quelconque, étant donné la réponse à la question

précédente, on a Ptot(t) = (4n− 2ξ)× RT

V
= 4n− 2ξ

4n Pi = 2n− ξ
2n Pi.

.......................................................................................................................................................

23.13 c) On a PNH3 = xNH3Ptot(t) = nNH3 (t)
ntot

Ptot(t) = 2ξ
4n− 2ξ Ptot(t) = 2ξ

4n− 2ξ
2n− ξ

2n Pi = ξ

2nPi.
.......................................................................................................................................................

23.13 d) On a PN2 = xN2Ptot(t) = nN2 (t)
ntot

Ptot(t) = n− ξ
4n− 2ξ

2n− ξ
2n Pi = n− ξ

4n Pi.
.......................................................................................................................................................
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23.13 e) On a PH2 = xH2Ptot = nH2 (t)
ntot

Ptot(t) = 3n− 3ξ
4n− 2ξ Ptot(t) = 3n− 3ξ

4n− 2ξ
2n− ξ

2n Pi = 3(n− ξ)
4n Pi.

Les résultats obtenus sont cohérents car on remarque que la loi de Dalton est vérifiée : Ptot = PH2 + PN2 + PNH3 .
.......................................................................................................................................................

23.14 L’activité a d’un gaz s’exprime a = Pi

P ◦ où Pi est la pression partielle du gaz i dans le mélange et P ◦ la

pression de référence (1 bar). Pour un gaz parfait, cette pression partielle s’exprime Pi = niRT

V
avec ni la quantité

de matière du gaz i dans le mélange, T la température du mélange et V le volume total du mélange. Si l’on ajoute
20 moles de dioxygène alors ni triple : la pression Pi et donc l’activité sont triplées (la réponse a est exclue). Si
l’on agrandit l’enceinte à 4 m3 alors V est doublée : l’activité est divisée de moitié (la réponse b est exclue). Si l’on
double la température alors l’activité double, à condition de considérer la température absolue, qui s’exprime en
kelvins. Ici la température est de 25 °C, soit 298 K, dont le double vaut 596 K, soit 323 °C (la réponse d est exclue,
la réponse c est correcte).
.......................................................................................................................................................

23.15 a) On a Q1 = n2
1n

3
2

n3
3n

2
4

. La grandeur P ◦ n’apparaît pas, elle est à la puissance 0. On constate que le résultat
simplifié est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 b) On a Q2 = n4
1n

2
2

n3n3
4n

2
tot

P 2

(P ◦)2 . La grandeur P ◦ est à la puissance −2. On constate que le résultat simplifié
est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 c) On a Q3 = n5
1n

2
tot

n3
2n

4
3

c2
1

(C◦)2
(P ◦)2

P 2 . La grandeur P ◦ est à la puissance +2. On constate que le résultat
simplifié est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................

23.15 d) On a Q4 = n3
1

n2
2ntot

c2
1C

◦

c3
2

P

P ◦ . La grandeur P ◦ est à la puissance −1. On constate que le résultat simplifié
est bien sans dimension, conformément à la définition d’un quotient de réaction.
.......................................................................................................................................................
23.16 a) L’activité d’un gaz parfait dans un mélange vaut le rapport de sa pression partielle sur la pression de

référence, le tout à la puissance de son coefficient stœchiométrique : on trouve Q =
P 2

NH3

PN2P
3
H2

(P ◦)4

(P ◦)2 =
P 2

NH3

PN2P
3
H2

(P ◦)2.
.......................................................................................................................................................

23.16 b) L’activité d’un corps pur en phase condensée vaut 1, donc aH2O(l) = 1 : ainsi, Q = 1(P ◦)4P ◦

P 4
HPO2

= (P ◦)5

P 4
H2
PO2

.
.......................................................................................................................................................
23.16 c) L’activité d’un solvant vaut 1, donc aH2O(l) = 1 ; l’activité d’un soluté en solution vaut le rapport de sa

concentration dans la solution sur la concentration de référence à la puissance son coefficient stœchiométrique : on

trouve Q = 1× [CO2]P ◦(P ◦)2

C◦PCH4P
2
O2

= [CO2](P ◦)3

PCH4P
2
O2
C◦ .

.......................................................................................................................................................

23.16 d) L’activité d’un solvant vaut 1, donc aH2O(l) = 1 : on trouve Q = [H2CO3]P ◦

1× C◦PCO2
.

.......................................................................................................................................................
23.17 On est à l’équilibre donc le quotient de réaction vaut la constante d’équilibre.

On a K = Q =
a(CO2(aq))
a(CO2(g))

=
[CO2(aq)]/C◦

P (CO2(g))/P ◦ =
[CO2(aq)]
P (CO2(g))

P ◦

C◦ = 7,0 g · L−1

44 g ·mol−1 × 3,0 bar
× 1,00 bar

1,00 mol · L−1 = 0,050.
.......................................................................................................................................................
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Fiche no 24. Réactions chimiques

Réponses

24.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CO + O2 = 2 CO2

24.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ag+ + Cu = 2 Ag + Cu2+

24.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 NO + 2 CO = N2 + 2 CO2

24.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2O2−
8 + 2 I− = 2 SO2−

4 + I2

24.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 C8H18 + 25 O2 = 16 CO2 + 18 H2O

24.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MnO−
4 + 8 H+ + 5 Fe2+ = 5 Fe3+ + Mn2+ + 4 H2O

24.2 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n1 − ξ

24.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n2 − 3ξ

24.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2ξ

24.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

24.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e

24.5 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

24.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

24.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a(HO−)eq × a(H3O+)eq
a(H2O)2

eq

24.5 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K◦ = KA

Ke

24.5 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104,75

24.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.6 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.6 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.6 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

24.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,0 × 10−2 mol
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24.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,0 × 10−1 mol

24.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C◦(V1 + V2))2

(C1V1 − ξ) × (C2V2 − ξ)

24.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2 − ξ(C1V1 + C2V2) + C1C2V1V2 − [C◦(V1 + V2)]2

K◦ = 0

24.11 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v(1 −K◦) + ξvK

◦(C1 + C2) −K◦C1C2 = 0

24.11 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v + ξv(C2 +K◦C◦) −K◦C1C

◦ = 0

24.11 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2(K◦ − 1) − ξK◦(n1 + n2) +K◦n1n2 = 0

24.11 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4K◦ξ2 − ξ

(
4K◦n+ P ◦V

RT

)
+K◦n2 = 0

24.11 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2(4K◦P + P ◦) − ξ(4nK◦P + nP ◦) +K◦n2P = 0

24.12 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,6 × 10−2 mol · L−1

24.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,6 × 10−2 mol · L−1

24.13 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3

24.13 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

24.14 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

24.14 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

24.15 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pH = pKA + log10

(
[NH3]
[NH+

4 ]

)
24.15 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,9

24.16 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ξ2
v +KAC

◦ ξv −KAC1C
◦ = 0

24.16 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,8 × 10−4 mol · L−1

24.16 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,9
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Corrigés

24.1 a) On commence d’abord par équilibrer les atomes de carbone (un de chaque côté). On a deux atomes

d’oxygène à droite, on doit donc en placer deux à gauche. Ce qui donne : CO + 1
2 O2 = CO2.

On préfère raisonner avec des coefficients stœchiométriques entiers, il suffit alors de multiplier les coefficients par
deux : 2 CO + O2 = 2 CO2.
.......................................................................................................................................................
24.1 b) Initialement, les charges ne sont pas équilibrées. Il faut mettre 2 Ag+ pour ajuster les charges. Enfin,

on équilibre l’élément Ag en mettant un coefficient 2 au produit Ag. On obtient 2 Ag+ + Cu = 2 Ag + Cu2+.
.......................................................................................................................................................
24.1 c) On commence par équilibrer l’élément azote : 2 NO + CO = N2 + CO2. Les carbones sont équilibrés

mais pas les atomes d’oxygène. On doit donc trouver x tel que :
2 NO + xCO = N2 + xCO2.

En raisonnant sur l’atome d’oxygène, on trouve 2 + x = 2x, soit x = 2.
.......................................................................................................................................................
24.1 d) Commençons par équilibrer les atomes d’iode puis le soufre et enfin l’oxygène. On arrive à :

S2O2−
8 + 2 I− = 2 SO2−

4 + I2.

On s’aperçoit que les charges sont de facto ajustées. La réaction est équilibrée !
.......................................................................................................................................................
24.1 e) Commençons par ajuster les atomes d’hydrogène : C8H18 + O2 = CO2 + 9 H2O. Poursuivons avec les

atomes de carbone : C8H18 +O2 = 8CO2 +9 H2O. Puis avec les atomes d’oxygène : C8H18 + 25
2 O2 = 8CO2 +9 H2O.

Terminons en multipliant tous les coefficients par deux : 2 C8H18 + 25 O2 = 16 CO2 + 18 H2O.
.......................................................................................................................................................
24.1 f) Commençons par équilibrer les atomes d’oxygène : MnO−

4 + H+ + Fe2+ = Fe3+ + Mn2+ + 4 H2O.

Puis les atomes d’hydrogène : MnO−
4 + 8 H+ + Fe2+ = Fe3+ + Mn2+ + 4 H2O.

Les éléments sont équilibrés. Comptons les charges : +9 à gauche et +5 à droite. Les charges ne sont donc pas
ajustées. Or, on n’a pas encore considéré le fer. Appelons x son coefficient :

MnO−
4 + 8 H+ + xFe2+ = xFe3+ + Mn2+ + 4 H2O.

L’équilibre des charges donne 7 + 2x = 2 + 3x, d’où x = 5.
.......................................................................................................................................................

24.2 a) Par définition, l’avancement est lié aux quantités de matière des produits ou réactifs via ξ = ni(t)− ni(0)
νi

où νi est le coefficient stœchiométrique algébrique du produit ou réactif. On obtient donc :

N2(g) + 3H2(g) = 2NH3(g)

État initial n1 n2 0
État final n1 − ξ n2 − 3ξ 2ξ

.......................................................................................................................................................
24.3 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
a et b . Ensuite, par définition, l’activité des produits de la réaction doit se trouver au numérateur et celle des

réactifs au dénominateur. On garde donc l’expression d .
.......................................................................................................................................................
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24.4 La constante thermodynamique d’équilibre est une grandeur adimensionnée, ce qui exclut les propositions
b , d et f . Ensuite, par définition, l’activité d’un solide seul dans sa phase vaut 1, ce qui exclut les propositions
a et c . On garde donc l’expression e .

.......................................................................................................................................................

24.5 a) D’après la loi d’action de masse, on a K◦ = Qeq = a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

.
.......................................................................................................................................................
24.5 b) La constante d’acidité est la constante d’équilibre associée à la réaction entre l’acide du couple et l’eau :

NH+
4 + H2O = NH3 + H3O+.

D’après la loi d’action de masse, on a donc : KA = a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

.
.......................................................................................................................................................
24.5 c) La constante d’autoprotolyse de l’eau est la constante d’équilibre associée à la réaction :

2 H2O = H3O+ + HO−.

D’après la loi d’action de masse, on a donc Ke = a(H3O+)eq × a(HO−)eq

a(H2O)2
eq

.
.......................................................................................................................................................
24.5 d) On a, d’après les questions précédentes :

KA = a(NH3)eq × a(H3O+)eq

a(NH+
4 )eq × a(H2O)eq

et Ke = a(HO−)eq × a(H3O+)eq

a(H2O)2
eq

.

Donc KA

Ke
= a(NH3)eq × a(H2O)eq

a(NH+
4 )eq × a(HO−)eq

. On en déduit donc que K◦ = KA

Ke
.

.......................................................................................................................................................

24.5 e) On a K◦ = KA

Ke
= 10−9,25

10−14 = 104,75.
.......................................................................................................................................................

24.6 a) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 0 < K◦. La réaction évolue donc dans le sens direct.

.......................................................................................................................................................

24.6 b) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 0 < K◦. La réaction évolue donc dans le sens direct.

.......................................................................................................................................................

24.6 c) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 1 > K◦. La réaction évolue donc dans le sens indirect.

.......................................................................................................................................................

24.6 d) À l’état initial, Qi =
[HF]i ×

[
CH3COO−]

i

[CH3COOH]i ×
[
F−
]

i

= 2,5× 10−2 = 10−1,6 = K◦.

Ainsi, le système est à l’équilibre et n’évolue pas.
.......................................................................................................................................................
24.7 On calcule, pour chaque réactif, le rapport entre sa quantité de matière initiale et son nombre stœchio-

métrique. Le réactif pour lequel ce rapport est le plus faible est le réactif limitant.

On trouve n(Fe3+)i

1 = 3,0× 10−2 mol et n(OH−)i

3 = 2,0× 10−2 mol.

L’ion hydroxyde HO− est donc le réactif limitant.
Remarque : on ne prend pas en compte les ions Na+ ni Cl− car ce sont des ions spectateurs et non des réactifs.
.......................................................................................................................................................
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24.8 a) On a n1

2 = n2

13 = 5,0× 10−2mol : les réactifs ont donc été introduits en proportions stœchiométriques.
Dans ce cas, il n’y a pas de réactif limitant (ou alors tous les réactifs sont limitants).
L’avancement maximal est alors ξmax = 5,0× 10−2mol.
.......................................................................................................................................................
24.8 b) On écrit un tableau d’avancement pour la réaction totale :

2 C4H10(g) + 13 O2(g) −→ 8 CO2(g) + 10 H2O(g)

État initial n1 n2 0 0
État final n1 − 2ξmax n2 − 13ξmax 8ξmax 10ξmax

Comme la réaction est totale, l’avancement atteint à l’état final correspond à l’avancement maximal ξmax calculé à
la question précédente. On a donc n(CO2)f = 8ξmax = 4,0× 10−1mol.
.......................................................................................................................................................
24.9 a) On calcule dans un premier temps les quantités de matière initiales de tous les réactifs :

n(Ag+)i = n1 = C × V = 0,25 mol · L−1 × 20× 10−3 L = 5,0× 10−3 mol

et n(Cu)i = n2 = m

MCu
= 0,254 g

63,5 g ·mol−1 = 4,0× 10−3 mol.

On calcule ensuite les rapports entre les quantités de matière initiales et les nombres stœchiométriques :

n(Ag+)i

2 = 2,5× 10−3 mol < n(Cu)i

1 = 4,0× 10−3 mol.

Le réactif limitant est donc Ag+.
.......................................................................................................................................................
24.9 b) On dresse un tableau d’avancement pour cette réaction :

2 Ag+
(aq) + Cu(s) = Cu2+

(aq) + 2 Ag(s)

État initial n1 n2 0 0
État final n1 − 2ξmax n2 − ξmax ξmax 2ξmax

La réaction est totale, donc l’avancement final est égal à l’avancement maximal.
Le réactif limitant est l’ion argent (Ag+), donc l’avancement final est ξmax = n1

2 = 2,5 mmol.
À l’état final, on a donc n(Cu)f = 4,0 mmol− 2,5 mmol = 1,5 mmol.
.......................................................................................................................................................

24.10 a) D’après la loi d’action de masse, K◦ = a(PhCOOH)eq × a(H2O)eq

a(PhCOO−)eq × a(H3O+)eq
. Comme PhCOOH est un solide

seul dans sa phase, son activité vaut 1. Comme H2O est le solvant, son activité vaut 1. L’activité des espèces
aqueuses s’exprime en fonction de leur concentration et de C◦.
Avec les expressions du tableau d’avancement, on a alors :

K◦ = 1× 1(
1

C◦
C1V1−ξ
V1+V2

)
×
(

1
C◦

C2V2−ξ
V1+V2

) = (C◦(V1 + V2))2

(C1V1 − ξ)× (C2V2 − ξ)
.

.......................................................................................................................................................

24.10 b) À partir de la relation précédente, on déduit (C1V1 − ξ)× (C2V2 − ξ) = (C◦(V1 + V2))2

K◦ .

Après développement, on obtient :
ξ2 − ξ(C1V1 + C2V2) + C1C2V1V2 −

(C◦(V1 + V2))2

K◦ = 0.

Au passage, la formule obtenue est bien homogène : chaque terme est homogène à une quantité de matière au carré.
.......................................................................................................................................................
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24.12 a) La résolution du polynôme du second degré donne deux solutions :

ξv,1 = 7,6× 10−2 mol · L−1 et ξv,2 = 5,2× 10−1 mol · L−1.

L’avancement final ne peut pas être supérieur à l’avancement maximal ξv,max = 1,0× 10−1 mol · L−1. On en déduit
donc que ξv = 7,6× 10−2 mol · L−1.
.......................................................................................................................................................
24.12 b) La résolution du polynôme du second degré donne deux solutions :

ξv,1 = 3,6× 10−2 mol · L−1 et ξv,2 = −5,6× 10−2 mol · L−1.

Il est indiqué que la réaction se déroule dans le sens direct, donc l’avancement doit être positif. La solution ξv,2 est
par conséquent impossible. On a donc ξv = 3,6× 10−2 mol · L−1, qui est bien inférieur à l’avancement maximal.
.......................................................................................................................................................
24.13 a) Par définition, pH = − log10

(
a(H3O+)

)
.

En solution aqueuse diluée, l’activité de H3O+ est a(H3O+) = [H3O+]
C◦ . L’expression précédente devient donc :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
5,0× 10−2 mol · L−1

1,0 mol · L−1

)
= 1,3.

.......................................................................................................................................................
24.13 b) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+]

C◦ = Ke C
◦

[HO−]
.

On a donc :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
KeC

◦

[HO−]

)
= − log10

(
1,0× 10−14 × 1,0 mol · L−1

1,0× 10−2 mol · L−1

)
= 12.

.......................................................................................................................................................
24.14 a) Une solution à pH = 1,0 possède une concentration en ions oxonium [H3O+] = 10−1,0mol · L−1, et une

solution à pH = 2,0 possède une concentration en ions oxonium [H3O+] = 10−2,0mol · L−1.
.......................................................................................................................................................
24.14 b) Une solution à pH = 3,0 possède une concentration en ions oxonium [H3O+] = 1,0× 10−3,0 mol · L−1.
.......................................................................................................................................................
24.14 c) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+] = Ke · (C◦)2

[HO−]
.

On a donc :
• pour la solution a , [H3O+] = 5,0× 10−13 mol · L−1 ;
• Pour la solution b , [H3O+] = 1,25× 10−13 mol · L−1.

C’est donc la solution a qui est la plus concentrée en ions oxonium.
.......................................................................................................................................................
24.14 d) Les concentrations [HO−] et [H3O+] sont liées via la constante d’autoprotolyse de l’eau :

Ke = [HO−]× [H3O+]
(C◦)2 donc [H3O+] = Ke · (C◦)2

[HO−]
.

On a donc [H3O+] = 1,0× 10−13 mol · L−1 pour la solution a .

Quant à la solution de pH = 9,0 : sa concentration en ions oxonium est [H3O+] = 1,0× 10−9,0 mol · L−1.

C’est donc la solution b qui est la plus concentrée en ions oxonium.
.......................................................................................................................................................

132 Fiche no 24. Réactions chimiques



24.15 a) La concentration en ions oxonium en solution est liée aux concentrations en NH+
4 et en NH3 via la

constante d’acidité du couple (NH+
4 /NH3) :

KA = [NH3]× [H3O+]
[NH+

4 ]× C◦
d’où [H3O+]

C◦ = KA[NH+
4 ]

[NH3] .

On retrouve ainsi la formule d’Henderson :

pH = − log10

(
[H3O+]
C◦

)
= − log10

(
KA[NH+

4 ]
[NH3]

)
= pKA + log10

(
[NH3]
[NH+

4 ]

)
.

.......................................................................................................................................................
24.15 b) Numériquement, on trouve :

pH = pKA + log10

(
[NH3]
[NH+

4 ]

)
= 9,2 + log10

(
1,0× 10−3 mol · L−1

2,0× 10−3 mol · L−1

)
= 8,9.

.......................................................................................................................................................
24.16 a) On écrit un tableau d’avancement pour cette réaction, où ξv représente l’avancement volumique :

CH3COOH(aq) + H2O(ℓ) = CH3COO−
(aq) + H3O+

(aq)

État initial C1 excès 0 0
État final C1 − ξv excès ξv ξv

avec C1 = CV

V + V ′ = 1,00× 10−3 mol · L−1.

À l’équilibre, d’après la loi d’action de masse, on a :

Qeq = KA = a(CH3COO−)eq × a(H3O+)eq

a(CH3COOH)eq × a(H2O)eq
.

En solution aqueuse diluée, on remplace les activités par leurs expressions. On obtient :

KA = [CH3COO−]eq × [H3O+]eq

[CH3COOH]eq C◦ .

Ensuite, on remplace les concentrations par leurs expressions trouvées dans le tableau d’avancement. Il vient :

KA = ξ2
v

(C1 − ξv)C◦ donc ξ2
v +KAC

◦ ξv −KAC1C
◦ = 0.

.......................................................................................................................................................
24.16 b) La résolution du polynôme du second degré obtenu à la question précédente donne deux solutions :

ξv,1 = 1,2× 10−4 mol et ξv,2 = −1,3× 10−4 mol.

Le quotient de réaction à l’instant initial vaut Qi = 0 (il n’y a pas de produits à l’instant initial).
Ainsi, on a Qi < KA : la réaction se produit dans le sens direct. L’avancement doit donc être positif et on a ξv = ξv,1.
Ainsi, à l’équilibre, [CH3COOH] = C1 − ξv = 8,8× 10−4 mol · L−1.
.......................................................................................................................................................

24.16 c) La concentration en ions H3O+ est égale à ξv, ainsi le pH se calcule par pH = − log10

(
ξv

C◦

)
= 3,9.

.......................................................................................................................................................
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Fiche no 25. Cinétique chimique

Réponses

25.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

25.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

25.1 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

25.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a c d

25.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c

25.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui : 2

25.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oui : 5
2

25.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non

25.4 a) . . . . . . . . . . . . . . . . . . 5,0 mmol · L−1 · min−1

25.4 b) . . . . . . . . . . . . . . . . . . 1,7 mmol · L−1 · min−1

25.4 c) . . . . . . . . . . . . . . . . . . 3,3 mmol · L−1 · min−1

25.4 d) . . . . . . . . . . . . . . . . . . 1,7 mmol · L−1 · min−1

25.5 a) . . . . . . . . . . . . . . . . . . . . . RT
(

ln(A) − ln(k)
)

25.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 kJ · mol−1

25.6 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(A) − Ea
RT

25.6 b) . . . . . . . . . . . . . . . . . . . . 1,8 × 102 kJ · mol−1

25.6 c) . . . . . . . . . . . . . . . . 5,3 × 1011 L · mol−1 · s−1

25.7 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 1
α

d[A]
dt

25.7 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k

25.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0 − αkt

25.8 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v = k[A]

25.8 b). . . . . . . . . . . . . . . . . . . . . . . [A]0 × exp(−αkt)

25.9 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k[A]2

25.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
[A]0

+ αkt

25.9 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0
1 + α[A]0kt

25.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]0
2αk

25.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ln(2)
αk

25.10 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
[A]0αk

25.11 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

25.11 b) . . . . . . . . . . . . . . . . . . . . . . . 7,90 × 10−4 s−1

25.12 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.12 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a et c

25.12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

25.12 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

25.13 a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m = 1

25.13 b) . . . . . . . . . . . . ln
(
k × [H2]m0

)
+ n ln

(
[S]0
)

25.13 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n = 1
2

25.13 d). . . . . . . . . . . . . 3,00 L1/2· mol−1/2· min−1
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Corrigés

25.1 a) C’est a car la vitesse volumique s’exprime en mol · L−1 · s−1.
.......................................................................................................................................................
25.1 b) C’est d car la vitesse volumique s’exprime en mol · L−1 · s−1 et la concentration en mol · L−1.

Une analyse dimensionnelle sur v = k[A]3 donne k en L2 ·mol−2 · s−1.
.......................................................................................................................................................

25.2 a) Par définition, on a vform(NH3) = +d[NH3]
dt .

.......................................................................................................................................................

25.2 b) Par définition, on a vdisp(H2) = −d[H2]
dt .

.......................................................................................................................................................

25.2 c) Par définition, en utilisant les coefficients stœchiométriques, on a v = 1
2

d[NH3]
dt = −d[N2]

dt = −1
3

d[H2]
dt .

.......................................................................................................................................................
25.2 d) On a vdisp(N2) = v ; vdisp(H2) = 3v ; vform(NH3) = 2v.
.......................................................................................................................................................
25.3 a) La réaction admet un ordre global égal à 2.
.......................................................................................................................................................

25.3 b) La réaction admet un ordre global égal à 5
2 .

.......................................................................................................................................................
25.3 c) La réaction n’admet pas d’ordre global.
.......................................................................................................................................................
25.4 a) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de disparition du réactif est égale à l’opposé du coefficient directeur de la tangente à la courbe.
On en déduit : vdisp(CℓO−)0min = 5,0 mmol · L−1 ·min−1.
.......................................................................................................................................................
25.4 b) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente à la courbe. On en déduit :

vform(CℓO3
−)0 min = 1,7 mmol · L−1 ·min−1.

.......................................................................................................................................................
25.4 c) On utilise la tangente à la courbe à t = 0 min et on calcule le coefficient directeur de la tangente.

La vitesse de formation du produit est égale au coefficient directeur de la tangente à la courbe. On en déduit :

vform(Cℓ−)0 min = 3,3 mmol · L−1 ·min−1.

.......................................................................................................................................................

25.4 d) Par définition, la vitesse de réaction est égale à v = 1
|νi|

vdisp/form.

On en déduit ici que v(t = 0 min) = 1
3vdisp(CℓO−)0min = 1,7 mmol · L−1 ·min−1.

.......................................................................................................................................................

25.5 a) On a ln(k) = ln(A)− Ea

RT
. On en déduit : Ea = RT

(
ln(A)− ln(k)

)
.

.......................................................................................................................................................
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25.5 b) On a Ea = RT1(ln(A)− ln(k)) et Ea = RT2(ln(A)− ln(2k)). On en déduit :

Ea

( 1
RT1

− 1
RT2

)
= ln(2),

puis Ea = −R ln(2)
1

T2
− 1

T1

. L’application numérique donne : Ea = 53 kJ ·mol−1.

.......................................................................................................................................................

25.6 a) On a k = A× exp
(
− Ea

RT

)
donc ln(k) = ln(A)− Ea

RT
.

.......................................................................................................................................................

25.6 b) Le coefficient directeur de la droite a est égal à a = −Ea

R
. On en déduit donc que l’énergie d’activation

vaut Ea = −a×R = 1,8× 102 kJ ·mol−1.
.......................................................................................................................................................
25.6 c) L’ordonnée à l’origine de la droite b est égale à b = ln(A). On en déduit donc le facteur de fréquence

vaut A = exp(b) = 5,3× 1011 L ·mol−1 · s−1.
.......................................................................................................................................................

25.7 a) On a v = − 1
α

d[A]
dt .

.......................................................................................................................................................
25.7 b) Par définition de l’ordre d’une réaction, on a v = k[A]0 = k.
.......................................................................................................................................................

25.7 c) On a donc − 1
α

d[A]
dt = k donc d[A] = −αk dt. Il vient par intégration :

ˆ [A]

[A]0
d[A] = −αk

ˆ t

t=0
dt.

Ainsi, on a
[
[A]
][A]

[A]0
= −αk

[
t
]t

t=0
, ce qui donne [A] = [A]0 − αkt.

.......................................................................................................................................................
25.8 a) Par définition de l’ordre d’une réaction, on a v = k[A]1 = k[A].
.......................................................................................................................................................

25.8 b) On a donc − 1
α

d[A]
dt = k[A] donc d[A]

[A] = −αk dt. Il vient par intégration :
ˆ [A]

[A]0

d[A]
[A] = −αk

ˆ t

t=0
dt.

Ainsi, on a
[

ln[A]
][A]

[A]0
= −αk

[
t
]t

t=0
, ce qui donne ln

(
[A]
)
− ln

(
[A]0

)
= −αk(t− 0).

Finalement, on trouve [A] = [A]0 × exp(−αkt).
.......................................................................................................................................................
25.9 a) Par définition de l’ordre d’une réaction, on a v = k[A]2.
.......................................................................................................................................................

25.9 b) On a donc − 1
α

d[A]
dt = k[A]2 donc −d[A]

[A]2 = αk dt. Il vient par intégration :
ˆ [A]

[A]0
−d[A]

[A]2 = αk

ˆ t

t=0
dt.

Ainsi, on a
[ 1

[A]

][A]

[A]0
= αk

[
t
]t

t=0
, ce qui donne 1

[A] = 1
[A]0

+ αkt.
.......................................................................................................................................................

25.9 c) On a donc [A] = 1
1

[A]0
+ αkt

= [A]0
1 + α[A]0kt

.

.......................................................................................................................................................

25.10 a) Lorsque t = t1/2, on a [A]t1/2 = [A]0
2 . On a donc [A]0

2 −[A]0 = −αkt1/2. On en déduit alors : t1/2 = [A]0
2αk .

.......................................................................................................................................................
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25.10 b) À t = t1/2, on a l’égalité [A]0
2 = [A]0 × exp(−αk × t1/2). En simplifiant de part et d’autre par [A]0, il

reste 1
2 = exp(−αkt1/2), soit ln(2) = αk× t1/2. On en déduit l’expression du temps de demi-réaction : t1/2 = ln(2)

αk
.

.......................................................................................................................................................

25.10 c) À t = t1/2, on a l’égalité 2
[A]0

= 1
[A]0

+ α × k × t, soit 1
[A]0

= α × k × t1/2. On en déduit l’expression

du temps de demi-réaction : t1/2 = 1
[A]0αk

.
.......................................................................................................................................................
25.11 a) Le temps de demi-réaction t1/2 ne dépend pas de la concentration initiale. La réaction est d’ordre 1.
.......................................................................................................................................................

25.11 b) Pour l’ordre 1, on a t1/2 = ln(2)
1× k . La moyenne des temps de demi-réaction obtenus est de 877 s.

On en déduit que k = ln(2)
877 = 7,90× 10−4 s−1.

.......................................................................................................................................................
25.12 a) D’après l’énoncé, les ions hydroxyde sont en large excès donc RBr est le réactif limitant de la transfor-

mation. On constate que, après 70 minutes, la concentration en RBr est divisée par deux et que, après 140 minutes,
soit 2× 70 minutes, la concentration est divisée par quatre. On en déduit que t1/2 = 70 min (réponse b ).
.......................................................................................................................................................
25.12 b) L’ordre partiel par rapport à chacun des réactifs étant de 1, on peut écrire la vitesse v = k[RBr]1[HO−]1.

La réponse a est donc correcte. En outre, les ions hydroxyde sont en large excès par rapport au 1-bromo-2-
méthylpropane, donc on suppose leur concentration constante au cours de la transformation. Ainsi, on introduit
une constante de vitesse apparente kapp = k[HO−]0 ; la vitesse peut donc s’écrire v = kapp[RBr] (réponse c ).
.......................................................................................................................................................
25.12 c) L’ordre partiel par rapport à RBr valant 1, la concentration en RBr vérifie [RBr] = [RBr]0×exp(−kappt),

soit ln([RBr]) = ln([RBr]0)− kapp × t. Donc, le tracé de ln
(
[RBr]

)
en fonction du temps devrait être une droite de

coefficient directeur −kapp et d’ordonnée à l’origine ln
(
[RBr]0

)
. C’est la réponse b qui est correcte.

.......................................................................................................................................................

25.12 d) On a kapp = k[HO−]0 donc k = kapp

[HO−]0
donc k = 1,0× 10−1 L ·mol−1 ·min−1, ce qui correspond à d .

.......................................................................................................................................................
25.13 a) Dans la série 1, [S]0 est fixe. De plus, v0 est doublée/triplée lorsque [H2]0 est doublée/triplée donc v0

est proportionnelle à [H2]0. Ainsi, on a m = 1.
.......................................................................................................................................................
25.13 b) On a v0 = k× [S]0n× [H2]0m donc ln(v0) = ln

(
k× [H2]0m

)
+n× ln

(
[S]0
)
. C’est bien une fonction affine

de coefficient directeur n et d’ordonnée à l’origine ln
(
k × [H2]0m

)
.

.......................................................................................................................................................

25.13 c) Le coefficient directeur de la modélisation est de l’ordre de 0,5. On en déduit que n = 1
2 .

.......................................................................................................................................................

25.13 d) Grâce à la valeur de l’ordonnée à l’origine, on trouve k = exp(−5,19)
1, 86× 10−3 = 3,00 L1/2· mol−1/2· min−1.

.......................................................................................................................................................
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Fiche no 26. Chiffres significatifs et incertitudes

Réponses

26.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,15 × 101

26.1 b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,9 × 10−3

26.1 c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,120 × 10−1

26.1 d) . . . . . . . . . . . . . . . . . . . . . . . . . 1,600 002 × 106

26.1 e) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,023 9 × 103

26.1 f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,300 × 103

26.1 g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,30 × 108

26.1 h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7,022 × 10−3

26.2 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

26.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

26.2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

26.2 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

26.3 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,0 km

26.3 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 cm

26.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,0 × 10−1

26.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c et d

26.5 a) . . . . . . . . . . . . . . . . . . . . . . . . (19,10 ± 0,36) m

26.5 b) . . . . . . . . . . . . . . . . . . . . . . . . . (0,90 ± 0,36) m

26.5 c) . . . . . . . . . . . . . . . . . . . . . . . . . (91,0 ± 3,5) m2

26.5 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,910 ± 0,035

26.6 . . . . . . . . . . . . . . . . . . . (59,0 ± 1,4) mmol · L−1

26.7 a) . . . . . . . . . . . . . . . . . . . . . . (1,191 ± 0,035) W

26.7 b) . . . . . . . . . . . . . . . . . . . . . . (1,175 ± 0,059) W

26.7 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.8 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.8 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.8 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d

26.9 a) . . . . . d

√(
u(λ)
λ

)2

+
(

u(D)
D

)2

+
(

u(ℓ)
ℓ

)2

26.9 b) . . . . . . . . . . . . . . . . . . . . . . . . . (74,4 ± 4,4) µm

26.10 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,929 5 V

26.10 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,472 V

26.10 c) . . . . . . . . . . . . . . . . . . . . . . . . (4,93 ± 0,15) V

26.11 . . . . . . . . . . . . . . . . . . . . . (25,017 ± 0,092) cm

26.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

26.13 a) . . . . . . . . . . . . . . . . . . . . (1,780 ± 0,050) mm

26.13 b) . . . . . . . . . . . . . . . . . . . . . (2,49 ± 0,14) mm2

26.14 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.14 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b

26.14 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

Corrigés

26.1 a) Pour passer en écriture scientifique, on garde une puissance de 10 et un préfacteur compris entre 1
(inclus) et 10 (exclu). On réécrit alors 31,5 sous la forme 3,15× 101.
.......................................................................................................................................................
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26.1 b) On écrit 0,001 9=1,9× 10−3.
.......................................................................................................................................................
26.1 c) On écrit 0,812 0=8,120× 10−1.
.......................................................................................................................................................
26.1 d) On écrit 1 600 002=1,600 002× 106.
.......................................................................................................................................................
26.1 e) On écrit 2 023,9=2,023 9× 103.
.......................................................................................................................................................
26.1 f) On écrit 7 300=7,300× 103.
.......................................................................................................................................................
26.1 g) On écrit 330× 106=3,30× 108.
.......................................................................................................................................................
26.1 h) On écrit 70,22× 10−4=7,022× 10−3.
.......................................................................................................................................................
26.2 a) C’est le nombre de chiffres de 0,39 qu’il faut regarder, il y a 2 chiffres à partir du premier non nul, le

nombre de chiffres significatifs est 2.
.......................................................................................................................................................
26.2 b) C’est le nombre de chiffres de 12,84 qu’il faut regarder, il y a 4 chiffres à partir du premier non nul, le

nombre de chiffres significatifs est 4.
.......................................................................................................................................................
26.2 c) C’est le nombre de chiffres de 12,250 qu’il faut regarder, il y a 5 chiffres à partir du premier non nul (il

faut prendre en compte le zéro final), le nombre de chiffres significatifs est 5.
.......................................................................................................................................................
26.2 d) Les zéros avant le premier chiffre non nul ne comptent pas dans le décompte des chiffres significatifs,

ceux après si : le nombre de chiffres significatifs est 2.
.......................................................................................................................................................
26.3 a) Les deux données ont deux chiffres significatifs, on garde donc deux chiffres significatifs lors de la

multiplication : on a d = v t = 80 km · h−1 × 0,10 h = 8,0 km.
.......................................................................................................................................................
26.3 b) Il faut additionner la longueur et la largeur puis multiplier par deux. On a :

p = 2× (6 mm + 15 cm) = 31,2 cm.

Dans la somme, la précision est limitée par la longueur (précise au centimètre près). Il faut donc arrondir au
centimètre près : on écrit p = 31 cm.
.......................................................................................................................................................
26.3 c) Déjà, on a R1 +R2 = 0,9 kΩ + 100 Ω = 1,0 kΩ, avec deux chiffres significatifs.

On calcule alors le gain par une division, en gardant le plus petit nombre de chiffres significatifs entre le numérateur
(trois chiffres significatifs) et le dénominateur (deux chiffres significatifs) :

G = R2

R1 +R2
= 100 Ω

1,0 kΩ = 1,0× 10−1.

.......................................................................................................................................................
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26.4 L’incertitude-type est exprimée dans le résultat final avec deux chiffres significatifs, avec un arrondi par
valeur supérieure, ou au plus près (les deux options sont acceptées). Le résultat numérique est ensuite arrondi au
niveau du dernier chiffre significatif de l’incertitude-type, donc ici au millimètre. On en déduit f ′ = (120± 33) mm
ou f ′ = (120± 32) mm.
.......................................................................................................................................................
26.5 a) On a z = x+ y = 19,1 m et u(z) =

√
0,22 + 0,32 = 0,36 m. En arrondissant l’incertitude à deux chiffres,

on obtient (19,10± 0,36) m.
.......................................................................................................................................................
26.5 b) On a z = x− y = 0,9 m et u(z) =

√
0,22 + 0,32 = 0,36 m. En arrondissant l’incertitude à deux chiffres,

on obtient (0,90± 0,36) m.
Lorsque l’on soustrait deux grandeurs physiques proches, le résultat est en général moins précis que la donnée la
moins précise.
.......................................................................................................................................................
26.5 c) On a z = x× y = 91 m2 et u(z) = 91×

√
(0,2/10)2 + (0,3/9,1)2 = 3,51 m2. En arrondissant l’incertitude

à deux chiffres, on obtient (91,0± 3,5) m2.
.......................................................................................................................................................
26.5 d) On a z = y/x = 0,91 et u(z) = 0,91×

√
(0,2/10)2 + (0,3/9,1)2 = 0,035 1. En arrondissant l’incertitude

à deux chiffres, on obtient (9,10± 0,35)×10−1.
.......................................................................................................................................................
26.6 On commence par calculer le résultat avant de s’intéresser aux incertitudes :

cA = cB · VB

VA
= 100,0 mmol · L−1 · 11,8 mL

20 mL = 59 mmol · L−1.

On propage l’incertitude pour ce produit de grandeurs indépendantes :

u(cA)
cA

=

√(
u(cB)
cB

)2

+
(

u(VA)
VA

)2

+
(

u(VB)
VB

)2

.

Numériquement, cela donne :

u(cA) = 59 mmol · L−1

√(
2,0 mmol · L−1

100,0 mmol · L−1

)2

+
(

0,10 mL
20,00 mL

)2

+
(

0,10 mL
11,80 mL

)2

.

On obtient u(cA) = 1,4 mmol · L−1, et finalement cA = (59,0± 1,4) mmol · L−1.
.......................................................................................................................................................
26.7 a) On calcule la puissance : P = U × I = 2,382 V× 0,500 A = 1,191 W.

On applique ici la propagation des incertitudes à P = U × I en écrivant :

u(P)
P =

√(
u(U)
U

)2

+
(

u(I)
I

)2

.

Numériquement, cela donne :

u(P) = 1,202 W×

√(
0,050 V
2,382 V

)2

+
(

0,010 A
0,500 A

)2

= 0,035 W.

Finalement, on obtient P = (1,191± 0,035) W.
.......................................................................................................................................................
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26.7 b) On calcule la puissance : P = R× I2 = 4,7 Ω× (0,500 A)2 = 1,175 W.

On applique ici la propagation des incertitudes à P = R× I2. On a :

u(P)
P =

√(
u(R)
R

)2

+ 22

(
u(I)
I

)2

.

Numériquement, cela donne :

u(P) = 1,175 W

√(0,14
100

)2
+ 4×

(
0,010 A
0,500 A

)2

= 0,059 W.

Finalement, on obtient P = (1,175± 0,059) W.
.......................................................................................................................................................
26.7 c) Les mesures sont P = (1,191± 0,035) W et P = (1,175± 0,059) W. Les deux intervalles se recoupent :

les mesures sont compatibles.
.......................................................................................................................................................
26.8 a) L’épaisseur du tube est la différence entre le rayon extérieur du cylindre et le rayon intérieur. Le rayon

étant la moitié du diamètre, on trouve e = D

2 −
d

2 .
.......................................................................................................................................................

26.8 b) On applique la formule donnée dans les prérequis de cette section avec a = 1
2 et b = −1

2 . On trouve :

u(e) =
√(1

2

)2
u2(D) +

(
−1

2

)2
u2(d) = 1

2
√

u2(D) + u2(d).

.......................................................................................................................................................

26.8 c) On a e = 10,3 mm− 6,8 mm
2 = 1,75 mm, et u(e) = 1

2
√

(0,1 mm)2 + (0,1 mm)2 = 0,071 mm. Finalement,
on a donc e = (1,750± 0,071) mm.
.......................................................................................................................................................
26.9 a) On a, pour ce produit de grandeurs indépendantes :

u(d)
d

=

√(
u(λ)
λ

)2

+
(

u(D)
D

)2

+
(

u(ℓ)
ℓ

)2

.

.......................................................................................................................................................
26.9 b) On commence par calculer le résultat avant de s’intéresser aux incertitudes :

d = 2λD
ℓ

= 2× 632,8 nm× 3 m
51 mm = 74,447 µm.

Le nombre de chiffres conservés ici n’est pas significatif, juste assez grand pour pouvoir être ajusté ensuite. On
calcule ensuite numériquement l’incertitude :

u(d) = 74,447 nm×

√(
0,10 nm
632,8 nm

)2

+
(

10× 10−3 m
3,000 m

)2

+
(

0,30 cm
5,1 cm

)2

= 4,4 µm.

Finalement, on obtient d = (74,4± 4,4) µm.
.......................................................................................................................................................
26.10 a) On peut faire le calcul à l’aide d’un tableur (fonction MOYENNE() souvent), d’une calculatrice ou de

Python (fonction mean() de la bibliothèque numpy par exemple). On obtient m =
10∑

i=1

Ui = 4,929 5 V.

.......................................................................................................................................................
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26.10 b) Le calcul est fait par une fonction prédéfinie du tableur (ECARTYPE() souvent), de la calculatrice ou
de Python (fonction std() de la bibliothèque numpy par exemple). On obtient σU = 0,472 042 429 825 493 V, soit
0,472 V en gardant trois chiffres significatifs.
.......................................................................................................................................................

26.10 c) On obtient alors u(m) = 0,472√
10

= 0,149 V, que l’on arrondit en gardant deux chiffres significatifs.

L’incertitude-type sur la valeur moyenne est donc finalement u(m) = 0,15 V.
Il faut exprimer la moyenne au centième de volt, ce qui donne le résultat suivant : m = (4,93± 0,15) V. Cette valeur
moyenne est la meilleure estimation de la « valeur vraie » que l’on peut faire à partir de cette série de mesures
répétées.
.......................................................................................................................................................
26.11 On calcule une valeur moyenne de 25,017 cm et un écart-type des mesures de 0,301 cm, ce qui donne une

incertitude-type sur la valeur moyenne de 0,087 cm.
L’incertitude-type est, avec deux chiffres significatifs, au centième de millimètre, il faut donc garder les chiffres
jusqu’à cette décimale : on obtient (25,017± 0,087) cm.
.......................................................................................................................................................

26.12 Pour une résistance, on a u(r) = r × u(r)
r

.

Pour les n = 5 résistances, on a R = n r, et u(R) =
√
nu2(r), donc :

u(R)
R

=
√
n

n
= 1√

n
.

Pour n = 5, on obtient u(R)
R
≈ 0,44 %.

La réduction de l’incertitude vient du fait que les incertitudes sur les composants sont indépendantes les unes des
autres. On retrouve ici le facteur « 1√

n
» qui permet de passer de l’incertitude sur une mesure (une résistance) à

celle sur la moyenne d’une série de n mesures (les n résistances en série).
.......................................................................................................................................................
26.13 a) Le zéro de l’échelle mobile est entre 1,7 mm et 1,8 mm. Il y a 20 graduations dans l’échelle mobile, le

pied à coulisse a donc une précision affichée de 1 mm
20 = 0,05 mm. La graduation qui est alignée avec une graduation

fixe est la 16e de l’échelle mobile, on lit donc :

d = 1,7 mm + 16× 0,05 mm = 1,78 mm.

Le résultat de la mesure est alors d = (1,780± 0,050) mm, puisque, conventionnellement, les incertitudes sont
données avec deux chiffres significatifs.
.......................................................................................................................................................
26.13 b) La section droite est un disque de diamètre d. Sa mesure vaut donc s = π(d/2)2. Numériquement, on

obtient :
s = π ×

(1,78 mm
2

)2
= 2,488 5 mm2.

La section étant reliée au diamètre par une fonction puissance, on a :

u(s)
s

= 2u(d)
d

= 2× 0,05 mm
1,78 mm = 5,6 %.

Finalement, on obtient u(s) = 0,14 mm2 et le résultat s’écrit s = (2,49± 0,14) mm2.
.......................................................................................................................................................
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26.14 a) On compare une valeur à une valeur de référence. On vérifie que l’incertitude de la valeur tabulée est
très inférieure à celle de la mesure. En effet, l’inégalité

(0,69 m · s−1)2 = 0,48 m2 · s−2 ≪ (2,3 m · s−1)2 = 5,3 m2 · s−2

est bien vérifiée (il y a plus d’un facteur 10 entre les deux valeurs).

On peut donc utiliser la formule simplifiée : on a z = 4,92 m · s−1

2,3 m · s−1 = 2,1 > 2.

Ainsi, les deux valeurs sont incompatibles.
.......................................................................................................................................................
26.14 b) On compare deux valeurs avec la même incertitude, on doit appliquer la formule complète, mais qui se

simplifie un peu puisque les incertitudes sont les mêmes. On trouve :

z = 0,2 °C√
2× 0,060 °C

= 2,4 > 2.

Ainsi, les deux valeurs sont incompatibles.
.......................................................................................................................................................

26.14 c) On compare une valeur à une valeur de référence exacte : on a z = 0,95 cm
0,85 cm = 1,1 < 2. D’après le critère

donné, les deux valeurs sont compatibles.
.......................................................................................................................................................
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